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Anomalous magneto-optical response of black phosphorus thin films
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We theoretically investigate the Landau levels (LLs) and magneto-optical conductivity (MOC) of black
phosphorus thin films under a perpendicular magnetic field based on an effective k· p Hamiltonian and
linear-response theory. We obtain the analytical expression for LLs, which agrees well with the numerical
calculations, and find that the LLs sublinearly depend on the magnetic field and LL index. By using the Kubo
formula, we evaluate the longitudinal and Hall optical conductivities as functions of the photon energy and the
magnetic field. The analytical optical transition matrix elements reveal unusual selection rules for the interband
(intraband) optical transitions between the LLs �n = 0, ±2 (±1, ± 3). The MOC shows strongly anisotropic
behaviors of the band structure. For the interband transition, the MOC for linearly polarized light along the
armchair direction is three orders of magnitude larger than that along the zigzag direction. Interestingly, we find
a beating pattern in the interband MOC due to the interference among the three kinds of optical transitions. For
the intraband transition, the MOC can be used to determine the band parameters such as the effective masses and
the interband coupling at zero magnetic field. Our results about the MOC can also be applied to the monolayer
black phosphorus.
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I. INTRODUCTION

The group-V element phosphorus has several allotropes and
black phosphorus (BP) is the most stable phase under normal
conditions [1]. Recently, layered BP has attracted intensive
attention because of its unique electronic properties and
potential applications in nanoelectronics [2–6]. Bulk BP is a
van der Waals bonded layered material where each layer forms
a puckered surface due to sp3 hybridization [2,3]. BP possesses
a direct band gap of 0.3 eV located at the Z point [3,4]. This
direct gap moves to the � point and increases to 1.5–2 eV when
the thickness decreases from bulk to few layers and eventually
monolayer via mechanical exfoliation [3,5,7]. Hence, BP is
an appealing candidate for tunable photodetection from the
visible to the infrared part of the electromagnetic spectrum
[8]. Further, the field effect transistor based on few layer BP
is found to have an on/off ratio of 105 and a carrier mobility at
room temperature as high as 103 cm2/V s [3,5], which make
BP a favorable material for the next generation of electronics.

The low-energy dispersion of bulk BP around the Z

point can be well described by an anisotropic two-band k· p
Hamiltonian [9]. One can obtain the low-energy Hamiltonian
for BP thin films (TFs) by applying a confinement in
the perpendicular z direction. To date, various interesting
properties for BP TFs have been predicted theoretically and
verified experimentally, including those related to the strain
induced gap modification [2], tunable optical properties [10],
layer controlled anisotropic excitons [11], anisotropic Landau
levels (LLs) [12], quantum oscillations [13,14], and quantum
Hall effect [15]. However, less attention has been paid to
the magneto-optical properties of BP TFs [16–18]. Magneto-
optics is one of the most accurate investigations of the band
structure of metals and semiconductors in experiments, which
has been applied successfully in graphene [19].
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In this work, we theoretically investigate the LLs and
magneto-optical conductivity (MOC) of BP TFs subjected to a
vertical magnetic field. Based on an effective k· p Hamiltonian,
we obtain the analytical expression for LLs, which agrees
well with the numerical calculations, and find that the LLs
sublinearly depend on the magnetic field and LL index.
By using the Kubo formula, we evaluate the longitudinal
and Hall magneto-optical conductivities as functions of the
photon energy and the magnetic field. The analytical optical
transition matrix elements reveal unusual selection rules for the
interband (intraband) optical transitions between LLs �n = 0,
±2 (±1, ± 3). The MOC shows strongly anisotropic behaviors
of the band structure. For the interband transition, the MOC
for linearly polarized light along the armchair direction is three
orders of magnitude larger than that along the zigzag direction.
Interestingly, we find a beating pattern in the interband MOC
due to the interference among three kinds of optical transitions.
For the intraband transition, the MOC can be used to determine
the band parameters such as the effective masses and the
interband coupling at zero magnetic field.

The paper is organized as follows. In Sec. II, we present the
calculation of LLs numerically and analytically. In Sec. III,
we calculate the magneto-optical transition matrix elements.
In Sec. IV, we calculate the longitudinal and Hall magneto-
optical conductivity and present the numerical results and
discussions. Finally, we summarize our results in Sec. V.

II. LANDAU LEVELS OF BP THIN FILMS

The low-energy dispersion of bulk BP can be well described
by a two band effective k· p Hamiltonian, which is given by
[9,16]

H=
(

Ec+αck
2
x+βck

2
y+ηck

2
z γ kx

γ kx Ev−αvk
2
x−βvk

2
y−ηvk

2
z

)
, (1)

where Ec = 0.15 eV (Ev = −0.15 eV) is the conduction-band
(valence-band) edge; αc,v , βc,v , and ηc,v are related to the
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FIG. 1. (Color online) (a) Schematic illustration of magneto-
optical setup on BP TF structure. The wavy lines represent linearly
polarized light. The lattice structure of the BP TF is shown on
the right. (b) Band structure for 10-nm BP thin film obtained from
self-consistent calculations. (c) The probability distribution and band
profile for the lowest sub-band along the z direction for 10-nm BP TFs
obtained from self-consistent calculation. The carrier density (hole
doped) used in the self-consistent calculation is 3.0 × 1012 cm−2. (d)
Schematic illustration of the dominated interband transitions. The
interband transitions mainly occur when LL index changes �n = 0,
±2 [Eq. (18)].

effective masses by α(c,v) = �
2/2m(c,v)x , β(c,v) = �

2/2m(c,v)y ,
and η(c,v) = �

2/2m(c,v)z, with [9] mcx = 0.151 me, mcy =
1.062 me, mcz = 0.292 me, mvx = 0.122 me, mvy = 0.708 me,
and mvz = 0.607 me; me is the free electron mass; and
γ = �vf describes the interband coupling between conduction
and valence band with vf = 3.5 × 105 m/s. For BP TFs [see
Fig. 1(a)], broken translation symmetry in the z direction
moves the gap from the Z point in bulk to the � point.
Assuming a hard wall boundary condition in the z direction,
the Hamiltonian for the j sub-band of BP TFs with N layers is

H
j

N =
(

E
j
c + αck

2
x + βck

2
y γ kx

γ kx E
j
v − αvk

2
x − βvk

2
y

)
, (2)

where the band edge is modified as E
j
c = EN

g /2 + ηck
2
z,j ,

E
j
v = −EN

g /2 − ηvk
2
z,j , kz,j =

√
j 2 − 1π/Lz is the discrete

wave vector along the z direction (Lz is the thickness of
the BP film), and EN

g is the band gap of N -layer BP. In
the GW approximation, the band gap is given by [11] EN

g =
E1

g/N
0.73 + E∞

g , where E1
g = 2.0 eV and E∞

g = 0.3 eV are
the band gap of monolayer and bulk BP, respectively. Typically,
for a 20 layer (N = 20) BP TF (Lz ≈ 10 nm), the band gap is
0.52 eV. Obviously, this Hamiltonian is highly anisotropic. The
corresponding eigenstates along the z direction are |ϕj (z)〉(j =
1,2,3, . . .) which are orthogonal with each other. This means
that the optical transitions between different sub-bands are pro-
hibited. Keeping this in mind, we will omit this factor in the rest
of the context for brevity. Considering the interband coupling
correction to the effective masses around the � point along
the kx direction, one obtains the modified effective masses

[12]: m′
cx = �

2/2(α + γ 2/E
j
g ) and m′

vx = �
2/2(λ + γ 2/E

j
g ).

For the lowest sub-band, the modified effective masses around
the � point along the kx direction are m′

cx = 0.108 me and
m′

vx = 0.092 me. In contrast, the effective masses around the
� point along the ky direction remain unchanged.

When a perpendicular magnetic field B = (0,0,B) is
applied, taking Landau gauge A = (−By,0,0), we define the
creation and annihilation operators as

â =
√

mcyωc

2�

(
y − y0 + i

py

mcyωc

)
,

(3)

â† =
√

mcyωc

2�

(
y − y0 − i

py

mcyωc

)
,

where ωc = eB/(mcxmcy)
1
2 is the cyclotron frequency, y0 =

l2
Bkx is the cyclotron center, and lB = √

�/eB is the magnetic
length. We find that Hamiltonian (2) becomes

H
j

N = H0 + H ′ + H ′′, (4)

with

H0 =
(

E
j
c + (â†â + 1/2)�ωc 0

0 E
j
v − (â†â + 1/2)�ωv

)
,

H ′ = �ωγ (â + â†)σx, H ′′ = (â2 + â†2)�ω′ σz − 1

2
,

where σx and σz are Pauli matrices, ωγ = γ /
√

2�lBαyx , ωv =
(rx + ry)ωc, ω′ = (rx − ry)ωc/2 with αyx = (mcy/mcx)

1
4 , and

ri = mci/2mvi(i = x,y). H ′ and H ′′ describe the interband
(intraband) couplings. We should point out that the interband
coupling becomes important as the thickness of the BP TF
increases. While for the monolayer BP with large band gap
(about 2.0 eV) the interband coupling is weak, the decoupled
Hamiltonian can give independent LLs for conduction and
valence bands, respectively [12]. For thick BP TFs, the inter-
band coupling cannot be neglected, especially for interband
optical transition due to small band gap (about 0.52 eV). The
eigenvalues and corresponding eigenvectors of H0 are given by

E(0)
c,n = Ej

c + (n + 1/2)�ωc,ψ
(0)
c,n =

(|n〉
0

)
,

(5)

E(0)
v,n = Ej

v − (n + 1/2)�ωv,ψ
(0)
v,n =

(
0

|n〉
)

,

where |n〉 are the eigenvectors of number operator n̂ = â†â.
In real-space representation, 〈y|n〉 = φn[κ(y − y0)] are the
wave-functions of a one-dimensional harmonic oscillator with
center y0 and κ = √

mcyωc/�. Numerically, the eigenvalues
and eigenvectors can be evaluated by taking the eigenvectors
of H0 as basis functions. In this basis, the wave function of
the system can be expressed as

ψ(x,y) = eikxx

√
Lx

M∑
m=0

(
cm

dm

)
φm[κ(y − y0)]. (6)

Then, we can diagonalize the Hamiltonian (4) numerically
in a truncated Hilbert space and obtain the eigenvalues
as well as the eigenvectors. However, in the low-energy
regime, it is easy to find that

√
n�ωc � (E(0)

c,n − E(0)
v,n) and
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|ω′/ωv| = 0.048 � 1, which means that we can treat H ′ and
H ′′ as perturbations to H0 in Eq. (4). Including the energy
correction to the second order, the LLs of BP TFs are given by

Ec,n = E(0)
c,n + n�

2ω2
γ

E
j
g + n�ω+ + 1

2 �ω−

+ (n + 1)�2ω2
γ

E
j
g + (n + 1)�ω+ − 1

2 �ω−
,

Ev,n = E(0)
v,n − n�

2ω2
γ

E
j
g + n�ω+ − 1

2 �ω−

− (n + 1)�2ω2
γ

E
j
g + (n + 1)�ω+ + 1

2 �ω−
− �ω′2

ωv

(2n + 1), (7)

where ω± = ωc ± ωv , and E
j
g = E

j
c − E

j
v is the band gap

of the j th sub-band. Obviously, this LL spectra sublinearly
depend on the LL index and magnetic field. Further, we find
the LL spacings are

Ec,n+1 − Ec,n ≈ �ωc + 2E
j
g�

2ω2
γ

(Ej
g + n�ω+)

[
E

j
g + (n + 2)�ω+

] ,

Ev,n − Ev,n+1 ≈ �ω′
v + 2E

j
g�

2ω2
γ

(Ej
g + n�ω+)

[
E

j
g + (n + 2)�ω+

] ,

(8)

where ω′
v = ωv + 2ω′2/ωv . From Eq. (8), we find that the LL

spacings decrease with increasing LL index, which will induce
a redshift in the magneto-optical conductivity. Meanwhile, the
corresponding wave function to the first-order correction is

ψc,n = anψ
(0)
c,n + an−1ψ

(0)
v,n−1 + an+1ψ

(0)
v,n+1, (9)

ψv,n = bnψ
(0)
v,n + bn−1ψ

(0)
c,n−1 + bn+1ψ

(0)
c,n+1, (10)

where an = (1 + a′2
n−1 + a′2

n+1)−
1
2 , bn = (1 + b′2

n−1 + b′2
n+1)−

1
2

with

a′
n−1 = �ωγ

√
n

E
(0)
c,n − E

(0)
v,n−1

, a′
n+1 = �ωγ

√
n + 1

E
(0)
c,n − E

(0)
v,n+1

,

b′
n−1 = �ωγ

√
n

E
(0)
v,n − E

(0)
c,n−1

, b′
n+1 = �ωγ

√
n + 1

E
(0)
v,n − E

(0)
c,n+1

,

and an±1 = a′
n±1/an, bn±1 = b′

n±1/bn. Note that we have
neglected the correction to the wave function induced by H ′′
since it is too small.

III. MATRIX ELEMENTS FOR MAGNETO-OPTICAL
TRANSITIONS

Within the linear-response theory, the dynamical conduc-
tivity can be written in the usual manner as [21–23]

σμν(ω) = i�e2

S0

∑
ξ 	=ξ ′

[f (Eξ ) − f (Eξ ′)]〈ξ |vμ|ξ ′〉〈ξ ′|vν |ξ 〉
(Eξ − Eξ ′)(Eξ − Eξ ′ + �ω + i�ξ )

,

(11)

where ω is the photon frequency, S0 = LxLy is the sample
area with the size Lx (Ly) in the x(y) direction, |ζ 〉 = |s,n,kx〉
is the total wave function of the system where s = +/− for
the conduction/valence band, and f (Eξ ) = [e(Eζ −EF )/kBT +
1]−1 is the Fermi-Dirac distribution function with Boltzman
constant kB and temperature T . The sum runs over all
states |ξ 〉 = |s,n,kx〉 and |ξ ′〉 = |s ′,n′,k′

x〉 with ξ 	= ξ ′. In the
simplest approximation, we include the disorder effect by
replacing �ξ with the phenomenological constant � and taking
the ideal eigenstates as |ξ 〉 and |ξ ′〉. The velocity matrices
vx/y = ∂H/∂px/y are

vx =
(−v1(â + â†) vf

vf r ′
xv1(â + â†)

)
,

(12)

vy =
(−iv2(â − â†) 0

0 iv2r
′
y(â − â†)

)
,

where v1 = √
�ωc/2mcx , v2 = √

�ωc/2mcy , r ′
x = 2rx , and

r ′
y = 2ry . To calculate the matrix elements in Eq. (11), we

cannot use the single-electron states in Eqs. (6) or (9) and
(10) directly since they are only the envelope wave functions.
The band-edge wave functions (BEWs) around the � point
(|ψc/v(�)〉) will also play an important role in determination
of the optical properties of BP TFs. The total wave function |ξ 〉
is the direct product of the envelope functions and the BEWs.
The BEWs of monolayer BP in the GW approximation are
given by [24]

|ψc(�)〉 = 0.57|s〉 + 0.44|px〉 + 0.69|pz〉,
(13)

|ψv(�)〉 = 0.17|s〉 + 0.40|px〉 + 0.90|pz〉,
where |s〉, |px〉, and |py〉 are the atomic orbits. The BEWs of
BP TFs are currently unknown. In comparison with Eq. (13),
they have the same ingredients but slightly different weights of
atomic orbits. We thus take Eq. (13) as the BEWs of BP TFs.
This approximation would not change the physics reported
here. By means of the wave functions in Eqs. (6) and (13),
the transition matrix elements of the velocity matrices for the
same sub-band are calculated as

X
s ′,s
n′,n = 〈s ′,n′,k′

x |vx |s,n,kx〉

=
M∑

m′,m

[
vf p

(
c
n′,s ′∗
m′ dn,s

m + d
n′,s ′∗
m′ cn,s

m

)
δm′,m

− v1
√

m
(
c
n′,s ′∗
m′ cn,s

m − r ′
xd

n′,s ′∗
m′ dn,s

m

)
δm′,m−1

− v1

√
m + 1

(
c
n′,s ′∗
m′ cn,s

m − r ′
xd

n′,s ′∗
m′ dn,s

m

)
δm′,m+1

]
, (14)

Y
s,s ′
n,n′ = 〈s,n,kx |vy |s ′,n′,k′

x〉

=
M∑

m,m′
iv2

[√
m

( − cn,s∗
m c

n′,s ′
m′ + r ′

yd
n,s∗
m d

n′,s ′
m′

)
δm′,m−1

+√
m + 1

(
cn,s∗
m c

n′,s ′
m′ − r ′

yd
n,s∗
m d

n′,s ′
m′

)
δm′,m+1

]
, (15)

where p = 〈ψc(�)|ψv(�)〉 = 0.839. Note, we have omitted a
delta function δkx,k′

x
in the derivation. The matrix elements

between different sub-bands are zero since |ϕj (z)〉 and |ϕj ′(z)〉
are orthogonal for j 	= j ′. The total transition probability is
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the sum of all the sub-bands below the photon energy. With
those matrix elements, one can evaluate the longitudinal and
Hall magneto-optical conductivity for linearly polarized light
directly. Substituting Eqs. (14) and (15) into Eq. (11) and
making the replacement

∑
kx

→ gsS0/2πl2
B , where gs = 2 for

the spin degeneracy, we obtain the absorption (real) part of the
longitudinal magneto-optical conductivity (LMOC) as

Re σμμ

σ0
=

∑
n,n′,s,s ′

[f (En′,s ′ ) − f (En,s)]
∣∣μs ′,s

n′,n

∣∣2
�

(En,s − En′,s ′ )[(En,s − En′,s ′ + �ω)2 + �2]
,

(16)

where μ = (x,y), x
s ′,s
n′,n = �X

s ′,s
n′,n/ lB , y

s ′,s
n′,n = �Y

s ′,s
n′,n/ lB , and

σ0 = 2e2/h. Similarly, the expression for the absorption
(imaginary) part of the Hall magneto-optical conductivity is

Im σxy

σ0
= Im

∑
n,n′,s,s ′

[f (En′,s ′ ) − f (En,s)]x
s ′,s
n′,ny

s,s ′
n,n′

(En,s −,En′,s ′ )(En,s − En′,s ′ + �ω + i�)
.

(17)

On the other hand, in order to understand the numerical results
better, one can obtain the matrix element for the interband
transition analytically with the help of the eigenvectors in
Eqs. (9), (10), and (13), which are given by

〈ψc,m|vx/y |ψv,n〉 = A
cm,vn
x/y δm,n+B

cm,vn
x/y δm,n−2+C

cm,vn
x/y δm,n+2,

(18)

where M
cm,vn
x/y (M = A,B,C) are presented by Eqs. (A4)–(A9)

of Appendix A. From Eq. (18), we find that the interband
transitions occur when the LL index changes �n = 0, ±2,
which is completely different from that of dipole type
transitions reported in graphene [20,21], silicene [22], and
the topological insulator [23,25]. This transition feature is
also valid in monolayer BP according to our numerical
calculations since the Hamiltonians are similar to each other.
This difference comes from different calculations about the
optical transition matrix. The previous studies [18] used
the decoupled Hamiltonian [12] to calculate the transition
matrices, where the interband coupling is omitted. Note that
other kinds of transitions, such as �n = ±1, ±3, ±4, . . ., may
occur when we include the correction to the wave functions in
Eqs. (9) and (10) induced by H ′ and H ′′ to higher order, but
they are too weak. Our results are different from that obtained
by using the decoupled Hamiltonian [18], which neglected the
influence of the interband coupling. Similarly, for intraband
transitions of p-type BP TFs, the matrix elements are

〈ψv,m|vx/y |ψv,n〉 = D
vm,vn
x/y δm,n−3 + E

vm,vn
x/y δm,n+3

+F
vm,vn
x/y δm,n−1 + G

vm,vn
x/y δm,n+1, (19)

where M
vm,vn
x/y (M = D,E,F,G) are presented in

Eqs. (A11)–(A18) of Appendix A. From Eq. (19), we
find that the intraband transition occurs when the LL index
changes �n = ±1, ± 3. The intraband transition matrix
elements of n-type BP thin films are similar to that of p-type
ones.

IV. RESULTS AND DISCUSSIONS

A. Interband magneto-optical spectrum

In this section, we present the numerical results for the
LL spectra and magneto-optical conductivities and discuss
them using the analytical formulas. Hereafter, unless explicitly
specified, the conductivities are all in units of σ0 = 2e2/h,
temperature T = 5 K, and Fermi energy EF = 0 for interband
transitions.

Figures 2(a) and 2(b) present the LLs as a function of
the magnetic field for the lowest sub-bands. As shown in the
figure, the perturbed LLs (the blue dashed lines) are in good
agreement with the numerical results (the red solid lines) in
a wide regime of the magnetic field. This indicates that the
perturbation method is reliable. Further, the Landau splittings
of conduction and valence band are different for a fixed
magnetic field [see Eq. (8)] due to the anisotropic effective
masses at zero field. The interband coupling becomes more
important with the increasing of LL index or magnetic field
(see the green dash-dotted lines). As shown in Fig. 2(c), the
LL spacings decrease with the increasing of the LL index.
The stronger the magnetic field, the faster the LL spacing
decreases, which can also be inferred from Eq. (8). This
means that the LLs sublinearly depend on the LL index.
Those decreasing LL spacings will induce a redshifting in the
intraband magneto-optical conductivities. From Fig. 2(d), we
find that the derivative of LLs dEv,n/dB in the valence band
becomes dependent on the magnetic field with the increasing
of the LL index, which again means that the LLs sublinearly

FIG. 2. (Color online) LLs as a function of the magnetic field
for the lowest sub-bands. (a) and (b) represent for conduction and
valence band, respectively. The red solid (blue dashed) lines represent
the result obtained from numerical (perturbed) calculation. The green
dash-dotted lines are eigenvalues of H0 given in Eq. (5). The number
of basis function used in the calculation is 200 to get convergent
numerical results. (c) LL spacings of valence band (in unit of E0,v −
Ev,1) as a function of LL index. (d) Derivative of LL (dEv,n/dB) in
valence band as a function of magnetic field.
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depend on the magnetic field. Similar conclusions can be
drawn for the LLs in the conduction band.

Next, we consider the possibly allowed transitions for
the interband process which are schematically illustrated in
Fig. 1(d). Unusually, we find the interband transitions mainly
occur when the LL index changes �n = 0, ± 2 according to
Eq. (18), which is completely different from that of the dipole-
type transition (�n = ±1) reported in graphene [20,21],
silicene [22], and the topological insulator [23,25]. Quanti-
tatively, the velocities for the lowest regime of the sub-band
are vf = 3.5 × 105 m/s, v1 = 1.3

√
B × 104 m/s, and v2 =

4.89
√

B × 103 m/s, which means that, in the moderate mag-
netic field regime ≈ B = 10 T, vf is one order (two orders) of
magnitude larger than v1(v2). Keeping this in mind and incor-
porating with the analytical results in Eq. (18), we obtain some
basic features of the interband magneto-optical conductivities.

(i) Since the transition probability is proportional to the
square of the velocities, we can expect that the LMOC for lin-
early polarized light along the armchair (x) direction is about
three orders of magnitude larger than that along the zigzag (y)
direction, which is consistent with the results obtained from
tight-binding calculations in monolayer BP [17].

(ii) According to Eqs. (A4)–(A6), the LMOC along the
x direction is dominated by the transitions �n = 0 since
the matrix element in Eq. (A4) is about one order larger
than that in Eqs. (A5) and (A6). This dominated contribution
decreases with the increasing magnetic field. According to
Eqs. (A7)–(A9), the LMOC for linearly polarized light along
the y direction is dominated by the transitions �n = ±2 due
to the absence of interband coupling.

(iii) Owing to the relatively small transition probability
along the y direction, the interband Hall magneto-optical
conductivity (HMOC) is closer to the LMOC along the y

direction in magnitude than that along the x direction.
Figure 3 presents the real part of the LMOC and imaginary

part of the HMOC as a function of photon energy under
magnetic field B = 10 T and level broadening factor � =

FIG. 3. (Color online) (a) The real part of the longitudinal
magneto-optical conductivity and (b) imaginary part of the Hall
magneto-optical conductivity (in units of σ0 = 2e2/h) as a function
of the photon energy under the magnetic field B = 10 T and level
broadening factor � = 0.15 meV.

0.15 meV for interband transitions. Determined by the band
gap (0.52 eV), the interband magneto-optical absorbtion of
BP TFs occurs at the near infrared region. As shown in
Fig. 3(a), Reσxx(ω) is three orders of magnitude larger than
Reσyy(ω) due to the anisotropic band structure at zero field,
which is in line with the results reported in monolayer BP
utilizing tight-binding calculations [17]. In the high photon
energy regime, we observe well-resolved three-peak structures
corresponding to the transitions �n = 0, ±2. As expected,
owing to the interband coupling, Reσxx(ω) is dominated by
the transitions �n = 0 and decreases with increasing photon
energy since high index LLs are involved in the transition
process in the high photon energy regime, which can also be
inferred from Eq. (A4). In contrast, Reσyy(ω) is dominated
by the transitions �n = ±2 due to the absence of interband
coupling. We observe well-resolved two-peak structures in
Reσyy(ω) in the low photon energy regime. Further, the
transitions of �n = 0 become important with the increasing of
the photon energy, which can be inferred from Eq. (A7). There
are also some extra side peaks in Reσyy(ω) arising from the
correction to the wave functions in Eq. (10) induced by H ′′,
but these are relatively small compared with the transitions of
�n = 0, ±2. In Fig. 3(b), we find that Imσxy(ω) is closer to
Reσyy(ω) but two orders of magnitude less than Reσxx(ω). This
fact results from the large difference between the transition
probability along the x direction and that along the y direction
[see Eqs. (18) and (19)]. Again, in the high photon energy
regime, we find well-resolved three (one positive and two
negative) peaks in Imσxy(ω), which indicates that the interband
transitions mainly occur when the LL index changes �n = 0,
±2. There exists a single positive peak in Imσxy since it only
involves the transition between Ev,0 and Ec,0.

Owing to the unusual interband optical transitions, i.e.,
�n = 0, ±2, we may expect beating pattern oscillations in
dynamical conductivities of the interband transition process
for relatively large level broadening factor �. Figures 4 and 5
present the LMOC and Fig. 6 depicts the HMOC as a function
of magnetic field for linearly polarized light. We take the
photon energy �ω = 0.8 eV and Landau-level broadening
factor � = 0.5 meV. According to Hamiltonian (2), the band
gaps for the lowest four sub-bands in successive order are
0.52, 0.58, 0.67, 0.80 eV. Hence, the lowest three sub-bands
will be excited for photon energy �ω = 0.8 eV. As shown
in the figure, in the high magnetic field regime B > 5 T, we
find well-resolved peak structures in Reσμμ (μ = x,y) and
Imσxy , which is similar to the peaks plotted in Fig. 3. At low
magnetic field, a beating pattern oscillation appears in the
magneto-optical conductivity due to the relatively large LL
broadening factor � which induces the overlap of the nearest
peaks contributed by three kinds of optical transitions �n = 0,
±2. Those beating patterns will be quenched and convergent
to the results in Fig. 3 in strong magnetic field or with tiny
level broadening factors. However, the level broadening may
be always relatively large since defects and impurities are
unavoidable in realistic experimental samples and the pristine
ones are difficult to obtain.

B. Intraband magneto-optical spectrum

Next, we turn to discuss the intraband transitions. The real
parts of LMOCs for filling factor ν = 1 to 3 (hole doped)
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FIG. 4. (Color online) The real part of longitudinal magneto-
optical conductivity for linearly polarized light along the x direction
as a function of magnetic field under photon energy �ω = 0.8 eV
and Landau-level broadening factor � = 0.5 meV. (a)–(c) represent
the results for the lowest three sub-bands and (d) donates the total
magneto-optical conductivity.

are shown in Figs. 7(a) and 7(b) for |n + 1〉 → |n〉 and
|n + 3〉 → |n〉 transitions, respectively. The insets depict the
transitions between the nearest LLs for cases with ν = 1 to
3. We observe two groups of resonance peaks. One group
corresponds to a particular transition process |n + 1〉 to |n〉
and another corresponds to |n + 3〉 to |n〉, which means that
the intraband transitions mainly occur when the LL index
changes �n = ±1, ± 3 according to Eq. (19). Both of them
occur at the terahertz (THz) frequencies. We find that the
dipole type transition is dominant in the intraband transition
process, which can also be inferred from Eqs. (A11)–(A18).
For the dipole-type transitions (�n = ±1), Reσxx(ω) is about
seven times larger than Reσyy(ω) [see Fig. 7(a)], which is
just the ratio between the effective masses mvy and m′

vx .
Similarly, for the transitions |n + 3〉 to |n〉, Reσxx(ω) is
exactly mvy/mvx times larger than Reσyy(ω) according to
Eqs. (A12) and (A16). In other words, those conductivity
peaks can be used to determine the effective masses of hole
bands at zero field. Contrary to the conventional case, we
find that the resonant frequency is slightly redshifted with
increasing doping, which is a reflection of the decreasing LL
spacings [see Fig. 7(b)]. This redshift also increases with
magnetic field as depicted in Fig. 2(c). We note that the
frequency shift increases in almost uniform steps each time

FIG. 5. (Color online) The real part of longitudinal magneto-
optical conductivity for linearly polarized light along the y direction
as a function of magnetic field under photon energy �ω = 0.8 eV
and Landau-level broadening factor � = 0.5 meV. (a)–(c) represent
the results for the lowest three sub-bands and (d) donates the total
magneto-optical conductivity.

when the filling factor (LL index) decreases by 1. Interestingly,
this redshifting behavior can be understood from Eq. (8)
rather straightforwardly. This expression accounts for linear
dependence of the resonance frequency on n quantitatively,
and is a direct result of the interband coupling γ [see Eq. (8)].
In other words, this redshift in intraband LMOCs can be
used to determine interband coupling γ in BP TFs. Similar
conclusions can be drawn for the LMOC and LLs in the
conduction band. Further, it is also worthy to mention that the
LMOC calculated here can be directly measured through the
magneto-optical transport experiment or magnetoabsorption
and Faraday rotation experiments [19].

Further, we consider the effect of finite hole doping on
the magneto-optical response of the 10-nm BP TFs including
the effect of self-consistent potential with hole density 3.0 ×
1012 cm−2. The probability distribution and band profile for
the lowest sub-band are shown in Fig. 1(c) and the detailed
calculations are presented in Appendix B. From the figure, we
find the band profile is nearly horizontal, which means that the
band gap is almost unchanged. But the probability distribution
is changed, which leads to a new overlap factor (0.968) for
the envelope wave function of conduction and valence band
along the z direction. This indicates that the magneto-optical
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FIG. 6. (Color online) The imaginary part of Hall magneto-
optical conductivity for linearly polarized light as a function of
magnetic field under photon energy �ω = 0.8 eV and Landau-level
broadening factor � = 0.5 meV. (a)–(c) represent the results for the
lowest three sub-bands and (d) donates the total magneto-optical
conductivity.

conductivity will be weakened by the self-consistent potential.
However, the main features of the magneto-optical spectra re-
ported here are unaffected since the confinement is only along
the z direction. For a typical hole density 3.0 × 1012 cm−2, the
magneto-optical conductivity peaks in Fig. 3 involved with
the lowest six LLs will disappear since the lowest six LLs

FIG. 7. (Color online) The real part of the longitudinal optical
conductivity for intraband transition as a function of photon energy
under magnetic field B = 20 T and level broadening factor � =
0.1 meV, for (a) |n + 1〉 → |n〉 and (b) |n + 3〉 → |n〉 transitions,
respectively.

in the valence band are Pauli blocked [18,23]. The results
presented in Figs. 4–6 remain unchanged since the photon
energy (0.8 eV) used in our calculation is relatively large,
which only excites the higher LLs in the valence band.

Finally, we should point out that our results about the
MOC can also be applied to the monolayer BP. The unusual
selection rules are determined by the interband coupling γ .
It always exists when the layer number reduces. According to
the magneto-optical transition matrix elements in Appendix A,
the highly anisotropic MOC mainly arises from the large ratio
between vf and v2. This ratio remains unchanged with the
decreasing of the thickness of BP TFs. Moreover, the optical
transition energies will be shifted if one includes the excitonic
effect, which is similar to that in graphene [26].

V. SUMMARY

We theoretically investigated the Landau levels and
magneto-optical conductivity of black phosphorus thin films
under a perpendicular magnetic field based on an effective k· p
Hamiltonian and linear-response theory. We obtained the ana-
lytical expression for LLs, which agrees well with the numer-
ical calculations, and find that the LLs sublinearly depend on
the magnetic field and LL index. By using the Kubo formula,
we evaluated the longitudinal and Hall optical conductivities
as functions of the photon energy and the magnetic field. The
analytical optical transition matrix elements reveal unusual
selection rules for the interband (intraband) optical transitions
between the LLs �n = 0, ±2 (±1, ± 3). The MOC spectra
show strongly anisotropic behaviors of the band structure.
For the interband transition, the MOC for linearly polarized
light along the armchair direction is three orders of magnitude
larger than that along the zigzag direction. Interestingly, we
found a beating pattern in the interband MOC due to the
interference among the three kinds of optical transitions. For
the intraband transition, the MOC can be used to determine the
band parameters such as the effective masses and the interband
coupling at zero magnetic field. Our results about the MOC
can also be applied to monolayer black phosphorus.
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APPENDIX A

According to Eqs. (8), (9), and (13), we obtain the total
wave function for conduction and valence band as

|ψc,n〉 =
(

an|n〉|ψc(�)〉
(an−1|n − 1〉 + an+1|n + 1〉)|ψv(�)〉

)
, (A1)

|ψv,n〉 =
(

(bn−1|n − 1〉 + bn+1|n + 1〉)|ψc(�)〉
bn|n〉|ψv�)〉

)
. (A2)

Taking Eqs. (A1) and (A2) and incorporating with the
velocity matrix in Eq. (12), we obtain the matrix elements
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for the interband transition as

〈ψc,m|vx/y |ψv,n〉 = A
cm,vn
x/y δm,n + B

cm,vn
x/y δm,n−2 + C

cm,vn
x/y δm,n+2, (A3)

with

Acm,vn
x = vf p(am−1bn−1 + ambn + am+1bn+1) − v1[am(bn+1

√
n + 1 + bn−1

√
n) − r ′

xbn(am−1
√

n + am+1

√
n + 1)], (A4)

Bcm,vn
x = vf pam+1bn−1 − v1(ambn−1

√
n − 1 − r ′

xam+1bn

√
n), (A5)

Ccm,vn
x = vf pam−1bn+1 − v1(ambn+1

√
n + 2 − r ′

xam−1bn

√
n + 1), (A6)

Acm,vn
y = −iv2[am(bn+1

√
n + 1 − bn−1

√
n) − r ′

ybn(am−1
√

n − am+1

√
n + 1)], (A7)

Bcm,vn
y = −iv2(ambn−1

√
n − 1 − r ′

yam+1bn

√
n), (A8)

Ccm,vn
y = iv2(ambn+1

√
n + 2 − r ′

yam−1bn

√
n + 1), (A9)

while, for the intraband transition process of p-type BP TFs, the matrix elements are

〈ψv,m|vx/y |ψv,n〉 = D
vm,vn
x/y δm,n−3 + E

vm,vn
x/y δm,n+3 + F

vm,vn
x/y δm,n−1 + G

vm,vn
x/y δm,n+1, (A10)

with

Dvm,vn
x = −v1bm+1bn−1

√
n − 1, (A11)

Evm,vn
x = −v1bm−1bn+1

√
n + 2, (A12)

Fvm,vn
x = vf p(bmbn−1 + bm+1bn) − v1(bm−1bn−1

√
n − 1 + bm+1bn+1

√
n + 1 + bm+1bn−1

√
n − r ′

xbmbn

√
n), (A13)

Gvm,vn
x = vf p(bmbn+1 + bm−1bn) − v1(bm−1bn+1

√
n + 1 + bm−1bn−1

√
n + bm+1bn+1

√
n + 2 − r ′

xbmbn

√
n + 1), (A14)

Dvm,vn
y = −iv2bm+1bn−1

√
n − 1, (A15)

Evm,vn
y = iv2bm−1bn+1

√
n + 2, (A16)

Fvm,vn
y = iv2(bm+1bn−1

√
n − bm−1bn−1

√
n − 1 − bm+1bn+1

√
n + 1 + r ′

ybmbn

√
n), (A17)

Gvm,vn
y = iv2(bm+1bn+1

√
n + 2 + bm−1bn−1

√
n − bm−1bn+1

√
n + 1 − r ′

ybmbn

√
n + 1). (A18)

The matrix elements for the intraband transition process of n-type BP thin films are similar to those in p-type ones. With those
matrix elements, we can evaluate the ac conductivity directly by using the Kubo formula.

APPENDIX B

In this Appendix, we calculate the electronic structure
of the BP TFs including the influence of the self-consistent
potential. We only need to consider the kz dependent part
in Hamiltonian (1) since the confinement is applied in the z

direction. Therefore, the low-energy k· p is

Hz =
(

ηck
2
z 0

0 −ηvk
2
z

)
+ V (z), (B1)

where V (z) describes the confining potential in the out-of-
plane direction, including an internal electrostatic potential
Vin(z) caused by charge distribution in BP TFs. The total
Hamiltonian then becomes H = Hz + Vin(z). The sub-band
dispersion and the corresponding eigenstates can obtained
numerically from the Schrödinger equation

Hϕj = Eϕj , (B2)

where j is the sub-band index, and ϕj is the envelope function.

To solve the Schrödinger equation, we adopt the hard wall
boundary condition and use the finite difference method [27].
The internal electrostatic potential Vin(z) is determined by the
Poisson equation

d2Vin(z)

dz2
= − [n(z) + p(z)]

ε
, (B3)

where n(z) and p(z) are the densities of electrons and holes
in the z direction, respectively, and ε is the dielectric constant.
n(z) and p(z) can be obtained from [28,29]

n(z) =
∑

i

ni

∣∣ϕc
i (z)

∣∣2
, p(z) =

∑
i

pi

∣∣ϕv
i (z)

∣∣2
, (B4)

where c and v refer to the conduction band and valence band,
respectively, and

ni = −mc∗
i |e|kBT

π�2
ln

(
e

Ef −Ec
i

kB T + 1
)
,

(B5)

pi = mv∗
i |e|kBT

π�2
ln

(
e

Ev
i

−Ef

kB T + 1
)
.
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Here Ef is the Fermi energy, and m∗ refers to the effective
mass given by [28]

√
m∗

xm
∗
y . We obtain the eigenstates

and eigenvectors of the BP TFs numerically by solving the
Schrödinger and Poisson equation self-consistently [28,29].
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