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Trigonal warping effect on velocity and transverse confinement length
of topologically confined states in bilayer graphene
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In bilayer graphene an interface between regions with opposite sign of the interlayer asymmetry gap leads to
the spatial confinement of low-energy chiral modes [I. Martin, Y. M. Blanter, and A. F. Morpurgo, Phys. Rev. Lett.
100, 036804 (2008)]. Here we study the influence of trigonal warping on the properties of the interface-guided
stats and find that in the vicinity of the band edges the group velocity and transverse confinement length exhibit
a nonmonotonic dependence on the crystallographic orientation of the crystal with respect to the interface.
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I. INTRODUCTION

Nontrivial properties of wave functions in electronic bands
of some gapped materials (such as topological insulators [1]
and superconductors [2]) lead to the existence of topologically
protected interface/surface states inside the spectral gap of the
bulk 3D or 2D material. Similar modes have been predicted
to exist in asymmetrically biased bilayer graphene (BLG), in
which a difference between the on-site energies on the two
layers via a perpendicularly applied electric field induces an
energy gap between the conductance and the valence bands
[3–6]. The combination between the unusual properties of
BLG and a topological defect, obtained by applying a potential
difference with opposite sign in two regions of the flake, leads
to the spatial confinement of the low-energy chiral modes in
the gapped region and along the interface [7]. The robustness
of these modes might significantly influence transport in BLG
[8] which can have implications for graphene based valley
filters [9] and valves [10].

In this paper we incorporate trigonal warping in the electron
dispersion for a detailed analysis of the properties of the
electron states confined along the interface between regions
with opposite electric bias polarity. Such structures are,
nowadays, feasible to produce using graphene encapsulated in
hexagonal boron nitride with multiple split gates [11]. We find
that in a BLG with trigonal warping the two modes inside the
gap, found in the theory neglecting trigonal warping, persist
even at small values of the gap. Our results show that trigonal
warping only produces a strong dependance of the group
velocity and the transverse confinement length of the interface
states on the crystallographic orientation of the crystal.

II. MODEL

In BLG [3,5,12–15] the stacked layers have every A site
within each layer surrounded by three B sites and vice versa,
with intralayer coupling γ0 ∼ 3 eV; A2 sites are on top of
B1 sites, with interlayer coupling γ1 ∼ 0.4 eV, while A1/B2

sites sit over/under the hexagons in the other layer and are
coupled by “skew” hopping energy γ3 ∼ 0.3 eV. The low-
energy properties of BLG can be described by the Hamiltonian
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with interlayer asymmetry gap [12,16]
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describing effective hopping between A1 − B2 sites. Here
u(z) = u · sign(z) [17] with z = x cos(θ ) + y sin(θ ) and θ as
the orientation of the interface with respect to the crystallo-
graphic direction of the crystal, ξ = ±1 for the two valleys, v

is the Fermi velocity, v3 =
√

3aγ0

2�
with a = 2.46 Å as the lattice

constant, π = px + ipy parametrizes the in-plane momentum
relative to the Brillouin zone (BZ) corners, K and K ′ with
p2 = p2

x + p2
y , and σz is the Pauli matrix.

The first term in Eq. (1) describes the low-energy electronic
states which reside on the sites A1 and B2 and form two
approximately parabolic bands that touch each other at the
K and K ′ points. The second term incorporates the “skew”
hopping which induces a trigonal warping (TrW) effect and
splits the parabolic bands into four pockets which merge
together at energy εT W ≈ γ1

4 ( v3
v

)2. Finally, the last term in
the above equation contains the interlayer asymmetry u(y)
(which preserves the electron-hole symmetry and leads to the
opening of a gap [5] in the spectrum) as well as the influence
of the high-energy states,− v2

γ 2
1

p2, which reside on A2 and B1

sites, form the split bands, and give the dispersion a “Mexican
hat”-like shape.

On both sides of the interface the spectrum has the form
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illustrated in Fig. 1. For u � 5 meV, the second and third
terms in the Hamiltonian dominate at low energies, and the
spectrum exhibits four clearly defined pockets in the vicinity
of the gap, as shown by the isoenergetic lines in Fig. 1 (left
panel). For 5 meV < u < 40 meV, the interlayer asymmetry
competes with TrW causing a lowering of the side pockets
shown in Fig. 1 (central panel), whereas the central pocket
remains unchanged. Finally, for u � 40 meV the last term in
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FIG. 1. (Color online) Isoenergetic lines for gaps u = 2 meV
(left panel), 20 meV (central panel), and 50 meV (right panel) and
θ = 0. The colors distinguish the isoenergetic lines at different
energies as follows: left panel ε = 1.1 meV (green), 1.3 meV
(red), and 1.4 meV (blue); central panel ε = 10.001 meV (green),
10.01 meV (red), and 10.02 meV (blue); right panel ε = 24.9 meV
(green), 24.999 meV (red), and 25.02 meV (blue).

Eq. (1) becomes just as strong as the TrW effect which leads to
the conversion of the central pocket into a saddle point located
above the Lifshitz transition energy, as depicted in Fig. 1 (right
panel), at which the isoenergetic lines reconnect.

III. CONFINEMENT OF LOW-ENERGY ELECTRON
STATES

In the absence of TrW, the eigenvectors of the Hamiltonian
in Eq. (1) are of the form
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above y > 0 (+) and below y < 0 (−) the interface. Here
A±

i are the wave amplitudes, λ±
i = ip±

yi
are the momenta

perpendicular to the interface, v±
i = |∂E/∂p±

y | is the group
velocity, and i labels the four components of the wave function.
The amplitudes A+

i and A−
i on the two sides of the interface

can be matched,

⎛
⎜⎜⎜⎝

A+
1

A+
2

A+
3

A+
4

⎞
⎟⎟⎟⎠ = T

⎛
⎜⎜⎝

A−
1

A−
2

A−
3

A−
4

⎞
⎟⎟⎠, (3)

using the transfer matrix [18] T = N−1M . To build this matrix
we employed the continuity of the electron wave function

(0)+ = 
(0)− and its derivative ∂
(0)+/∂y = ∂
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at y = 0, and found that
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Assuming that in Eq. (3) the amplitudes A−
1 , A−

2 , A+
3 , A+

4 are
the ones corresponding to wave function components which
diverge away from the interface (eλ±

i y → ∞), we substitute

FIG. 2. (Color online) Topologically protected 1D modes. Left panel: modes in the absence of trigonal warping in the K (red) and K ′

(blue) valley, respectively; the low-energy conduction and valence bands are shown in green. Central panel: modes in the presence of trigonal
warping with θ = 0 in the K valley (red) and K ′ valley (blue); the low-energy conduction and valence bands are shown in green. Right panel:
modulation of the 1D modes by the crystallographic orientation of the crystal, in the presence of trigonal warping in the K valley.
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them with zeros and obtain a system of four equations,

⎛
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which only has a nontrivial solution if its determinant is equal
to zero. Imposing the above condition, we reproduce the earlier
results obtained by Ref. [7], namely that the band-gap interface
confines the low-energy electron states along the interface,
leading to the formation of two topologically protected 1D
branches in the gapped region in each valley, as shown in
Fig. 2 (left panel). Both branches in the K (red) valley, αK and
βK , have negative group velocity at E = 0 whereas in the K ′
(blue) valley the branches αK ′ and βK ′ have positive velocity.
Note that this system is valley symmetric, and the branches
in each valley can be obtained from the ones in the opposite
valley by swapping the valleys and applying the electron-hole
transformation E → −E. Our results show that at low energies
the αK and βK ′ branches terminate on one end at −u/2, the top
of the valence band, and continue throughout the conduction
band. Oppositely, the βK and αK ′ branches terminate on one
end at u/2, bottom of the conduction band, and continue
throughout the valence band. To test the upper/lower limits
of the branches that continue throughout the bands, we repeat
the above calculations using the four band model [19] and find
that these branches terminate at ±γ1, respectively, where they
merge with the bands.

Employing the same procedure as outlined above, we obtain
the topologically protected channels in the presence of TrW,
shown in Fig. 2 (central panel). Trigonal warping breaks the
valley symmetry, and the branches in one valley can not be
obtained from the ones in the opposite valley by applying the
composite transformation discussed above, however, inversion
symmetry is maintained. Moreover, as shown in Fig. 2 (right
panel), the system possesses intravalley rotational symmetry
by 2π/3, and the crystallographic orientation of the crystal θ

modulates the 1D branches. Referring back to the four band
model [19], we checked that the branches which continue
beyond E = ±u/2 terminate at E = ±γ1.

Figure 3 shows the group velocity v(θ,E) = ∂E/∂px

and the inverse transverse confinement length 1/l(θ,E) =
Im(py)/� for the two branches in the K valley in Fig. 2 (right
panel). Notice that the velocity and transverse confinement
length are also modulated by the crystallographic orientation
of the crystal. Similarly to a gapped parabolic spectrum, the
group velocity for both branches is negative in the K valley,
with their respective maxima being achieved at θ = 0 and 2π/3

FIG. 3. (Color online) Group velocity (Top) and transverse con-
finement length (Bottom) of the topologically protected branches
shown in Fig. 2 (Right panel). The colors differentiate between the
αK (green) and βK (red) branches.

or π/3 and at energies in the vicinity of the bands, and positive
in the K ′ valley as dictated by time-inversion symmetry. The
transverse confinement length follows the same pattern.

IV. CONCLUSIONS

In conclusion, in trigonally warped bilayer graphene, an
interface between regions with opposite bias polarity gives
rise to two topologically confined states inside the gap which
propagate along the interface in opposite directions in each
valley. One of the chiral states starts at E = −u/2 and
continues throughout the conduction band up to +γ1, while
the other starts at E = +u/2 and continues throughout the
valence band down to −γ1. Our analysis shows that while the
direction of propagation of the two gapped states continues to
be strictly determined by the valley, similarly to a gapped
parabolic spectrum, both their group velocities as well as
the transverse confinement lengths are now modulated by the
crystallographic orientation of the crystal with respect to the
interface.
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