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Goldstone mode stochastization in a quantum Hall ferromagnet
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Experimental and theoretical studies of the coherent spin dynamics of two-dimensional GaAs/AlGaAs electron
gas were performed. The system in the quantum Hall ferromagnet state exhibits a spin relaxation mechanism
that is determined by many-particle Coulomb interactions. In addition to the spin exciton with changes in the
spin quantum numbers of δS = δSz = −1, the quantum Hall ferromagnet supports a Goldstone spin exciton that
changes the spin quantum numbers to δS = 0 and δSz = −1, which corresponds to a coherent spin rotation of
the entire electron system to a certain angle. The Goldstone spin exciton decays through a specific relaxation
mechanism that is unlike any other collective spin state.
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Introduction. Spin relaxation mechanisms in two-
dimensional (2D) electron systems have not yet been elu-
cidated due to the large number of competing mechanisms
and the complex effects of the many-particle Coulomb in-
teractions on relaxation. Two-dimensional confinement and
the quantizing magnetic field ensure a cardinal rearrangement
of the electron energy spectrum, effectively making it zero
dimensional. Standard single-particle relaxation channels (see,
e.g., Ref. [1], and the references therein) are suppressed,
which prolongs spin relaxation time. On the other hand,
electron-electron correlations, very essential in the case,
make the spectrum again two-dimensional. At integer filling
factors and at some fractional ones the simplest electron
excitations are magnetoexcitons [2] with well-defined 2D
momenta, specifically representing magnetoplasmons, spin
waves, or spin-cyclotron excitons [3–8]. New spin relaxation
mechanisms, e.g., related to the exciton-exciton scattering
processes appear.

The most comprehensive concept of spin relaxation was
developed for the quantum Hall ferromagnet (QHF), ν =
2n + 1 [9–13], in which the n − 1 low Landau levels at T → 0
are fully occupied and the nth level is filled by spin-up electrons
aligned along �B. The QHF is in fact a high-symmetry system
for investigating the influence of many-particle Coulomb
interactions on the spin excitation spectrum [3–7]. Research
into the nonequilibrium spin system of the QHF is also a
direct method of evaluating the influence of the many-particle
Coulomb interactions on spin relaxation in 2D systems.

Deviation of the spin system from equilibrium for the QHF
can be described as formation of spin excitons comprising
an effective hole in a spin-polarized electron system and
an electron with an opposite spin [3]. Formation of a zero-
momentum spin exciton (Goldstone spin exciton) changes the
spin projection along the magnetic field Sz but maintains the
total spin of the electron system S. Thus, the presence of
Goldstone excitons corresponds to a coherent spin rotation
about the �B direction. The stochastization and simultaneously
the relaxation to the ground state of such a Goldstone mode
(stationary eigenstate), both governed by one type of relaxation
mechanisms, were theoretically considered earlier [9,10]. In
particular, in Ref. [9] the relaxation was supposed to occur via
the mechanism of spin-orbit coupling affected by the smooth
random potential that always takes place in 2D systems. (In
fact, a similar relaxation channel is realized for nonzero-

momentum spin excitons where S and Sz are equally reduced
and where the relaxation was studied not only theoretically
[12] but also experimentally [13].)

Here we consider a different situation. Initially using optical
excitation we create a nonstationary state where the entire
electron spin is rotated as a whole about its equilibrium
direction. The coherent Goldstone mode arises if the following
condition occurs: |δS| < |δSz|. This state can be mathemati-
cally described by the action of the operator Ŝ− = Ŝx − iŜy

onto the ground state |0,0〉 = |
Nφ︷ ︸︸ ︷

↑↑↑ . . . ↑ 〉 (Nφ is the degener-
ation number of the completely occupied Landau level). The
N -fold action of this operator: |N,0〉 = (Q†

0)N |0,0〉 (we use
the designation Q†

0 = S−/
√
Nφ) represents an eigenstate, the

Goldstone condensate, i.e., the state where S = Nφ/2 and
Sz = Nφ/2 − N . All the spins in this condensate are tilted
as a whole from the �B direction by angle θ : cos θ = Sx/S. The
energy of the state calculated from the ground-state level is
equal to EN = εZN (εZ = |g|μBB is the electron Zeeman
energy), so the total form of the basis Goldstone state is
e−iEN t |N,0〉.

An elementary stochastization process represents a change
from state |N,0〉 to a state where one of the zero excitons
becomes nonzero: |N,q〉 = (Q†

0)N−1Q†
q|0,0〉, where Q†

q =
N−1/2

φ

∑
p e−iqxpb

†
p+ qy

2
ap− qy

2
. ap and bp are the Fermi an-

nihilation operators corresponding to the electron states on
the upper Landau level with spin-up (a = ↑) and spin-down
(b = ↓). Both |N,0〉 and |N,q〉 are the QHF eigenstates.
They are orthogonal due to the translation invariance. The
|N,0〉 → |N,q〉 transition occurs without a change in the
Sz = Nφ/2 − N component. At q → 0, the energies of both
states (EN ) are also the same. However, the states |N,0〉
and |N,q〉 remain different even at q → 0 (see discussion
in Ref. [9]) and have different spin numbers: S = Nφ/2 and
S = Nφ/2 − 1, respectively. Therefore the spin tilt angle θ

diminishes with this transition.
An approach describing the relaxation of Goldstone spin

excitons via two stages is developed. A fast stochastization
stage (with characteristic time ∼1–10 ns) converts Goldstone
zero excitons into nonzero spin excitons with the same energy;
and the total number of spin excitons during this process is
kept constant. The second stage is earlier established [13]
long-time relaxation (∼100 ns) to the ground state, i.e., the
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nonzero spin excitons annihilation governed by the spin-orbit
coupling and smooth electrostatic random potential. Yet, the
fast stochastization (dephasing of the spin precession) is not
related to any previously identified relaxation mechanisms.
The coherent spin precession decays because individual elec-
tron spins precess with slightly different Larmor frequencies in
a spatially nonuniform environment. The spin-orbit coupling
is irrelevant since it cannot provide transition from the zero
excitons to the nonzero ones conditioned by the exciton total
number conservation. We suppose that the spin-component
S nonconservation and the irreversibility of the process are
provided by the g-factor long-wave spatial fluctuations.

Experiment. To minimize the influence of random po-
tential and separate the influence of interparticle Coulomb
interactions on spin relaxation, we studied high-quality
GaAs/AlGaAs heterostructures with single quantum wells
(QWs) containing highly mobile 2D electron gas (μe �
107 cm2/Vs) with dark concentration ns � 0.7 × 1011 cm−2

(sample A) and ns � 2.4 × 1011 cm−2 (sample B with μe �
4 × 106 cm2/Vs). The spin dynamics was studied using the
Kerr rotation technique at a base temperature of 1.5 K. The
photoexcitation source was a picosecond titanium-sapphire
laser with a tunable spectral width, and the wavelength of
the pump laser beam coincided with that of the probe beam.
The mean pump power was �1 mW, the laser spot size
being on the order of 1 mm (the number of pumped electrons
did not exceed 1010 cm−2). The samples were placed into
an optical cryostat with a split solenoid at 45 degrees in
reference to the �B direction, while the excited electron spins
were oriented close to normal to the sample surface due to
the difference between the refractive indices of GaAs and
helium (see inset of Fig. 1). The experimental geometry
reproduced basically the arrangement first used in Ref. [11]
except that our setup enabled us to excite the electrons with a
high spectral resolution (0.7 meV). It is extremely important
not to mix up spin dynamics from different energy states
if trying to separate many-particle and single-particle spin
relaxation mechanisms. The refraction geometry ensured that
the generated spin excitations had a zero transverse (along the
QW plane) momentum, i.e., mostly Goldstone excitons were
formed. This enabled us to select the required filling factor as
well as to ensure quantum spin beats through quantization of
the spin projection (Sz) in the magnetic field direction.

The beating amplitude (the difference between the max-
imum and minimum of the time-resolved and spectrally
resolved spin Kerr-effect signal) decays at two different
times, short T e

S1 (several hundreds of picoseconds) and long
T e

S2 (nanoseconds) (Fig. 1). In addition, a beating signal is
modulated by low-frequency oscillations. Those are observed
in highest mobility samples only and disappear in samples
with mobility lower than 3 × 106 cm2/Vs. We attribute these
oscillations to influence of a plasma vibration of the whole
electron system, the origin of which is yet unknown. The
prime relaxation time T e

S1 is independent of the filling factor,
while the dependence of T e

S2 on ν becomes dramatic near the
ferromagnet values ν = 1, 3. Since the initial phase relaxation
(T e

S1) is not related to the filling factor, it is attributed to
single-electron spin relaxation. The electron system is likely
to be overheated immediately after the pumping pulse, and
relaxation time T e

S1 emerges due to cooling [14]. This as-
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FIG. 1. (Color online) (a) Photoluminescence spectrum corre-
sponding to optical transition (1/2; −3/2) (red curve) and
(−1/2; 3/2) (black curve) from the lowest Landau level of the
conductance band to the lowest Landau level of the heavy holes
in the valence band at magnetic field 4.3 T (ν = 0.96). (b) Kerr signal
involving optical transitions (1/2; −3/2) (red curve) and (−1/2; 3/2)
(black curve). (c) Time behavior of Kerr signal amplitude. The straight
lines are obtained by means of double exponential approximation
of the experimental points. The insert schematic illustrates a 45
degree tilted-field geometry for time- and spectrally-resolved spin
Kerr-effect measurements.

sumption is supported by the fact that increasing the pumping
power enhances the fast relaxing part of the Kerr precession.
Below, we consider the long-time relaxation channel only,
which is sensitive to the spin arrangement of the ground
state (Fig. 2).

To illustrate how different energy states participate in the
spin relaxation dynamics, we present the Kerr signal obtained
from pumping in resonance with two optical transitions:
(i) from the valence band to the electron Fermi edge, (Fig. 2,
top) and (ii) from the valence band to the maximum density
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FIG. 2. (Color online) Long-lived part of Kerr signal registered
in spectral position corresponding to lower-energy optical transition
(a) and to higher-energy optical transition (b) (see Fig. 1) as a function
of the filling factor near ν = 1.
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of the empty states (∼0.5 meV higher; Fig. 2, bottom). The
spin dynamics of the higher-energy excitation was only
slightly sensitive to the filling factor [Fig. 2(b)], while the
spin dephasing time for the electrons at the Fermi edge was
dramatically longer [Fig. 2(a)]. When ν is exactly equal to 1,
the spin dephasing time can be estimated only roughly. Since
the periodicity of the laser pulses is 12.5 ns, time intervals
longer than 10 ns can hardly be measured with our technique.
Given the tiny deviation from the exact value ν = 1, the spin
dephasing time decreased by more than an order of magnitude.

For reference: the samples investigated in the previous Kerr
experiments [11] could not really exhibit collective states
as the mobility of the samples μe � 1 × 106 cm2/Vs does
not imply the presence of a long-range order QHF. In those
works the change of spin relaxation time in transition from
the QHF to skyrmion systems demonstrated a tiny change
in spin relaxation time from 6–4 ns. This means that there
is neither a QHF nor a skyrmion crystal/liquid. The small
change in relaxation time exhibits the influence of the weak
collective effects on the basically single-particle physics in
an inhomogeneous system. The existing theories predict a
much larger change in spin relaxation time when the electron
system is driven from a QHF to a skyrmion texture. For
instance, nuclear spin relaxation under similar conditions
involves variations in relaxation time up to two orders of
magnitude [15], and the theoretically predicted time variations
could reach three orders of magnitude [16]. (Both nuclear and
electron spins relax through the same electron excitations.
The absolute relaxation times for nuclei may exceed those
for electrons by many orders of magnitude. Yet, due to the
transition from the ferromagnetic to the skyrmion system
the relative changes should be similar for both systems.)
The strong variation of the relaxation time is the key proof
of the quantum phase transition from a QHF to a skyrmion
system. We observe variations of relaxation time over a narrow
range around filling ν = 1 up to twentyfold, which points to
the presence of the phase transition in question. The striking
difference between our and the previous experimental results is
likely to be due to the fairly higher-quality samples used in the
present study as well as the application of spectrally resolved
Kerr rotation, as the change of the spectral characteristics of
the excitation beam leads to a change in spin relaxation time
by an order of magnitude (Fig. 4). Additionally, a comment
on the discussion presented in Ref. [11], which is based on
theoretical work [9]: In Ref. [9] another initial state was studied
and hypothetically a single mechanism was considered for
both stochastization and relaxation processes corresponding
to the simultaneous Sz → Sz + 1 and S → S − 1 transitions
(see the Introduction above). This approach is irrelevant to any
explanation of the observed Zeeman-frequency precession and
leads to an estimate for the relaxation time definitely longer
than 10 ns (really longer than 100 ns in an up-to-date quantum
well). So, there is no agreement with time ≈6 ns [11]. In our
present study we assert that the stochastization (S → S − 1
under condition Sz = const.) and the relaxation (Sz → Sz + 1
under condition S = Sz) are determined by physically different
mechanisms.

The huge variability in the electron relaxation time around
ν = 1 is consistent with the results of Ref. [15] regarding the
influence of the spin rearrangement on nuclear spin relaxation.

The reason is as follows: when the electron system undergoes
the phase transition from the QHF to a less rigid spin state,
several phase-destroying mechanisms for the coherent spin
precession come into play due to low-energy spin excitations
[5,7,16].

Discussion. The Kerr signal, measured at a moment t ,
is proportional to the quantum-mechanical average of the
nonconserved value Sx + iSy . However, both states |N,0〉 or
|N,q〉 give 〈Ŝx + iŜy〉 ≡ 0. To study the Kerr precession, we
first describe the time-dependent states. The initial state arises
as a result of a very fast vertical recombination transition
induced by light absorbtion. Due to elementary single-photon
annihilation, instead of a spin-up electron ↑ = ( 1

0 ) a tilted

electron ↗ = (
cos β

2

− sin β

2

) emerges, where β is one of the Euler

angles (two others may be equated to zero without loss of
generality; β is close to 45◦ in the experiment). If one photon
is absorbed in the state |0,0〉, the initial state represents a
combination of vectors |↗ ↑↑↑ . . . ↑〉, |↑↗ ↑↑ . . . ↑〉,. . ., and
|↑↑↑ . . . ↗〉. Simple physical considerations based on the
indistinguishability principle lead to the following description
of the initial QHF state |i〉 = L̂β(0)|0,0〉, where L̂β(0) =
cos β

2 Î − sin β

2Q
†
0 (Î denotes the unit operator). Here the

appearance of a zero-exciton operator is stipulated by the strict
verticality of the transition process, which held definitely in
the experiment since Lkphot‖ � 1 (kphot‖ is the parallel photon
momentum component and L is a linear characteristic of 2D
density spatial fluctuations). The initial state is certainly not
an eigenstate. It does not correspond to definite Sz, but still
corresponds to definite S = Nφ/2. Under the experimental
conditions, N � Nφ , the elementary dephasing process is a
single-exciton process.

For simplicity, we consider a domain of area A smaller than
Asp/N , whereAsp is the area of the laser spot. Accordingly, the
Landau level degeneracy is defined as Nφ = A/2πl2

B though
certainly assumed to be large, Nφ � 1. It is clear that no more
than a single photon is absorbed within the A domain, therefore
our task is to study the temporal evolution of the initial state
|i〉 = cos β

2 |0,0〉 − sin β

2 |1,0〉. In the absence of any violation
of the translation invariance, the Schrödinger equation results
in state |t〉 = L̂β(t)|0,0〉 at moment t , where L̂β (t) = cos β

2 Î −
sin β

2 e−iεZtQ†
0. The calculation of expectation 〈t |Ŝx + iŜy |t〉 =

− 1
2 sin β

√
Nφe−iεZt explains the Kerr signal oscillations

with frequency εZ/�, but does not explain the Kerr signal
decay.

To study the decay, we have to consider the stochastization
process, which is slow compared to the precession. This
is a conversion of component e−iεZt |1,0〉 of state |t〉 to
component e−iεZt |1,q〉 at q → 0. Indeed, when calculating
the Sx + iSy quantum average, any state |t,q〉 = cos β

2 |0,0〉 −
e−iEq t sin β

2 |1,q〉 is substituted for |t〉, and we come to a zero
result: 〈q,t |Ŝx + iŜy |t,q〉 ≡ 0. (Here Eq = εZ + q2/2Mx is
the spin exciton energy at small dimensionless q.) Thus the
time of the Kerr signal decay is equal to the transition time of
zero exciton |1,0〉 conversion into nonzero one |1,q〉q→0 with
the same energy, E0 = εZ .

The perturbation responsible for the |1,0〉 → |1,q〉 con-
version must be: (i) a spin nonconserving coupling changing
the S, but not changing the Sz quantum numbers; and
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FIG. 3. (Color online) Decay time of long-lived Kerr signal
registered in spectral position corresponding to lower-energy optical
transition (red) and to higher-energy optical transition (black) (see
Fig. 1) at different filling factors near of ν = 1 (total magnetic field
B = 4.50 T, sample A) and of ν = 3 (B = 4.65 T, sample B). Blue
crosses correspond to theoretical estimations (see the text).

(ii) violating the translation invariance. The most likely candi-
date is a term corresponding to the spatial fluctuations of the
g factor in 2D electron gas, i.e., the Zeeman energy is actually
εZ + g1(r)μBB, where 〈g1〉 ≡ ∫

g1(r)dr/A = 0 [17]. For
estimation, let us assume that the g disorder is Gaussian and
it is governed by correlator K(r) = ∫

g1(r0)g1(r0 + r)dr0/A,
parameterized by fluctuation amplitude 	g and correlation
length 
g , i.e., K(r) = 	2

ge
−r2/
2

g . After performing some
manipulations similar to those described in Ref. [9] (where
an electrostatic random potential was considered a dissipa-
tive mechanism), one finds that the stochastization occurs

exponentially at a rate equal to

1/τ = πMx(μBB	g
g)2/2�l2
B. (1)

Here Mx is the physical quantity responsible for the many-
particle Coulomb/exchange coupling (the stronger the cou-
pling ∼e2/κlB , the smaller the spin-exciton mass [3,18]).
Formally Eq. (1) expresses the following result: at equal
magnetic fields and disorder parameters the Goldstone mode
in a rigid ferromagnet (with realized large Coulomb constant,
for instance, via small dielectric constant κ) is more stable
than in a softer one (with a larger κ).

Numerical estimation of τ is fairly complicated due to the
scant information on the 	g and 
g values. We estimate
	g/g ∼ 0.02 for the ν = 1 sample, 	g/g ∼ 0.05 for the
ν = 3 one, and 
g ∼ 50 nm in both cases. Then using our
knowledge of the spin-exciton mass [18] we can calculate τ .
These theoretical estimations are marked with crosses in Fig. 3.

So, the Goldstone mode stochastization is a crucially many-
particle process, which is different from the single-particle
view of spin relaxation. We report on time τ corresponding to
transverse time T2 for spin relaxation. Longitudinal relaxation
time T1 characterizing the relaxation processes δSz → 0 in a
QHF was measured directly [13]. In accordance with spin
relaxation physics of classical magnets, we find that the
inequality T2 � T1 also holds for the QHF.

It should be emphasized that optical creation of the
Goldstone mode can be realized, in principle, not only in a
GaAs/AlGaAs quantum Hall system. In future, a study similar
to the above could probably be realized, e.g., in a QHF based on
graphene, HgTe and ZnO/MgZnO systems. Generalizing from
the data obtained: The studied stochastization process should
have a common nature for any 2D ferromagnets formed by
purely conduction-band electrons.

This research was partially supported by the Russian
Foundation for Basic Research.
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