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Current-induced spin polarization and spin-orbit torque in graphene
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Using the Green-function formalism, we calculate a current-induced spin polarization of weakly magnetized
graphene with Rashba spin-orbit interaction. In a general case, all components of the current-induced spin
polarization are nonzero, contrary to the nonmagnetic limit, where the only nonvanishing component of spin
polarization is that in the graphene plane and normal to the electric field. When the induced spin polarization
is exchange coupled to the magnetization, it exerts a spin-orbit torque on the latter. Using the Green-function
method, we have derived some analytical formulas for the spin polarization and also determined the corresponding
spin-orbit torque components. The analytical results are compared with those obtained numerically. Vertex
corrections due to scattering on randomly distributed impurities are also calculated and shown to enhance the
spin polarization calculated in the bare bubble approximation.
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I. INTRODUCTION

One of the main issues of the present-day spin electronics,
which is of great importance for further development of
high-density memory devices and magnetic random access
memories, is effective manipulation of magnetization by a
spin-polarized current. The general idea of switching and
controlling orientation of a magnetic moment with electric
current flowing through a system is based on coupling between
the electron spin and magnetic moments. Two such interactions
have turned out to be especially useful—exchange interaction
and spin-orbit coupling.

In a magnetically nonuniform system, the spin-polarized
current generates a torque that is a consequence of (i) exchange
coupling between the conduction electrons and magnetization,
and (ii) conservation of angular momentum in the system.
The torque appears then as a result of the spin angular
momentum transfer from a spin-polarized current (or pure spin
current) to magnetic moments. Therefore, this torque is called
spin-transfer torque [1,2]. Such a torque leads, among others,
to magnetic switching in spin valves and to domain-wall
displacements, as observed recently in many experiments.
Moreover, these phenomena make it possible to construct
low-power nonvolatile memory cells (STT-MRAM, racetrack
memory), integrated circuits employing a logic-in-memory
architecture, as well as logic schemes processing information
with spins [3].

Another possibility to control the orientation of magnetic
moments is based on a spin torque that appears due to spin-orbit
interaction in the system. The corresponding torque exerted on
the magnetization is usually referred to as the spin-orbit torque,
and appears also in a magnetically uniform system, such as a
single uniform layer. The physical mechanism of the spin-orbit
torque is based on a nonequilibrium spin polarization of
the system, which is induced by an external electric field
(current) in the presence of spin-orbit interaction. Such a
spin polarization was predicted long ago in nonmagnetic
systems, where an electric current flowing through the system
with spin-orbit interaction was shown to induce not only the
transverse spin current [4,5] (so-called spin Hall effect), but
also a spin polarization of conduction electrons [6–11]. In the

case of two-dimensional electron gas with Rashba spin-orbit
interaction, the induced spin polarization is in the plane of
the electron gas and normal to the electric field. Such a
nonequilibrium spin polarization may be treated as an effective
magnetic field, which may lead to reorientation of a magnetic
moment, and also can modify or induce magnetic dynamics.
The spin-orbit torque has been analyzed in recent years in many
papers, mainly in metallic and semiconductor heterostructures
[12–17]. While the current-induced spin polarization, known
also as the inverse spin-galvanic effect [18], is well known
and was investigated theoretically as well as experimentally in
the last three decades, the role of the geometric phase in this
effect, and consequently in the spin-orbit torque, was invoked
only very recently [19–21].

In this paper, we consider the current-induced spin polar-
ization and spin-orbit torque in graphene, which is assumed
to be deposited on a substrate that ensures the presence of
spin-orbit interaction of Rashba type [22]. We also assume
that the graphene is magnetized, which may be due either to
the magnetic proximity effect to a ferromagnetic substrate (or
cover layer) or to magnetic atoms (nanoparticles) on its surface
[23–27]. The coexistence of the Rashba spin-orbit interaction
and proximity-induced magnetism in graphene was predicted
theoretically and also observed experimentally [27–31]. As
the spin-transfer torque in ferromagnetic graphene junctions
was already considered theoretically (see, e.g., Yokoyama and
Linder [32]), the problem of spin torques induced by spin-orbit
interaction in graphene is rather unexplored.

It has been shown that the current-induced spin polarization
in a defect-free nonmagnetic graphene with Rashba spin-orbit
interaction is oriented in the graphene plane and is also normal
to the current orientation. Moreover, the sign of the spin
polarization depends on the chemical potential and also on
the sign of the Rashba spin-orbit coupling parameter [33].
When the Fermi level passes through the Dirac points, the spin
polarization becomes reversed. In this paper, we show that
the current-induced spin polarization in magnetic graphene
generally has all three components. In the approximation linear
with respect to the magnetization, one of these components is
equal to that in the case of a nonmagnetic graphene, i.e., it is
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proportional to the relaxation time. The leading terms in the
other two components are independent of the relaxation time.

The paper is organized as follows. In Sec. II, we describe
the model and present a general formula describing current-
induced spin polarization. Analytical formulas as well as
numerical results for the current-induced spin polarization are
presented in Sec. III. Vertex correction is calculated in Sec. IV,
while the spin-orbit torque is described and discussed in Sec.
V. The summary and final conclusions are in Sec. VI.

II. MODEL AND METHOD

Transport properties of graphene close to the charge
neutrality point are determined mainly by electrons in the
vicinity of Dirac points. The corresponding effective-mass
Hamiltonian H 0

K , which describes the low-energy electronic
states in graphene around the K point of the Brillouin zone,
can be written as a sum of three terms [34],

H 0
K = H0 + HR + HM. (1)

The first term H0 describes the low-energy electronic states
of pristine graphene and can be written as a matrix in the
pseudospin (sublattice) space,

H0 = v

(
0 (kx − iky)σ0

(kx + iky)σ0 0

)
, (2)

where v = �vF , with vF denoting the electron velocity in
graphene, which is constant. The second term in Eq. (1)
describes the Rashba spin-orbit interaction due to a substrate,

HR = λ

(
0 σy + iσx

σy − iσx 0

)
, (3)

with λ being the Rashba spin-orbit coupling parameter. The
last term of the Hamiltonian (1) represents the influence of an
effective exchange field M̃ created by a nonzero magnetization.
Such a magnetization can appear in graphene, for instance, due
to the proximity effect to a magnetic substrate. This term can
be written in the form

HM = −M̃ ·
(

σ 0

0 σ

)
, (4)

where the exchange field M̃ is measured in energy units. This
field can be related to the magnetization M and the local
exchange interaction between the conduction electrons and
magnetization in the two-dimensional graphene, Jex(r − r′) =
Jex δ(r − r′), via the formula M̃ = (Jex/2gμB )M. Here, g is
the Landé factor (g = 2), μB is the Bohr magneton, while
positive and negative Jex correspond to antiferromagnetic and
ferromagnetic coupling, respectively. In the above equations,
σ is the vector of Pauli matrices, σ = (σx,σy,σz), while the
matrix σ0 denotes the unit matrix in the spin space. Note that
the so-called intrinsic spin-orbit interaction in graphene is very
small and therefore it is neglected in our consideration. In a
general case, the magnetization vector M may be oriented
arbitrarily in space, and its orientation will be described
by two spherical angles, θ and ξ , as indicated in Fig. 1.
Moreover, the absolute magnitude of M is assumed to be
constant, |M| ≡ M = const. The Hamiltonian for the second

FIG. 1. (Color online) Schematic of the system under consider-
ation. Graphene is on a substrate which assures a nonzero magneti-
zation and also a spin-orbit interaction of Rashba type. Orientation
of the magnetic moment M is described by the angles θ and ξ . An
external electric field is oriented along the axis y.

nonequivalent Dirac point K ′ can be obtained from HK by
reversing the sign of the wave-vector component kx and from
the substitution σy → −σy in HR .

In the lowest order with respect to the exchange field M̃,
the casual Green function corresponding to the Hamiltonian
(1), G0

k = {[ε + μ + iδ sign (ε)] − H 0
K}−1, has poles at ε =

En − μ − iδ sign (ε), where En (n = 1–4) are eigenvalues of
the Hamiltonian (1) without the term HM. These eigenvalues
have the following form:

E1,2 = ∓λ −
√

k2v2 + λ2, (5)

E3,4 = ∓λ +
√

k2v2 + λ2, (6)

where E1,2 correspond to the valance bands, while E3,4 de-
scribe the conduction bands. Note that the bands corresponding
to n = 2 and n = 3 touch each other at the Dirac point (k = 0),
while a gap equal to 4λ appears between the bands n = 1 and
n = 4.

In the presence of a dynamical external electric field applied
along the y axis, the total Hamiltonian for electrons near the
K point takes the form

H = H 0
K + H A

K , (7)

where the second term,

H A
K = −ev̂yAy(t) = −ie

v

�

(
0 −σ0

σ0 0

)
Ay(t), (8)

is the perturbation due to interaction with the time-dependent
electromagnetic field represented by the vector potential
Ay(t) = Aye

−iωt . Here, e is the electron charge, v̂y is
the y component of the electron velocity operator, v̂ =
(∂H 0

K/∂k)/�, whereas ω is the frequency of the dynamical
field (later we will take the limit of ω → 0).

When an electric current flows in the system due to the
electric field, electron spins become polarized as a result of
the cooperation of the current and Rashba spin-orbit coupling.
This nonequilibrium spin polarization of conduction electrons
can be calculated (in the zero-temperature limit) using the
following formula:

Sα(t) = −iTr
∫

d2k
(2π )2

ŜαGk(t,t ′)|t ′=t+0, (9)

where Gk(t,t ′) is the zero-temperature causal Green function
corresponding to the total Hamiltonian H [see Eq. (7)], and
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Ŝα is the spin-vertex function defined as

Ŝα = �

2

(
σα 0

0 σα

)
. (10)

Upon Fourier transformation with respect to the time variables
and expansion in a series with respect to the vector potential
Ay = −iEy/ω, the expression (9) for the induced nonequilib-
rium spin density takes the form

Sα(ω) = eEy

ω
Tr

∫
d2k

(2π )2

∫
dε

2π
Ŝα G0

k(ε + �ω)v̂yG
0
k(ε). (11)

In the dc limit, ω → 0, the above formula leads to the following
expression for the spin polarization:

Sα = e

2π
Ey�Tr

∫
d2k

(2π )2
ŜαG0R

k v̂yG
0A
k , (12)

where G
0R(A)
k is the retarded (advanced) Green function

corresponding to the unperturbed Hamiltonian (1), taken at
the Fermi level (ε = 0). Upon taking into account Eqs. (10)
and (12), and also including the contribution from the second
Dirac point, the expression for the induced spin polarization
acquires the form

Sα = e�
2

2π
EyTr

∫
d2k

(2π )2

(
σα 0

0 σα

)
G0R

k v̂yG
0A
k . (13)

Based on this formula, we calculate analytically as well as
numerically the current-induced spin polarization, as described
and discussed in the subsequent section.

III. CURRENT-INDUCED SPIN POLARIZATION

From the general formula (13), one finds the following
expression for the αth component of the spin polarization:

Sα = e�

2π
Ey

∫
dkk

(2π )2

Tα

�4
n=1(μ − En + i)(μ − En − i)

,

(14)

where Tα is defined as

Tα = �

∫ 2π

0
dφTr

[(
σα 0
0 σα

)
g0R

k v̂yg
0A
k

]
. (15)

Here, g0R(A)
k is the nominator of the retarded (advanced) Green

function, φ stands for the angle between the x axis and the
wave vector k, while  = �/2τ , where τ is the momentum
relaxation time. The parameter  (or, equivalently, relaxation
time τ ) will be treated here as a phenomenological parameter,
which effectively includes contributions due to momentum
relaxation from various scattering processes (scattering on
impurities, other structural defects, phonons, or electron-
electron scattering). Note that  depends, in general, on the
chemical potential μ and may also be different in the two
Rashba subbands. However, when the Fermi level is in the two
subbands, we assume for simplicity the same  for both of
them.

Up to the terms that are linear in the exchange field M̃ ,
the functions Tα (α = x,y,z) [see Eq. (15)] can be written as

follows:

Tx = 16λπvμ(k4v4 − μ4 + 4λ2μ2), (16a)

Ty = 64πvλM̃μ(k2v2 − 2λ2) sin θ, (16b)

Tz = −64πλM̃v3k2μ cos θ sin ξ. (16c)

Note that the dependence on the orientation of M is contained
in the above expressions for Ty and Tz, while Tx is independent
of M. Equations (14) and (16) allow finding spin polarization in
a general case, i.e., for an arbitrary relaxation time. However,
some analytical expressions for all components of the spin
polarization can be obtained in the limit of low impurity
concentration, i.e., for long relaxation times (τ → ∞).

Consider first the x component of the spin polarization.
Combining Eq. (16a) with Eq. (14) and making the substitution√

k2v2 + λ2 = γ , one obtains

Sx = 8e�Eyλμ

∫ ∞

λ

dγ γ

v(2π )2

× (γ 2 − λ2)2 − μ4 + 4λ2μ2

[(μ + λ + γ )2 + 2][(μ − λ + γ )2 + 2]

× 1

[(μ + λ − γ )2 + 2][(μ − λ − γ )2 + 2]
. (17)

From this formula follows that Sx is independent of M̃ in the
linear approximation with respect to the exchange field. For
long relaxation times, we get the same analytical formulas as
those in the case of nonmagnetic graphene [33], i.e.,

Sx = e

4π

2λ ± μ

v(λ ± μ)
μEyτ (18)

for the Fermi level lying in the range −2λ < μ < 2λ, and

Sx = ± e

4π

2λ

v(μ2 − λ2)
μ2Eyτ (19)

for |μ| > 2λ. In both of the above equations (as well as below),
the upper and lower signs correspond to μ > 0 and μ < 0,
respectively.

The spin polarization given by Eqs. (18) and (19) is
proportional to τ . However, one should bear in mind that these
formulas were derived on the assumption of long τ . Therefore,
one may expect some deviations from this formula when τ is
finite and not too long. In Fig. 2(a), we show the variation of the
Sx component of spin polarization with the chemical potential
μ and relaxation time τ , obtained by numerical integration of
the formula (17). Figures 2(b) and 2(c), in turn, present cross
sections of the density plots shown in Fig. 2(a) for constant
values of τ and μ, respectively. The results obtained from
the analytical formulas are compared in Fig. 2(b) with those
obtained by numerical integration of the formula (17). From
this comparison follows that for τ of the order of 10−11 s
or smaller, there are some deviations from the results given
by the analytical formulas, though these deviations are not
large. For τ of the order of 10−10 s or longer, numerical
results match quite well with those obtained from the analytical
formulas. Since the Sx component is the same in magnetic and
nonmagnetic limits (within the approximations used here), and
in the nonmagnetic limit it was considered and analyzed in Ref.
[33], we will not discuss this component in more detail.
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A. DYRDAŁ AND J. BARNAŚ PHYSICAL REVIEW B 92, 165404 (2015)

FIG. 2. (Color online) Spin-polarization components induced by a current: (a)–(c) the x component; (d)–(f) the y component; (g)–(i)
the z component. (a),(d),(g) The spin-polarization components as a function of chemical potential μ and relaxation time τ . (b),(e),(h) The
spin-polarization components as a function of chemical potential μ for indicated values of τ . (c),(f),(i) The polarization components as a
function of τ for indicated values of μ. The right parts of (d)–(f) present the corresponding shaded regions in the left parts. The solid and
dashed lines in (b) represent the results based on the analytical formulas and numerical integration, respectively. The curves for τ → ∞ in (e)
and (h) correspond to analytical solutions. The other parameters are λ = 2 meV, Ey = 1 V/cm, M̃ = 0.1 meV, θ = π/3, and ξ = π/2.

From Eqs. (14) and (16b), one finds the y component of the
spin polarization in the following form:

Sy = 32eEy�λμM̃

∫ ∞

λ

dγ γ

v(2π )2

× (γ 2 − 3λ2) sin θ

[(μ + λ + γ )2 + 2][(μ − λ + γ )2 + 2]

× 1

[(μ + λ − γ )2 + 2][(μ − λ − γ )2 + 2]
. (20)

In the limit of slow relaxation,  → 0, the above formula leads
to the following analytical results:

Sy = ± e�

4π

M̃

λ
sin θ

μ(μ ± 2λ) − 2λ2

2vμ(μ ± λ)
Ey (21)

for |μ| < 2λ, and

Sy = ± e�

4π

M̃

λ
sin θ

μ2 − 4λ2

v(μ2 − λ2)
Ey (22)

for |μ| > 2λ.

Numerical results for the y component of the current-
induced spin polarization, obtained by numerical integration
of the formula (20), are shown in Fig. 2(d) as a function of
chemical potential μ and relaxation time τ . Figures 2(e) and
2(f) present cross sections of Fig. 2(d). Figure 2(e) additionally
shows the results obtained from analytical formulas; see the
curves for τ → ∞. The right parts of Figs. 2(d)–2(f) present
in more detail the corresponding shaded regions. Similar to the
x component, Sy is antisymmetric with respect to reversal of
the sign of Fermi energy, and its dependence on μ also reveals
some steps at μ = ±2λ. These steps are associated with the
edges of the bands E1 and E4. Moreover, when the Fermi level
is at the Dirac point (μ = 0), the analytical solution (21) for Sy

becomes divergent. To understand the origin of the divergency
in the analytical solution for τ → ∞, one should note that
the solution for the x component is also infinite for τ → ∞,
independently of μ. This clearly shows that the limit of τ → ∞
is not physical as the dissipation processes are necessary in
order to stabilize a finite current-induced deviation of the
system from equilibrium, and thus also a finite current density
and spin polarization. Therefore, in Fig. 2(e), we compare
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the numerical results based on the corresponding analytical
formulas with those obtained by numerical integration. This
comparison clearly shows that the results obtained from the
analytical formulas are roughly in agreement with those
obtained from numerical integration, except the vicinity of
μ = 0, where the analytical solution diverges for μ → 0,
while the numerical results based on Eq. (20) are then finite.
Moreover, some discrepancy also occurs around μ = ±2λ, but
now the difference is finite and rather small. Thus, one should
bear in mind that the analytical results (21) and (22) for the
y component have a limited applicability range, and are not
applicable for μ in the vicinity of the Dirac points.

The Sz component can by found from Eqs. (14) and (16c)
and acquires the form

Sz = −32eEy�λμM̃ cos θ sin ξ

×
∫ ∞

λ

dγ γ

v(2π )2

(γ 2 − λ2)

[(μ + λ + γ )2 + 2][(μ−λ+γ )2+2]

× 1

[(μ + λ − γ )2 + 2][(μ − λ − γ )2 + 2]
. (23)

Similar calculations to those done for the y component lead
to the following analytical expressions in the limit of long
relaxation time:

Sz = ∓ e�

4π
M̃λ cos θ sin ξ

μ ± 2λ

2v(μ ± λ)
Ey (24)

for μ < 2λ, and

Sz = ∓ e�

4π

M̃

λ
cos θ sin ξ

μ2 − 2λ2

v(μ2 − λ2)
Ey (25)

for μ > 2λ.
In Fig. 2(g), we present the z component of the current-

induced spin polarization, calculated as a function of the chem-
ical potential and relaxation time by numerical integration of
the formula (23). In turn, Figs. 2(h) and 2(i) show the cross
section of Fig. 2(g). In Fig. 2(h), we additionally compare
the numerical results with those obtained from the analytical
solution. Now, the analytical solution is not divergent; see the
curve for τ → ∞. When the relaxation time is sufficiently
small, the numerical results obtained from Eq. (23) deviate
from the results obtained on the basis of the analytical
formulas. These deviations are rather small for τ � 10−11 s,
except the region near the zero chemical potential. However,
the difference between the analytical and numerical results
around μ = 0 is now much less pronounced than it was in
the case of the y component [compare Figs. 2(e) and 2(h)].
In turn, for τ � 10−11 s, the deviations become remarkable in
the whole range of the chemical potentials shown in Fig. 2(h).

All of the components of the spin polarization (Sx , Sy ,
and Sz) vanish at μ = 0 and are antisymmetric with respect
to the sign reversal of the chemical potential. Numerical
results presented above show that the spin polarization strongly
depends on the Fermi-level position. In the close vicinity of
the Dirac points, the y component of the spin polarization
has pronounced peaks (positive above and negative below
μ = 0). The other two components behave more regularly
in this region. All three components exhibit some cusps (or
dips) when μ is in the vicinity of μ = ±2λ, i.e., when the
Fermi level approaches the top edge of the band E1 or bottom

edge of the band E4. The spin polarization also remarkably
depends on the Rashba parameter λ. This dependence reveals
peculiarities of the corresponding electronic structure, and
remarkably depends on the Rashba parameter. In numerical
calculations, we assumed the Rashba spin-orbit coupling
parameter λ = 2 meV. Generally, this parameter depends on
the substrate (or cover layer), and in real systems it varies from
a few to a few tens of meV; see, e.g., Refs. [35–40].

IV. VERTEX CORRECTION

In the preceding section, we calculated spin polarization
induced by an electric field assuming effective relaxation time
τ (or, equivalently, relaxation rate ). Both τ and the chemical
potential were treated there as independent parameters. When
considering a specific relaxation mechanism, these parameters
usually are not independent. Since the dominant scattering
processes are on impurities, we now consider this problem in
more detail. Assume the scattering potential created by ran-
domly distributed weak short-range scatterers, which may be
written as V (r)s0σ0 with Gaussian correlations 〈V (r)V (r′))〉 =
niV

2δ(r − r′) (where s0 and σ0 denote the unit matrix in the
pseudospin and spin subspace, respectively).

Detailed calculation of the self-energy due to scattering on
the pointlike impurities gives 1,4 = niV

2

2v2 (|μ| − λ) and 2,3 =
niV

2

2v2 (|μ| + λ), where ni is the impurity concentration while
V is the impurity scattering potential. When |μ| 
 λ, then
indeed 1,4 � 2,3 ≡ . Otherwise, we take  as the average
of 1,4 and 2,3, i.e.,  = niV

2

2v2 |μ|.
When calculating the impurity-averaged conductivity, it

is well known that noncrossing diagrams give an important
contribution and renormalize the results obtained in the bare
bubble approximation. Such a vertex renormalization is known
to have a significant influence on the spin current induced via
the spin Hall effect. In the case of two-dimensional electron gas
with Rashba spin-orbit interaction, it totally cancels the spin
Hall conductivity obtained in the bare bubble approximation
[41–44]. However, this is not a general property and, in other
systems, the vertex corrections can only partly reduce the spin
Hall effect [45–47].

The problem of disorder in graphene was discussed in many
papers [48–50]. However, there is still a lack of information on
the influence of disorder and impurities on spin-orbit-driven
phenomena in graphene. This problem was raised by Sinitsyn
et al. [51] and Gusynin et al. [52] in the context of the spin Hall
and spin Nernst effect in the presence of intrinsic spin-orbit
interaction in graphene and in the case of spin-independent
random potential. In this case, the problem becomes simpler
because one can reduce the model to 2 × 2 space. Such a
simplification, however, is not possible in the presence of
Rashba spin-orbit interaction.

In the weak scattering limit, the localization corrections
are vanishingly small and therefore only noncrossing ladder
diagrams are important. The summation over the ladder
diagrams can be represented by the vertex corrections to
the current-induced spin polarization. The renormalized spin-
vertex function is then given by the following equation [53]:

S̃α = Ŝα + niV
2
∫

d2k
(2π )2

GA
k S̃αGR

k , (26)
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where Ŝα is defined by Eq. (10). For the pointlike scattering
potential, one can postulate the vertex function S̃α in the
form

S̃α = aα

�

2

(
σx 0

0 σx

)
+ bα

�

2

(
σy 0

0 σy

)

+ cα

�

2

(
σz 0

0 σz

)
+ dα

�

2

(
σ0 0

0 σ0

)
, (27)

for α = x,y,z, where aα , bα , cα , and dα are certain parameters
to be determined. To find these parameters, we multiply
Eq. (26) by the matrix as specified below and take the trace,

Tr

{(
σi 0

0 σi

)
S̃α

}
= Tr

{(
σi 0

0 σi

)
Ŝα

}
+ niV

2
∫

d2k
(2π )2

× Tr

{(
σi 0

0 σi

)
GA

k S̃αGR
k

}
, (28)

for i = 0,x,y,z. Taking into account Eq. (27), one finds then
a set of equations for the coefficients aα,bα,cα,dα .

We recall that in this paper the exchange field due to the
proximity effect is assumed to be small, so the current-induced
spin polarization is limited to the terms that are linear in
the exchange field. Consequently, the vertex correction is
also calculated in the lowest order appropriate to have spin
polarization that is linear in M.

For α = x, we find that

bx = cx = dx = 0, (29)

ax = 1

1 − niV 2Ix

, (30)

where

Ix =
∫

dkk

2π

χx(μ,)∏4
n=1(μ − En + i)(μ − En − i)

(31)

and

χx(μ,) = k6v6 + k4v4(32 − μ2) + (2 + μ2)3

+ 4(4−μ4)λ2+k2v2(2+μ2)(32−μ2 + 4λ2)

≈ (k2v2 − μ2)(k4v4 − μ4 + 4μ2λ2)

+ [3k4v4 + 3μ4 + 2k2v2(μ2 + 2λ2)]2. (32)

In the above equation, only terms up to the second order in
 have been retained, while terms of higher order have been
omitted.

For α = y, we find the following coefficients:

ay = cy = dy = 0, (33)

by = ax = η. (34)

In turn, for α = z, we find

az = bz = dz = 0, (35)

cz = 1

1 − niV 2Iz

= ζ, (36)

where

Iz =
∫

dkk

2π

χz(μ,)∏4
n=1(μ − En + i)(μ − En − i)

(37)

and

χz(μ,) = k6v6 + k2v2(32 − μ2)(2 + μ2)

+ (2 + μ2)3 + k4v4(32 − μ2 − 2λ2)

+ (2 + μ2)[2(2 − 3μ2)λ2 + 8λ4]

≈ [(k2v2 − μ2)2 − 4μ2λ2)](k2v2 + μ2 − 2λ2)

+ (3k4v4 + 2k2v2μ2 + 3μ4 − 4μ2λ2 + 8λ4)2.

(38)

Finally, the renormalized spin-vertex functions are

S̃x = �

2
η

(
σx 0

0 σx

)
, (39)

S̃y = �

2
η

(
σy 0

0 σy

)
, (40)

S̃z = �

2
ζ

(
σz 0

0 σz

)
. (41)

This means that the results obtained in the bare bubble
approximation should be multiplied only by a numerical factor
to take into account the vertex corrections due to disorder. More
specifically, the results for Sx and Sy should be multiplied by
the factor η, while those for Sz should be multiplied by ζ . The
situation is significantly different from that found in the case
of the spin Hall effect. This is because transport phenomena
and spin polarization are affected by scattering on impurities
in remarkably different ways.

In Fig. 3(a), we show the renormalization parameter η as
a function of chemical potential and relaxation time. Now
the relaxation time is connected with the chemical potential
through the relation �

τ
= niV

2

v2 |μ|. A single point in the τ,μ

space corresponds to a well-defined value of niV
2. However,

possible values of niV
2 have been limited in Fig. 3 to niV

2 <

(niV
2)max, where (niV

2)max is a certain maximum value which
is physically reasonable. The central white region is bounded
by the condition �/τ = (niV

2)max|μ|/v2 and is excluded for
the considered parameters. In Fig. 3(c), in turn, we show
the parameter η as a function of the relaxation time and the
ratio niV

2/(niV
2)max. As one might expect, this figure shows

that the renormalization parameter η becomes reduced with
decreasing niV

2. Figures 3(b) and 3(d) present cross sections
of Figs. 3(a) and 3(c), respectively. The above-described results
for η show that the Sx and Sy components are remarkably
renormalized by the vertex correction and are enhanced by a
factor of the order of 2 (between 1 and 3). This enhancement
of the spin polarization is comparable to that found in the case
of a two-dimensional electron gas with Rashba interaction [8].
The parameter ζ , in turn, is shown in Figs. 3(e) and 3(f). It is of
the same order of magnitude as the parameter η and depends
on the chemical potential and relaxation time in a similar way,
so we will not discuss it in more detail.
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FIG. 3. (Color online) The parameter η as a function of (a) the chemical potential and relaxation time and (c) the relaxation time and
niV

2/(niV
2)max. η as a function of (b) chemical potential μ and (d) niV

2/(niV
2)max for indicated values of the relaxation time. (e)–(h) The

same variations as (a)–(d), but for the parameter ζ . The white regions in (a) and (e) are excluded for the assumed value of (niV
2)max =

0.4 × 10−2(eV nm)2. The other parameters are as in Fig. 2. To find appropriate renormalization coefficients in (a) and (e), one has to draw a
vertical line corresponding to a given value of μ, and then find, on the part of this line in the color region, the point which corresponds to a
given value of niV

2 [note that the point at the border of the white and color regions corresponds to (niV
2)max]. Since the range of relaxation

time in (a) and (e) is limited, to find the renormalization coefficients for μ very close to the Dirac point, one needs to extend this range of τ .

V. SPIN-ORBIT TORQUE

The current-induced spin polarization is exchange coupled
to the local magnetization M and thus exerts a torque on M.
According to Eq. (4), the energy of this interaction per unit area
can be written as Eex = −(2/�)M̃ · S, where S is the induced
spin polarization. Taking into account the relation between M̃
and M, one finds the spin-orbit torque per unit area, τ , exerted
on the magnetization (more precisely, on the corresponding
equilibrium spin polarization of the system) in the form

τ = 2

�
M̃ × S = Jex

gμB�
M × S. (42)

Let us consider in more detail some specific situations
concerning the relative orientation of the magnetization and
electric field (current). Let us start with the situation when
the magnetization M is in the plane of the system and
perpendicular to the current. This corresponds to θ = 0 and
ξ = 0 (Mx = M = 0 and My = Mz = 0). From the above
general equation follows that the spin-orbit torque can then
be written in a general form as

τ = A(−ĵMxSz + k̂MxSy), (43)

where î, ĵ , and k̂ are unit vectors along the axes x, y, and
z, respectively, and we introduce the following abbreviation:
A = Jex/gμB�. Taking into account Eqs. (21), (22), (24), and
(25), one finds immediately that the spin-orbit torque in this
geometry disappears because both the Sy and Sz component
of the spin polarization vanish.

Consider now the situation corresponding to θ = 0 and ξ =
π/2 (My = M = 0 and Mx = Mz = 0), i.e., the case when the
magnetization is parallel to the electric current. From Eq. (42)
follows that the spin-orbit torque has the general form

τ = A(îMySz − k̂MySx). (44)

The Sz component is now nonzero, and thus both Sz and Sx

contribute to the torque in this geometry.
When θ = π/2, namely Mz = M = 0 and Mx = My = 0,

the magnetization is perpendicular to the graphene plane. The
spin-orbit torque then takes the general form

τ = A(−îMzSy + ĵMzSx). (45)

Similar to the preceding situation, both Sy and Sx are nonzero
and determine the torque.

In the last two cases, the spin-orbit torque contains two
components: the linear term with respect to Jex (proportional
to Sx) and the quadratic term in Jex (proportional to Sz and Sy).
The spin-orbit torque contains one component proportional to
the relaxation time and another component whose dominant
part is independent of the relaxation time.

In a general case of arbitrary orientation of the magnetic
moment, the magnitude and character of the spin-orbit torque
vary with the orientation of the magnetic moment. This
is because two components of the current-induced spin
polarization depend on the magnetization, while the third one
is independent of M. As a result, the spin torque may have
fieldlike and (anti)damping terms.
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A. DYRDAŁ AND J. BARNAŚ PHYSICAL REVIEW B 92, 165404 (2015)

VI. SUMMARY

We have calculated current-induced spin polarization in
graphene deposited on a ferromagnetic substrate, which
ensures not only Rashba spin-orbit interaction but also a
ferromagnetic moment in the graphene layer. To describe
the electronic spectrum of graphene, we have used the Kane
Hamiltonian that describes low-energy states around the Dirac
points. Using the zero-temperature Green-function formalism
and linear response theory, we have derived analytical formulas
for the spin polarization, up to the terms linear in M . Numerical
results based on the analytical formulas have been compared
with those obtained by the numerical integration procedure.
From this comparison, we have formulated applicability
conditions of the analytical results. Significant deviations of
the analytical results from those based on numerical integration
have been found for relaxation times smaller than 10−10 s.

The nonequilibrium (current-induced) spin polarization ex-
erts a torque on the magnetization via the exchange interaction.
This torque contains a term which is proportional to the x

component of the induced spin polarization and therefore is
proportional to the momentum relaxation time. The torque also
includes a component whose main part is independent of the
relaxation time.

The spin-orbit torque due to the interplay of external electric
field and Rashba coupling at the interface between graphene
and a magnetic layer can be used, for instance, to trigger
magnetic dynamics and/or magnetic switching. Indeed, such
a switching was observed experimentally in a recent paper
by Wang et al. [54]. However, instead of graphene, they used
MoS2, which is another two-dimensional honeycomb crystal.
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