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Transport in thin polarized Fermi-liquid films
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We calculate expressions for the state-dependent quasiparticle lifetime τσ , the thermal conductivity κ , the
shear viscosity η, and discuss the spin diffusion coefficient D for Fermi-liquid films in two dimensions. The
expressions are valid for low temperatures and arbitrary polarization. In two dimensions, as in three dimensions,
the integrals over the transition rates factor into energy and angular parts. However, the angular integrations
contain a weak divergence. This problem is addressed using the method of K. Miyake and W. J. Mullin [Phys.
Rev. Lett. 50, 197 (1983); J. Low Temp. Phys. 56, 499 (1984)]. The low-temperature expressions for the transport
coefficients are essentially exact. We find that κ−1 ∼ T ln T , and η−1 ∼ T 2 for arbitrary polarizations 0 � P � 1.
These results are in agreement with earlier zero-polarization results of H. H. Fu and C. Ebner [Phys. Rev. A
10, 338 (1974).], but differ from the temperature dependence of the shear viscosity found by D. S. Novikov
(arXiv:cond-mat/0603184). They also differ from the discontinuous change of temperature dependence in D

from zero to nonzero polarization that was discovered by Miyake and Mullin. We note that in two dimensions the
shear viscosity requires a unique analysis. We obtain predictions for the density, temperature, and polarization
dependence of κ , η, and D for second-layer 3He films on graphite, and thin 3He − 4He superfluid mixtures. For
3He on graphite, we find roughly an order of magnitude increase in magnitude for κ and η as the polarization
is increased from 0 to 1. For D a similar large increase is predicted from zero polarization to the polarization
where D is a maximum (∼0.74). We discuss the applicability of 3He thin films to the question of the existence
of a universal lower bound for the ratio of the shear viscosity to the entropy density.
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I. INTRODUCTION

Fermi-liquid theory, developed by Landau [1,2] in the mid-
1950s, showed how low-temperature collective excitations
and thermodynamic properties of strongly interacting normal
many-fermion systems could be encoded in a few parameters,
the Landau parameters, and that these parameters were related
to a certain limiting value of the microscopic scattering
function [3]. In Ref. [2], Landau also introduced a kinetic
equation to describe the nonequilibrium properties of a Fermi
liquid. The kinetic equation is of the same form as the
classical Boltzmann equation with the local quasiparticle
energy ε̃pσ (r,t) playing the role of a Hamiltonian. The ap-
plication of the linearized Landau kinetic equation to the
calculation of transport coefficients for bulk 3He has been
very successful. In this paper we shall apply this approach to a
strongly interacting many-fermion system in two dimensions.
Reviews of the bulk calculations at zero polarization can be
found in the works of Abrikosov and Khalatnikov [4], Pines
and Nozières [5], and Baym and Pethick [6]. The calculation
of transport coefficients for Fermi liquids in three dimensions
with arbitrary polarization can be found in Anderson, Pethick,
and Quader [7], and Meyerovich [8]. The former set of
authors used a slick general notation that emphasized the
similarities in the calculations of the various coefficients.
There exist some measurements of transport coefficients as
a function of polarization for bulk 3He. Buu, Forbes, Puech,
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and Wolf [9], and also Akimoto, Xia, Adams, Candela,
Mullin, and Sullivan [10] studied the shear viscosity. Sawkey,
Puech, and Wolf [11] studied the thermal conductivity.

Abrikosov and Khalatnikov [4] (AK) in particular showed
that the integrals involved in the collision integral factor neatly
into a product of integrals involving angular variables and those
involving energy variables. The resulting expression for the
kinetic equation could then be brought into the form of a linear
integral eigenvalue problem for essentially the nonequilibrium
part of the fermion distribution function. The exact solutions of
these integral eigenvalue problems are derived, and discussed
in detail by Sykes and Brooker [12] and also Jensen, Smith,
and Wilkins [13].

In recent work, we have utilized the kinetic equation
approach to study the transition between collective excitations
in the ballistic regime (zero sound) and the hydrodynamic
regime (first sound) in thin, arbitrarily polarized Fermi-liquid
films [14]. For sound, the kinetic equation is usually solved by
rewriting the integral equation as an (infinite) set of algebraic
equations by using a Fourier expansion, and then taking
moments with respect to the angular functions. This procedure
is not unique, and we have compared and discussed in detail
the predicted propagation speeds and attenuation for two
different approaches [15]. In the above cited works we have
utilized previously calculated [14,16] density and polarization
dependent Landau parameters in order to obtain numerical
predictions for thermodynamic and collective excitations for
the specific case of 3He films. In this paper we shall use these
same Landau parameters to calculate predicted values for the
density and polarization dependent transport coefficients in
thin 3He films.

The calculation of transport coefficients for two-
dimensional (2D) Fermi liquids has been considered by Fu and
Ebner [17], Miyake and Mullin [18], and Novikov [19]. Fu and
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Ebner applied the variational approach that was developed by
Baym and Ebner [20] in order to calculate transport coefficients
for 3He in superfluid 4He bulk solutions. The variational
approach of Fu and Ebner as applied in two dimensions does
not lend itself to analytic solution; nevertheless, they were
able to extract the lowest order temperature dependencies
together with numerically determined coefficients for the
thermal conductivity κ , the first (or shear) viscosity η, and
the spin diffusion coefficient D all at zero polarization. Fu
and Ebner obtained ln T behavior for two of the coefficients,
and pointed out that the source was a weak divergence in
the momentum space integrals. Novikov calculated the shear
viscosity of an unpolarized two-dimensional Fermi liquid.
Most importantly, he pointed out the critical role played by
“head-on” quasiparticle collisions (see Fig. 3) in determining
the zero-polarization shear viscosity.

Miyake and Mullin [18] (MM) derived an exact expression
for the spin diffusion coefficient for two-dimensional fermions
with arbitrary polarization. They indicated that in two dimen-
sions one obtains a logarithmic divergence at finite temperature
in the integrand of the angular integrals if one proceeds by
strictly following the three-dimensional approach developed
by AK. They identified the source of the divergence at finite
temperature as an artifice of using zero-temperature values
for the Fermi momenta in an integrand of one of the angular
integrals in the kinetic equation. In a very clever analysis, by
generalizing the analysis to low but finite temperature they
were able to extract an expression that yielded a logarithmic
divergence only in the zero-temperature limit.

In Sec. II we first apply the MM method to calculate the
state-dependent quasiparticle lifetime at arbitrary polarization.
This is convenient because the lifetime is needed in the
calculation of transport coefficients in later sections. We shall
compare the present result for the quasiparticle lifetime to
a previous one [14] that was obtained using a method that
is completely independent of MM. In Secs. III A and III B
we calculate the thermal conductivity and the shear viscosity,
respectively. In Sec. III C we include a brief discussion of
the zero and finite polarization behavior of the spin diffusion
coefficient. We note that as in three dimensions (3D) the
calculations of the thermal conductivity and the spin diffusion
are very similar. However, unlike 3D, for 2D we find that the
analysis for the shear viscosity needs significant modification.
The root of the problem in the shear viscosity calculation
is identified as being due once more to the incorrect use of
the zero-temperature limit in the integrands of the angular
integrals. In Sec. IV we utilize Landau parameters that
were previously determined for second-layer 3He films on a
graphite substrate, and also for thin-film 3He - 4He mixtures to
compute density, temperature, and polarization dependencies
for the transport coefficients. Our results for the shear viscosity
are used to calculate the ratio of the shear viscosity to the
entropy density. Sec. V is the conclusion.

II. QUASIPARTICLE LIFETIME

We examine a system of N = N↑ + N↓, spin- 1
2 fermions

in a box of area L2. The particles have bare mass m, and
interact with two-body potential V (r) that is assumed to
depend only on the scalar distance between the particles.

The particles fill two Fermi seas up to Fermi momenta k↑
and k↓, and we introduce the convention that the spin-down
Fermi sea will always be the minority Fermi sea in the
case of nonzero polarization. The term polarization denotes
the magnetization per particle which will be denoted by P;
thus P ≡ M/N = (N↑ − N↓)/N . The terms coverage and
areal density (N/L2) are used interchangeably. The system
is assumed to be at some finite but low temperature T in the
sense that T � TF↓.

The quasiparticle lifetime τσ due to quasiparticle-
quasiparticle interactions in two-dimensional Fermi liquids
was calculated in Ref. [14]. The method used in that reference
was borrowed from two-dimensional electron theory, and took
advantage of the similarity in structure between the collision
integral and the free fermion dynamic structure function. The
fluctuation-dissipation theorem together with Stern’s analytic
expression [21] for the two-dimensional susceptibility yielded
an analytic expression for the low-temperature lifetime. In
this section we calculate the quasiparticle lifetime by using a
completely different approach. This approach uses a method
introduced by MM to treat the divergence in the angular
integrals in two dimensions. The lifetime calculated here is
needed in the calculation of each of the transport coefficients.
It is thus convenient to separate it into an independent section,
and simply refer to the result in the later transport section.
In addition, the technique we use to treat the divergence in
the integrals is similar to that in calculating the transport
coefficients, and since the lifetime calculation is simpler, this
allows us to present this technique in a clearer context.

After some simplification [6], the quasiparticle collision
frequency is given by

1

τσ1 (p1)
=

∑
p2,σ2

∑
p3,σ3

∑
p4,σ4

W (1,2; 3,4)δ(ε1 + ε2 − ε3 − ε4)

× δp1+p2,p3+p4δσ1+σ2,σ3+σ4n2n3n4, (2.1)

where npσ ≡ 1/{exp[β(εpσ − p · u − μσ )] + 1} is the Fermi
distribution function, β ≡ 1/kBT , μσ is the chemical potential
for the σ th Fermi sea, and u is the fluid velocity. In this section
we can set u = 0. The W ’s are transition probabilities, and we
have defined

npσ ≡ 1 − npσ = 1

1 + e−β(εpσ −p·u−μσ ) . (2.2)

The standard treatment in three-dimensions follows Abrikosov
and Khalatnikov [22], and introduces new integration variables
in terms of energies and angles. These integrations are inde-
pendent of one another, and in lowest order in temperature one
can find a closed form expression for 1/τ in terms of an angular
average of the transition probabilities. Label the incoming
quasiparticles as p1,p2 and the outgoing quasiparticles p3,p4.
The standard angular variables, θ and ϕ, are defined as follows:
θ is the angle of p2 measured relative to the direction of p1, and
ϕ is the angle between the planes formed by the pairs of vectors
{p1,p2} and {p3,p4}. As discussed by MM, in two dimensions
ϕ can only take on two values: 0,π . We illustrate these two
possibilities in Figs. 1 and 2. Along with MM we shall refer
to these two processes as forward and backward scattering,
respectively. We note that the forward and backward scattering
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FIG. 1. The momentum space diagram for the forward scattering
process, π < θ3 � 2π . From momentum conservation p1 + p2 =
p3 + p4. The angle θ is the angle of p2 as measured from the direction
of p1; θ3 is the angle of p3 as measured from the direction of p1 + p2.
We shall also need the angles �3 ≡ θ31 and �4 ≡ θ41 which are the
angles of p3 and p4 as measured from the direction of p1, respectively.

processes have a direct and exchange relationship since Fig. 2
is obtained from Fig. 1 by exchanging p3 and p4.

Figures 1 and 2 define the conventions that we shall use
throughout this paper to label the angles associated with the
quasiparticle momenta. All angles are measured counterclock-
wise. The angles θi with i = 1,2,3,4 are the angles of pi as
measured from p1 + p2. The angle θij is the angle of pi as
measured from the direction of pj . In the discussion below,
we shall follow MM and use the notation �

f/b

i ≡ θi1, and as
noted above θ ≡ �2. For further reference, by inspection of
Fig. 2, we note the following useful expressions:

cos �3 = 1 − 2p2
2 sin2 θ


2
, sin �3 = sin θ

2p2(p1 + p2 cos θ )


2
,

cos �4 = cos θ + 2p1p2 sin2 θ


2
, sin �4 = sin θ

(
p2

2 − p2
1

)

2

,

(2.3)

where following MM we utilize the variable � ≡ p1 + p2.

p1

p2

|p1 + p2|
p3

p4

θ3

θ4

FIG. 2. The momentum space diagram for the backwards scat-
tering process, 0 < θ3 � π . We note that this figure can be obtained
from Fig. 1 by exchanging p3 and p4. From momentum conservation
p1 + p2 = p3 + p4.

Since the interaction is assumed spin independent, total spin
is conserved in the collisions as indicated by the Kronecker
delta in (2.1). Thus, we must have σ3 = σ1 and σ4 = σ2. In the
spin-parallel case σ2 = σ1 the exchange diagram is identical
to the direct diagram, and therefore they must be counted only
once in the phase space integrations. In the spin-antiparallel
case σ1 = −σ2 the direct and exchange diagrams give different
contributions to the total transition probability. Performing the
spins sums, replacing the momentum sums by integrations,
and performing an integration over p4 yields

1

τσ1 (p1)
= 1

h4

∫
dp2dp3

(
1

2
Wσ1 σ1 + Wσ1 −σ1

)
× δ(ε1 + ε2 − ε3 − ε4)n2n3n4,

≡ 1

τσ1σ1

+ 1

τσ1−σ1

, (2.4)

where for later use we have introduced spin-parallel and spin-
antiparallel collision frequencies. In this expression we have
set A = 1. Thus, the units of the Wσσ ′

’s are (energy) (time)−1

(area)2. As usual, the factor of one-half appearing with the
spin-parallel transition probability prevents overcounting as
discussed above [6].

We first consider the spin-parallel lifetime, and separate out
the angular integrals:

1

τσ1σ1

= 2

h4

∫ ∞

0
p2dp2

∫ ∞

0
p3dp3

∫ π

0
dθ

∫ 2π

π

dθ3 W
σ1 σ1
f (θ )

× δ(ε1 + ε2 − ε3 − ε4)n2n3n4, (2.5)

where we have taken advantage of the symmetry in θ about
π , θ3 is defined as the angle of p3 measured with respect to
p1 + p2, see Fig. 1, and the subscript f or b on W identifies
the transition probability as that for forward scattering (π <

θ3 � 2π ) or backward scattering (0 < θ3 � π ), respectively.
We now rewrite the angular variable θ3 in a more useful form.
With an eye on Fig. 1 the law of cosines yields

p2
4 = p2

3 + 
2 − 2p3
 cos θ3, (2.6)

dθ3 = dp2
4

2p3
 sin θ3
. (2.7)

By inspection of Fig. 1:

− p3
 sin θ3 = p3p4 sin θ43. (2.8)

From the law of cosines again:

p2
1 + p2

2 + 2p1p2 cos θ = p2
3 + p2

4 + 2p3p4 cos θ43. (2.9)

Equation (2.9) can be simplified using energy conservation:
ε1 + ε2 = ε3 + ε4, where we have defined εi ≡ p2

i /2m∗
i . The

quasiparticle label on the effective masses is needed since at
finite polarization the effective masses are state dependent. We
find

p3p4 cos θ43 = (m∗
2 − m∗

1)ξ3 + p1p2 cos θ, (2.10)

where we have defined the important quantity ξ3:

ξ3 ≡ p2
3 − p2

1

2m∗
1

∼ O(kBT ). (2.11)
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We use (2.10) to eliminate θ43 in (2.8), and then with (2.7) we
find

dθ3 = − dp2
4

2p1p2

√
sin2 θ − 1

ε12
ξ3 − (m∗

1+m∗
2)2

p2
1p

2
2

ξ 2
3

(π < θ3 � 2π ), (2.12)

where

1

ε12
≡

(
1 + p2

p1
cos θ

)
1

ε2
−

(
1 + p1

p2
cos θ

)
1

ε1

≈
(

1 + pF2

pF1
cos θ

)
1

εF2
−

(
1 + pF1

pF2
cos θ

)
1

εF1
.

(2.13)

The F subscripts on the Fermi energies and Fermi momenta
indicate that we only need the zero-temperature limit for ε12

since ξ3 itself is O(kBT ).
We note that Eq. (2.12) is exact. For the spin-parallel case

the linear term in ξ3 vanishes making the thermal correction
term ∼O((kBT )2). The thermal correction changes from linear
order in ξ3 for antiparallel spin scattering to quadratic order
in ξ3 for parallel spin scattering. With Eq. (2.12), Eq. (2.5)
becomes

1

τσ1σ1

= 1

h4

∫ ∞

0
dp2 dp3 dp2

4

∫ π

0

dθ√
sin2 θ − (

ξ3

ε1

)2
W

σ1 σ1
f

× δ(ε1 + ε2 − ε3 − ε4)n2n3n4. (2.14)

The integrals are brought to their final form by introducing
dimensionless variables xi ≡ β(εi − μ), and retaining the
contribution from the angular integral with the lowest order
temperature dependence:

1

τσ1σ1

≈ 2
(
m∗

σ1

)3
(kBT )2

h4p2
σ1

∫ ∞

−∞
dx2dx3dx4

× δ(x1 + x2 − x3 − x4)n2n3n4

∫ π−�

�

dθ
W

σ1 σ1
f

sin θ
,

(2.15)

where here � = kBT /ε1. The energy integrals are evaluated
by Morel and Nozières [23] and the final result is π2/4.

The transition rates can be Fourier analyzed as usual [14]
yielding

Wσσ ′
f,b (θ ) =

∞∑

=0

α
T
(cos θ )Wσσ ′

 f,b, (2.16)

where the T
(cos θ ) = cos (
θ ) are Chebyshev polynomials
of the first kind [24], and the parameters α0 = 1 and α
 =
2 for 
 � 1. We can now introduce the lowest order “
 = 0”
approximation by replacing the full transition rate by its 
 = 0
value W

σ1 σ1
f ≈ W

σ1 σ1
f,0 . The remaining angular integral can now

be evaluated, and the final result is

1

τσ1σ1

= π2

2

(
m∗

σ1

)2

h4
W

σ1 σ1
f,0

(kBT )2

ε1
ln

(
2ε1

kBT

)
. (2.17)

The calculation for antiparallel spins proceeds analogously.
From Eq. (2.4):

1

τσ1−σ1

= 2m∗
σ1

m∗
−σ1

h4

∫ ∞

0
dε2 dε3

∫ π

0
dθ

×
(∫ π

0
dθ3 W

σ1 −σ1
b +

∫ 2π

π

dθ3 W
σ1 −σ1
f

)
× δ(ε1 + ε2 − ε3 − ε4)n2n3n4. (2.18)

We now use (2.12) for antiparallel spins:

dθ3 = ±dp2
4

2p1p2

√
sin2 θ − 1

ε12
ξ3

, (2.19)

where − is for forward scattering π < θ3 � 2π , and + is
for backward scattering 0 < θ3 � π . Performing the energy
integrals yields

1

τσ1−σ1

= π2m∗
σ1

(
m∗

−σ1

)2

2h4pσ1p−σ1

(kBT )2

×
∫ π−�

�

[
W

σ1−σ1
f + W

σ1−σ1
b

] dθ

sin θ
, (2.20)

where in this case � = √
kBT /|ε12|. Utilizing the 
 = 0

approximation we obtain

1

τσ1−σ1

= π2

2h4

m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

(
W

σ1 −σ1
f,0 + W

σ1 −σ1
b,0

)
(kBT )2

× ln

(
4|ε12|
kBT

)
. (2.21)

By combining (2.17) and (2.21) we obtain the total
quasiparticle-quasiparticle collision frequency at finite polar-
ization:

1

τσ1

= π2

2h4

[(
m∗

σ1

)2
W

σ1σ1
f,0 ln

(
2ε1

kBT

)

+ (
m∗

−σ1

)2 pσ1

p−σ1

1

2

(
W

σ1 −σ1
f,0 + W

σ1 −σ1
b,0

)
ln

(
4|ε12|
kBT

)]

× (kBT )2

ε1
. (2.22)

In this expression the momenta and energies are zero-
temperature Fermi momenta and Fermi energies [see also
Eq. (2.13)].

1. Zero polarization

At zero polarization, Eq. (2.17) for the spin-parallel colli-
sion frequency is still valid. However for the spin-antiparallel
collision frequency 1/ε12 = 0 in the zero-polarization limit,
and thus the leading order correction in the denominator of
dθ3 is quadratic. For zero polarization Eq. (2.21) becomes

1

τσ−σ

= π2(m∗)2

2h4

(
Wσ −σ

f,0 + Wσ −σ
b,0

) (kBT )2

εF

ln

(
2εF

kBT

)
.

(2.23)
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By combining this result with (2.17) we obtain the total zero-
polarization collision frequency:

1

τ0
≡ 1

τσ

(P = 0) = π2(m∗)2

2h4

[
Wσ σ

f,0 + Wσ −σ
f,0 + Wσ −σ

b,0

]

× (kBT )2

εF

ln

(
2εF

kBT

)
, (2.24)

where the τ0 notation will be used below. The same quantity
in Ref. [14], Eq. (3.24), differs by the appearance of a factor
of 3/8 in the leading coefficient instead of 1/2. This is not
a problem since in that derivation the coefficient of the log
term is uncertain with regard to factors of O(1) because of the
vagaries of the low-temperature limiting process. We note that
one cannot obtain (2.24) by taking the zero-polarization limit
of (2.22).

2. Full polarization

In the full-polarization limit one simply omits the contribu-
tion from the antiparallel spins in (2.22):

1

τ1
≡ 1

τ↑
(P = 1) = π2(m∗

↑)2

2h4
W

↑↑
f,0

(kBT )2

εF↑
ln

(
2εF↑
kBT

)
.

(2.25)

III. TRANSPORT

The derivation of the transport coefficients in a two-
dimensional Fermi liquid proceeds in a very similar way to that
in three dimensions. Thus, this and the following sections on
transport coefficients will necessarily be brief. For the details
we refer the reader to Baym and Pethick [6] for example.
We shall concentrate on those aspects that are specific to
finite polarization and two dimensions. The general transport
equation can be written

∂ñpσ

∂t
+ ∇ñpσ · ∇pε̃pσ − ∇pñpσ · ∇ε̃pσ = Ipσ , (3.1)

where ñpσ (r) is the local quasiparticle distribution function
defined with the local quasiparticle energies ε̃pσ (r). As usual
the local quasiparticle distribution function is expanded around
local equilibrium [5,6]:

ñpσ (r) = npσ [ε̃pσ (r)] + δnpσ (r), (3.2)

where npσ is the Fermi distribution function. Equivalently, we
can expand the local quasiparticle energies around a set of
local equilibrium energies εpσ (r):

ε̃pσ (r) = εpσ +
∑

p′
f σσ ′

pp′ δnp′σ ′(r). (3.3)

The collision integral on the right-hand side of the transport
equation can be written

I (n1) = −
∑

p2,p3,p4

W (1,2; 3,4)δp1+p2,p3+p4δσ1+σ2,σ3+σ4

× δ(ε̃1 + ε̃2 − ε̃3 − ε̃4)[ñ1ñ2(1 − ñ3)(1 − ñ4)

− (1 − ñ1)(1 − ñ2)ñ3ñ4]. (3.4)

As discussed in Sec. II, the sums over p3 and p4 include
only distinguishable final states. We now expand the collision

integral (3.4) to first order in the δnpσ (r). Consider the products
of distribution functions in the square brackets of (3.4), and
substitute (3.2). This yields

[. . .] = −β(ζ1 + ζ2 − ζ3 − ζ4)n1n2n3n4, (3.5)

where we have defined

δni ≡ ∂ni

∂εi

ζi = −βniniζi, (3.6)

and we have made use of the identity

[n1n2n3n4 − n1n2n3n4]δ(ε̃1 + ε̃2 − ε̃3 − ε̃4) = 0. (3.7)

Performing the spin sums the collision integral becomes

I (n1) = β
∑

p2,p3,p4

[
1

2
Wσ1σ1 (θ ) + Wσ1−σ1 (θ )

]

× δp1+p2,p3+p4δ(ε1 + ε2 − ε3 − ε4)

× (ζ1 + ζ2 − ζ3 − ζ4)n1n2n3n4, (3.8)

where to lowest order we have now replaced all of the
remaining local energies ε̃ by local equilibrium energies ε.
As discussed in Sec. II the value of θ3 determines whether the
transition probability is given by the forward or backward scat-
tering diagrams in Figs. 1 and 2, respectively. Equation (3.8)
is the starting point for the collision integral for the calculation
of the transport coefficients as discussed below.

A. Thermal conductivity

The thermal current is given by

jth =
∑

σ

∫
dk
h2

δnkσ (εkσ − μσ )vkσ , (3.9)

where

δnkσ = ∂nkσ

∂εkσ

vkσ · ∇(kBT )qσ (εkσ ), (3.10)

and Eq. (3.10) defines the function qσ . By definition the
thermal conductivity is given by jth = −κ∇T ; thus we obtain

κ = −πk2
B

h2
T

∑
σ

m∗
σ v2

Fσ

∫ ∞

−∞
dx

∂n

∂x
qσ (x) x. (3.11)

The integral over qσ can be evaluated exactly from the
kinetic equation by using the results of Sykes and Brooker [12].
In Eq. (3.8) we have expanded the collision integral (3.4)
to linear order in the nonequilibrium distribution functions
δnpσ (r). Now we need to proceed to do the same for the left-
hand side of (3.1). Since the system is assumed to be in steady
state we can immediately set ∂ñpσ

∂t
= 0. We systematically

ignore the gradients of δnpσ (r). Then with u = 0 and no
polarization gradient we have

∇ñpσ � ∂npσ

∂εpσ

∇ε̃pσ + ∂npσ

∂T
∇T (r), (3.12)

∇pñpσ � ∂npσ

∂εpσ

∇pε̃pσ , (3.13)

and thus the left-hand side of (3.8) becomes ∂npσ

∂T
∇T (r) · vpσ =

β(ε1 − μ1) n1n1
T

(∇T ) · v1. To lowest order ∇pε̃pσ ≈ ∇pεpσ =
vpσ is the Fermi velocity.
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We note that we have omitted a ∇μ contribution in the
expansion. This term, proportional to the entropy, was shown
by Sykes and Brooker to contribute only to the even part of
q, and they showed that this is of higher order in temperature
than the odd part. It will be pointed out below that our qσ (x)’s
have odd symmetry.

Using (3.6) and (3.10) we find

ζi = vi · ∇(kBT )qσ (εi). (3.14)

The kinetic equation can then be written

β(ε1 − μ1)n1n1(v1 · ∇T ) =
∑

p2,p3,p4,σ
′
1

δp1+p2,p3+p4δ(ε1 + ε2 − ε3 − ε4)n1n2n3n4

×Wσ1σ
′
1 (θ )

[
(v1 · ∇T )qσ1 (ε1) + (v2 · ∇T )qσ ′

1
(ε2) − (v3 · ∇T )qσ1 (ε3) − (v4 · ∇T )qσ ′

1
(ε4)

]
, (3.15)

where it is understood that in the case of spin-parallel scattering the range of the θ3 integration is restricted from π to 2π . It is
straightforward to show that the angle between v1 and ∇T is arbitrary. Define γ such that v1 · ∇T = v1|∇T | cos γ . Then similarly
vi · ∇T = vi |∇T | cos(γ + θi1), where i = 2,3,4. After expanding the trigonometric functions and using the symmetry under
transformation θ → 2π − θ , the cos γ cancels out on both sides. We then divide through by v1, and transform the momentum
integrations into energy and angular integrals as was done for the collision time in the previous section:

β(ε1 − μ1)n1n1

= 2

h4

∫ ∞

0
dε2dε3dε4 δ(ε1 + ε2 − ε3 − ε4)n1n2n3n4

×
{(

m∗
σ1

)3

p2
σ1

∫ π

0
dθ

W
σ1 σ1
f (θ )√

sin2 θ − (
ξ3

εFσ1

)2

[
qσ1 (ε1) + qσ1 (ε2) cos θ − qσ1 (ε3) − qσ1 (ε4) cos θ

]

+ m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

∫ π

0
dθ

W
σ1 −σ1
f (θ )√

sin2 θ − (
ξ3

ε12

)
[
qσ1 (ε1) + v−σ1

vσ1

q−σ1 (ε2) cos θ − qσ1 (ε3) − v−σ1

vσ1

q−σ1 (ε4) cos θ

]

+ m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

∫ π

0
dθ

W
σ1−σ1
b (θ )√

sin2 θ − (
ξ3

ε12

)
[
qσ1 (ε1) + v−σ1

vσ1

q−σ1 (ε2) cos θ − qσ1 (ε3) cos �b
3 − v−σ1

vσ1

q−σ1 (ε4) cos �b
4

]}
,

(3.16)

where we have used the symmetry in the integrals about θ = π , and set �
f

3 = 0 and �
f

4 = θ ; ξ3 and ε12 are defined in Eqs. (2.11)
and (2.13), respectively. At this point we note that to lowest order in temperature the terms in (3.16) that are proportional to cos θ

can be omitted.
Following the same line of argument as in three dimensions, we introduce dimensionless variables, xi ≡ β(εi − μi), and then

let xi → −xi . We now see that qσ (xi) is an odd function of its argument, qσ (xi) = −qσ (−xi), in lowest order of temperature for
the thermal conductivity. We now relabel the variables x3,x4 → x2 due to symmetry under the integral, and we obtain

x1n1n1 =
∫ ∞

−∞
dx2dx3dx4δ(x1 + x2 + x3 + x4)n1n2n3n4

{
4

π2

1

τσ

[qσ (x1) + qσ (x2)] − 4

π2
νσ qσ (x2) + 4

π2

(
n−σ

nσ

)
ν−σ q−σ (x2)

}
,

(3.17)

where for simplicity in notation we have switched from σ1 to σ . The collision time is taken from Eq. (2.22):

4

π2

1

τσ

= 2

h4
(kBT )2

[
(m∗

σ )3

p2
σ

∫ π

0
dθ

Wσσ
f (θ )√

sin2 θ − ( ξ3

εFσ
)2

+ m∗
σ (m∗

−σ )2

pσp−σ

∫ π

0
dθ

Wσ−σ
f (θ ) + Wσ−σ

b (θ )√
sin2 θ − ( ξ3

ε12
)

]
, (3.18)

and following MM we have introduced generalized frequencies:

4

π2
νσ ≡ 2

h4
(kBT )2 m∗

σ (m∗
−σ )2

pσp−σ

∫ π

0
dθ

Wσ−σ
b (θ )√

sin2 θ − (
ξ3

ε12

) 2p2
−σ sin2 θ


2
, (3.19a)

4

π2

(
p−σ

pσ

)2

ν−σ ≡ 2

h4
(kBT )2 m∗

σ (m∗
−σ )2

pσp−σ

∫ π

0
dθ

Wσ−σ
b (θ )√

sin2 θ − (
ξ3

ε12

)
[
v−σ

vσ

2pσ p−σ sin2 θ


2

]
, (3.19b)

165130-6



TRANSPORT IN THIN POLARIZED FERMI-LIQUID FILMS PHYSICAL REVIEW B 92, 165130 (2015)

in which we have replaced �b
3 and �b

4 in Eq. (3.16) with the
use of Eq. (2.3).

In the third term in curly brackets in (3.17) we have
introduced the notation nσ for the areal density of the σ th
Fermi sea, and this should not be confused with the similar-
looking Fermi distribution function (2.2) whose subscript is a
momentum label and not a Fermi sea label; thus

nσ ≡ Nσ

A
. (3.20)

The energy integral can be found in Appendix A of Baym and
Pethick [6]:∫ ∞

−∞
dx2 dx3 dx4 δ(x1 + x2 + x3 + x4) n2n3n4 = 1

2

x2
1 + π2

1 + e−x1
.

(3.21)

Thus, the kinetic equation can be brought into nondiagonal
Sykes-Brooker form:(

π2

4

)
τσ x1 =

∫ ∞

−∞
dx2 K(x1,x2)

[
qσ (x1) − (1 − νσ τσ )qσ (x2)

−
(

n−σ

nσ

ν−σ τσ

)
q−σ (x2)

]
, (3.22)

where the Sykes-Brooker kernel is defined as

K(x1,x2) = (1 + e−x1 )(x2 − x1)

(1 + e−x2 )(ex2−x1 − 1)
. (3.23)

This kinetic equation mixes the two components of qσ . It is
in very similar form as the kinetic equation for spin diffusion as
derived by MM. We rewrite (3.22) with a matrix representation
of the coefficients of qσ (x2):(

π2

4

)
τσ x1 =

∫ ∞

−∞
dx2 K(x1,x2)

[
qσ (x1) −

∑
σ ′

λσσ ′qσ ′(x2)

]
.

(3.24)

The coefficient matrix is given by

λ =
(

1 − ν↑τ↑
n↓
n↑

ν↓τ↑
n↑
n↓

ν↑τ↓ 1 − ν↓τ↓

)
. (3.25)

The matrix diagonalization proceeds by using the general
method described in Anderson, Pethick, and Quader [7]. We
note that in this case λ is not symmetric. The eigenvalues of λ

are

λ+ = 1, λ− = 1 − (ν↑τ↑ + ν↓τ↓). (3.26)

The ± subscripts on the λ’s refer to the plus and minus roots
of the quadratic equation generated by diagonalizing (3.25).
Thus, the plus and minus subscripts label the top and bottom
rotated spin states, respectively.

We introduce transformed variables τ̃ = Sτ and q̃ = Sq

where the transformation matrix S is given by

S = 1

ν↑τ↑ + ν↓τ↓

( τ↓
n↓

τ↑
n↑

ν↑
n↓

− ν↓
n↑

)
. (3.27)

In terms of these variables the diagonalized pair of kinetic
equations are

π2

4
τ̃σ x1 =

∫ ∞

−∞
dx2 K(x1,x2)[q̃σ (x1) − λσ q̃σ (x2)]. (3.28)

As shown in Eq. (3.11), the important quantity is not q̃σ itself
but rather the integrated quantity:

Q̃σ = −
∫ ∞

−∞
dx

∂n

∂x
q̃σ (x)x = π2τ̃σ

2(3 − λσ )
H (λσ ), (3.29)

where from Sykes and Brooker (60) H (λ) is an infinite series
involving the eigenvalues λ± that will be explicitly written
below. We now inverse-transform the Q̃σ to obtain

Qσ = (π2/2)

νσ τσ + ν−σ τ−σ

[
ν−σ τ−σ

(
1 + n−σ

nσ

)
H (λ+)

3 − λ+

+ n−σ

nσ

ν−σ τ−σ

H (λ−)

3 − λ−

]
τσ . (3.30)

The exact solution for the low-temperature thermal conductiv-
ity in two dimensions can be written

κ = πk2
B

h2
T

∑
σ

m∗
σ v2

FσQσ , (3.31)

where the explicit expression for H (λ) is given by

H (λ) = 3 − λ

4

∞∑
n=0

4n + 5

(n + 1)(2n + 3)[(n + 1)(2n + 3) − λ]
.

(3.32)

According to Eqs. (2.22) and (3.19) we find νσ τσ ∼ 1/ ln T .
Thus, at very low temperatures we can set λ− ≈ λ+ = 1. In
this limit then Eq. (3.30) simplifies to Qσ = π2

4 H (1)τσ , and
the thermal conductivity becomes

κ = π3

2h2
k2
BT H (1)

∑
σ

εFσ τσ . (3.33)

1. Zero polarization

At zero polarization the eigenvalues are λ+ = 1 and λ− =
1 − 2ντ0. By inspection of (3.30) we have Q↑ = Q↓ =
(π2/4)H (1)τ0 and therefore

κ(P = 0) = π3

h2
k2
BT εF H (1)τ0, (3.34)

in agreement with (3.33). In the 
 = 0 approximation this
becomes

κ(P = 0) = πh2kB

v2
F

m∗
H (1)

[W↑ ↑
f,0 + W

↑ ↓
f,0 + W

↑ ↓
b,0 ]

(εF /kBT )

ln (2εF /kBT )
.

(3.35)

2. Full polarization

At full polarization all quasiparticles are in the ↑ Fermi
sea, and thus the terms with the spin-antiparallel contribu-
tions ν↑ and ν↓ do not appear. By inspection of the kinetic
equation (3.24) the eigenvalue λ = 1. From (3.30) we have
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Q↑ = [π2H (λ)/2(3 − λ)]τ1 and therefore

κ(P = 1) = π3

2h2
k2
BT εF↑H (1)τ1, (3.36)

in agreement with (3.33).

Summary

We find that the temperature dependence for the thermal
conductivity at arbitrary polarization 0 � P � 1 is κ−1 ∼
T ln T . This is in agreement with the zero-polarization results
of Fu and Ebner [17].

B. Shear viscosity

We consider a Fermi-liquid film flowing with speed ux

in the x direction. The flow is not uniform. There exists a
small nonzero y gradient of the velocity ∂ux/∂y that will
drive a transverse momentum flux σxy . The coefficient of
proportionality η is the first or shear viscosity:

σxy = η
∂ux

∂y
. (3.37)

The stress tensor σxy can be written in terms of the nonequi-
librium part of the distribution function [6]:

σxy = −
∑

σ

∫
dp
h2

px

(
∂εpσ

∂py

)
δnpσ ; (3.38)

we note that vpσ,y = ∂εpσ /∂py . Then using (3.6) we can write
δnpσ in terms of the driving field:

δni ≡ ∂ni

∂εi

ζi = ∂ni

∂εi

1

2
(pixviy + piyvix)

∂ux

∂y
qσ (εi), (3.39)

where from symmetry, pixviy = piyvix = m∗
i vixviy . For the

shear viscosity we will need the first two terms of (3.39) in
powers of (εpσ − μ). Following Sykes and Brooker [12] we
obtain

σxy = −
[∑

σ

∫
dp
h2

(pxvpσ,y)
∂npσ

∂εpσ

(
1 + xσ

βεFσ

)

× m∗
σ vσ,xvσ,yqσ (εpσ )

]
∂ux

∂y
, (3.40)

where xσ = β(εpσ − μ). The shear viscosity is then

η = − π

4h2

∑
σ

(pFσ )4

m∗
σ

∫ ∞

−∞
dx

(
1 + xσ

βεFσ

)
∂n

∂x
qσ (x).

(3.41)

We can resolve qσ (x) into symmetric and antisymmetric
components: qσ (x) = q(s)

σ (x) + q(a)
σ (x). Because of the even

and odd symmetry of the two components of the integrand, we
can write η = η(s) + η(a), where

η(s) = − π

4h2

∑
σ

(pFσ )4

m∗
σ

∫ ∞

−∞
dx

∂n

∂x
q(s)

σ (x), (3.42a)

η(a) = − π

4h2

∑
σ

(pFσ )4

m∗
σ

1

βεFσ

∫ ∞

−∞
dx x

∂n

∂x
q(a)

σ (x). (3.42b)

As in the previous section, the integrals over qσ can be
evaluated exactly [12]. It is straightforward to show that
η(a)/η(s) ∼ O(T 2), the same as in three dimensions, and thus
we can ignore the contributions of the antisymmetric part of
qσ in the remainder of this discussion.

In the absence of thermal or polarization gradients, the left-
hand side of the kinetic equation (3.1) in leading order reduces
to [12] −( ∂npσ

∂εpσ
) 1

2 [pxvpσ,y + pyvpσ,x] ∂ux

∂y
. Then with (3.39), the

kinetic equation becomes

n1n1v1yp1x =
∑

p2,p3,p4

δp1+p2,p3+p4δ(ε1 + ε2 − ε3 − ε4)n1n2n3n4

× {
W

σ1σ1
f (θ )[v1yp1xqσ1 (ε1) + v2yp2xqσ1 (ε2) − v3yp3xqσ1 (ε3) − v4yp4xqσ1 (ε4)]

+W
σ1−σ1
f (θ )[v1yp1xqσ1 (ε1) + v2yp2xq−σ1 (ε2) − v3yp3xqσ1 (ε3) − v4yp4xq−σ1 (ε4)]

+W
σ1−σ1
b (θ )[v1yp1xqσ1 (ε1) + v2yp2xq−σ1 (ε2) − v3yp3xqσ1 (ε3) − v4yp4xq−σ1 (ε4)]

}
, (3.43)

where we have canceled out a common factor of ∂ux/∂y. This is similar to the kinetic equation for the thermal conductivity (3.15)
except that in this system both the x and y directions play special roles. Thus we need to include information as to the directions
of the momenta with respect to the x direction, say. Angle γ is the angle between p1 and the x-axis: p1x = p1 cos γ , and
v1y = v1 sin γ . Similarly viypix = vipi sin(γ + θi1) cos(γ + θi1) for i = 2,3,4. Like in the case of thermal conductivity, after
expanding the trigonometric functions the factors sin γ cos γ will cancel out from both sides of the equation. The right-hand side
of the equation can be cast into a product of energy and angular integrals as was done in the previous section, and (3.43) becomes

n1n1 = (kBT )2 2

h4

∫ ∞

−∞
dx2dx3dx4 δ(x1 + x2 − x3 − x4)n1n2n3n4

×
⎧⎨
⎩

(
m∗

σ1

)3

p2
σ1

∫ π

0
dθ

W
σ1 σ1
f (θ )√

sin2 θ − (
ξ3

εFσ1

)2

[
qσ1 (x1) + qσ1 (x2) cos (2θ ) − qσ1 (x3) cos

(
2�

f

3

) − qσ1 (x4) cos
(
2�

f

4

)]
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+ m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

∫ π

0
dθ

W
σ1 −σ1
f (θ )√

sin2 θ − (
ξ3

ε12

) [
qσ1 (x1) + Dσ1q−σ1 (x2) cos (2θ ) − qσ1 (x3) cos

(
2�

f

3

) − Dσ1q−σ1 (x4) cos
(
2�

f

4

)]

+ m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

∫ π

0
dθ

W
σ1 −σ1
b (θ )√

sin2 θ − (
ξ3

ε12

) [
qσ1 (x1) + Dσ1q−σ1 (x2) cos (2θ ) − qσ1 (x3) cos

(
2�b

3

) − Dσ1q−σ1 (x4) cos
(
2�b

4

)]⎫⎬⎭,

(3.44)

where for convenience we have defined Dσ ≡
(v−σp−σ )/(vσpσ ).

If we proceed as we did for the thermal conductivity, we
would now set the four momenta involved in the quasiparticle
scattering equal to their zero-temperature values. Then we
would have �

f

3 = 0 and �
f

4 = θ , and from Fig. 2 and
Eqs. (2.3), �b

3 = θ and �b
4 = 0 at zero polarization. If we

substitute these values into (3.44) then at zero polarization
we will obtain an integral eigenvalue equation in the same
form as Eq. (41) in Ref. [12] with λ = 1. However, λ = 1
is an eigenvalue of the homogeneous version of Eq. (41),
and since (3.44) is clearly inhomogeneous there would be
no solution.

The root of the problem lies with using Fermi momenta
fixed at their zero-temperature values. If we allow the momenta
to differ from the zero-temperature pF ’s by O(kBT ), then
a new configuration of the momenta will become available
(illustrated in Fig. 3). This happens in the head-on collision
process (θ = π ), and turns out to give the dominant contri-
bution to the shear viscosity at zero polarization. The fact
that the viscosity of an unpolarized 2D Fermi liquid is fully
determined by head-on quasiparticle scattering was identified
by Novikov [19].

In the following discussion of this process, we shall fix
p1 = pF1 and p2 = pF2, and only permit p3 and p4 to
differ from their zero-temperature values. This simplifies the
calculation while maintaining the essential features of the
effect of finite temperature, and also maintains consistency

p1 p2

|p1 + p2|

p3

p4

FIG. 3. Momentum space diagram illustrating the effects of
letting the quasiparticle momenta move slightly off of the zero-
temperature value pF . In this zero-polarization example we set
p1 = p2 = pF as discussed in the text. It is clear that �3 and �4

can be quite different from 0 or π in both forward and backward
scattering processes.

with our previous treatment of the divergence in the angular
integrals as discussed in Sec. II. We will show how this
process makes a dominant contribution to the viscosity of an
unpolarized system, and also (though to a lesser extent) to that
of a polarized system.

The second and third integrals in Eq. (3.44) describe
forward and backward scattering between spin-antiparallel
quasiparticles, and their exact forms depend on polarization.
Appropriate expressions will be derived below where we will
discuss three polarization ranges separately. At this point
we can evaluate the contribution from spin-parallel forward
scattering. The calculation of cos �

f

3 and cos �
f

4 begins by
determining cos θ3 and cos θ4. From Eq. (2.6),

cos θ3 = |p1 + p2|
2p3

+ p2
3 − p2

4

2p3|p1 + p2| . (3.45)

We note that the factor of |p1 + p2| in the denominator of (3.45)
is the source of the enhancement of the role of head-on
scattering as will be discussed below.

Noting |p1 + p2| = 2pF cos ( θ
2 ), we can write to lowest

order in T

cos(θ3) = cos
(

θ
2

) + �3

2 cos
(

θ
2

) , (3.46)

where we have defined �3 ≡ ξ3/εF , and ξ3 is defined in (2.11).
Then exchanging p3 and p4 in (3.45) we have

cos(θ4) = cos
(

θ
2

) − �3

2 cos
(

θ
2

) . (3.47)

From Eqs. (3.46) and (3.47) it is clear that θ3 and θ4 can
be significantly different from θ/2 when θ ≈ π . Noting that
θ1 = 2π − θ/2, we then have

sin �
f

3 = sin(θ3 − θ1) ≈ sin θ1 cos θ1 − sin θ1 cos θ3

= tan
(

θ
2

)
�3

2
,

and similarly

sin �
f

4 ≈ sin θ − tan
(

θ
2

)
�3

2
. (3.48)

Therefore

cos
(
2�

f

3

) ≈ 1 − tan2
(

θ
2

)
�2

3

2
, (3.49)

and

cos
(
2�

f

4

) ≈ cos(2θ ) − tan2
(

θ
2

)
�2

3

2
. (3.50)
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It is clear now that �
f

3 and �
f

4 can be significantly different
from 0 and π at θ ≈ π . Substitute Eqs. (3.49) and (3.50) into
the first integral in (3.44), and one obtains(

m∗
σ1

)3

p2
σ1

∫ π−�

�

dθ
W

σ1σ1
f (θ )

sin θ

×
{
qσ1 (x1) −

[
1 − tan2

(
θ

2

)
�2

3

]
qσ1 (x2)

}
, (3.51)

where we have used the even parity of qσ (x), and the usual
change of variables has been applied.

1. P = 0 zero polarization

At zero polarization, we set pF↑ = pF↓,m∗
↑ = m∗

↓, and
Dσ = 1. The contribution from the forward scattering of spin-
antiparallel quasiparticles is identical to that of the forward
scattering between spin-parallel quasiparticles as analyzed
in (3.51). Thus, the second integral in (3.44) is identical
to (3.51) with the substitution Wσ σ

f → Wσ −σ
f .

For the backward scattering between spin-antiparallel
quasiparticles, one notices that θ3 ≈ 2π − θ1 and θ4 ≈ θ1 as

θ is not close to π ; therefore proceeding as in the previous
analysis

sin �b
3 ≈ sin θ + tan

(
θ
2

)
�3

2
(3.52)

and

sin �b
4 ≈ − tan

(
θ
2

)
�3

2
. (3.53)

Then

cos
(
2�b

3

) ≈ cos(2θ ) − tan2
(

θ
2

)
�2

3

2
(3.54)

and

cos
(
2�b

4

) ≈ 1 − tan2
(

θ
2

)
�2

3

2
. (3.55)

Substituting these back into the backward scattering integral
together with (3.51), we obtain for (3.44)

n1n̄1 = (kBT )2 2

h4

(m∗)3

p2
F

∫ +∞

−∞
dx2dx3dx4δ(x1 + x2 + x3 + x4)n1n2n3n4

×
∫ π−�

�

dθ
W

σ1 σ1
f (θ ) + W

σ1 −σ1
f (θ ) + W

σ1 −σ1
b (θ )

sin θ

{
qσ1 (x1) −

[
1 − tan2

(
θ

2

)
�2

3

]
qσ1 (x2)

}
. (3.56)

As before, the kinetic equation can be written

π2

4
τ0n1n̄1 =

∫ +∞

−∞
dx2dx3dx4δ(x1 + x2 + x3 + x4)n1n2n3n4[q(x1) − (1 − ν0τ0)q(x2)], (3.57)

where τ0 is given by (2.24), and we have defined a generalized frequency

ν0 = π2

2h4
(kBT )2 (m∗)3

p2
F

∫ π−�

�

dθ
W

↑↑
f (θ ) + W

↑↓
f (θ ) + W

↑↓
b (θ )

sin θ
tan2

(
θ

2

)
�2

3. (3.58)

Following the same steps as for the thermal conductivity,
Eq. (3.57) can be cast into Sykes-Brooker form:

π2

4
τ0 =

∫ +∞

−∞
dx2K(x1,x2)[q(x1) − λq(x2)]. (3.59)

The solution is then

Q � −
∫ +∞

−∞
dx

∂n

∂x
q(x) = c(λ)

2ν0
,

with the eigenvalue

λ = 1 − ν0τ0, (3.60)

and from Ref. [12],

c(λ)

(1 − λ)
= 1

4

∞∑
n=0

(4n + 3)

(n + 1)(2n + 1)[(n + 1)(2n + 1) − λ]
.

(3.61)

If we keep only the zeroth-order components of the transition
rates, and simply set �3 = � to extract the correct order of

temperature dependence in νσ , we obtain

ν0 ≈ (kBT )2 π2

h4

(m∗)3

p2
F

(W↑↑
f,0 + W

↑↓
f,0 + W

↑↓
b,0). (3.62)

The expression for the zero-polarization viscosity follows
from (3.42):

η(P = 0) = π

4h2

p4
F

m∗ τ0
c(λ)

1 − λ
. (3.63)

Using 1 − λ = ν0τ ∼ O(1/ ln T ) and c(λ ≈ 1) ≈ 3
4 , we find

η(P = 0) = 3

4

h2

π

v2
F

W
↑↑
f,0 + W

↑↓
f,0 + W

↑↓
b,0

(
εF

kBT

)2

. (3.64)

An important feature of this expression that needs to be pointed
out is that the explicit dependence on the quasiparticle lifetime
τ0 has canceled out, leaving the viscosity solely dependent on
ν0. This contrasts with the result in three dimensions where
η is found to be directly proportional to the lifetime. Further,
the integrand in Eq. (3.58) is only appreciable near θ ≈ π ,
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which means that at zero polarization ν0, and η in turn, are
solely dominated by the head-on collisions between both spin-
parallel and spin-antiparallel quasiparticles.

The zero-polarization temperature dependence η−1 ≈ T 2 is
in agreement with the variational result by Fu and Ebner, but
is different from Novikov’s main result Eq. (3) in Ref. [19],
in which he found the temperature dependence for the inverse
viscosity to be T 2/ ln2(TF /T ). The extra ln2(TF /T ) comes
from his assumption that the Landau parameters have a
logarithmic divergence in their denominators at θ = π , which
make them vanishingly small in the head-on direction. This
behavior was first demonstrated by Abrikosov, Gorkov, and
Dzyaloshinski for a 3D system (Ref. [4] in Novikov). However,
Engelbrecht, Randeria, and Zhang [25] subsequently proved
that in a repulsive 2D system, Landau parameters calculated
using a low-density T -matrix expansion (the method used in
Ref. [26]) are finite in the head-on direction. Thus in this work
we do not include any divergence factors in the denominators
of the Landau parameters.

2. 0 < P < 1

In this polarization range, we note that the second term in
Eq. (3.45) is always negligible compared to the first term.
Thus for the forward scattering between spin-antiparallel
quasiparticles we set �

f

3 = 0 and �
f

4 = θ . Then the second

term in the curly brackets of Eq. (3.44) becomes

m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

∫ π

0
dθ

W
σ1 −σ1
f (θ )√

sin2 θ − ξ3

ε12

[qσ1 (x1) − qσ1 (x2)]. (3.65)

The integral for the spin-antiparallel backward scattering can
be transformed into

m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

∫ π

0
dθ

W
σ1,−σ1
b (θ )√

sin2 θ − ξ3

ε12

× [
qσ1 (x1) − (

1 − 2 sin2 �b
3

)
qσ1 (x2)

+Dσ1 2
(

cos2 θ − cos2 �b
4

)
q−σ1 (x2)

]
. (3.66)

The integral over the last term is much smaller than that for
the first two terms. Indeed if one sets W

σ1 −σ1
b (θ ) ≈ W

σ1 −σ1
b,0 ,

using Eq. (2.3) one obtains∫ π

0
dθ

cos2 θ − cos2 �b
4√

sin2 θ − ξ3

ε12

= 0. (3.67)

Thus we can ignore the last term in the integral, and
therefore the kinetic equation at finite polarization becomes
spin decoupled.

Combining Eqs. (3.51), (3.65), (3.66), and (3.67), the
kinetic equation becomes

n1n̄1 = (kBT )2 2

h4

∫ +∞

−∞
dx2dx3dx4δ(x1 + x2 + x3 + x4)n1n2n3n4

×
{(

m∗
σ1

)3

p2
σ1

∫ π−�

�

dθ
W

σ1 σ1
f (θ )

sin θ

(
qσ1 (x1) −

[
1 − tan2

(
θ

2

)
�2

3

]
qσ1 (x2)

)

+ m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

∫ π

0
dθ

W
σ1 −σ1
f (θ )√

sin2 θ − ξ3

ε12

[
qσ1 (x1) − qσ1 (x2)

]

+ m∗
σ1

(
m∗

−σ1

)2

pσ1p−σ1

∫ π

0
dθ

W
σ1 −σ1
b (θ )√

sin2 θ − ξ3

ε12

[
qσ1 (x1) − (

1 − 2 sin2 �b
3

)
qσ1 (x2)

]}
. (3.68)

With the aid of the definition of the quasiparticle lifetime (2.22)
we find

π2

4
τσ1n1n̄1 =

∫ +∞

−∞
dx2dx3dx4δ(x1 + x2 + x3 + x4)n1n2n3n4

× {
qσ1 (x1) − [

1 − (
νf

σ1
+ ν(3)

σ1

)
τσ1

]
qσ1 (x2)

}
,

(3.69)

with the definitions

νf
σ = π2

2h4
(kBT )2 (m∗

σ )3

p2
σ

∫ π−�

�

dθ
Wσ σ

f (θ )

sin θ
tan2

(
θ

2

)
�2

3,

(3.70)

ν(3)
σ = π2

h4
(kBT )2 m∗

σ (m∗
−σ )2

pσp−σ

∫ π−�

�

dθ
Wσ −σ

b (θ )

sin θ
sin2 �3.

(3.71)

The kinetic equation can now be cast into Sykes-Brooker form:

π2

4
τσ =

∫ +∞

−∞
dx2K(x1,x2)[qσ (x1) − λσqσ (x2)], (3.72)

with

λσ = 1 − (
νf

σ + ν(3)
σ

)
τσ . (3.73)

The solution is

Qσ = c(λσ )

2
(
ν

f
σ + ν

(3)
σ

) , (3.74)

where c(λ) is given in Eq. (3.61). In lowest order of W , we can
obtain approximate analytic expressions for the generalized
frequencies:

νf
σ ≈ (kBT )2 π2

h4

(m∗
σ )3

p2
σ

Wσ σ
f,0 , (3.75)
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ν(3)
σ ≈ 2π2

h4
(kBT )2 (m∗

−σ )2

εF σ

Wσ −σ
b,0

p−σ

pσ

×
(

1 + p2
σ − p2

−σ

2pσp−σ

ln

∣∣∣∣pσ + p−σ

pσ − p−σ

∣∣∣∣
)

. (3.76)

We note they are both on the order of T 2.
For the polarization range 0 < P < 1 the shear viscosity

becomes

η = 3π

32h2

∑
σ

(pFσ )4

m∗
σ

1(
ν

f
σ + ν

(3)
σ

) , (3.77)

where c(λ) ≈ 3/4 since νσ τσ ∼ O(1/ ln T ). In lowest order we find

η = 3

8

h2

π

∑
σ

v2
Fσ

Wσ σ
f,0 + 4

(
vF−σ

vFσ

)(m∗−σ

m∗
σ

)3
Wσ −σ

b,0

(
1 + p2

σ −p2−σ

2pσ p−σ
ln

∣∣pσ +p−σ

pσ −p−σ

∣∣)
(

εFσ

kBT

)2

. (3.78)

We note the lifetime has canceled out in the same manner
as at zero polarization, and the temperature dependence
η−1 ≈ T 2 is unchanged at finite polarization. There is an
important difference from zero polarization, however. At
zero polarization we showed that the shear viscosity is fully
determined by head-on collisions between both spin-parallel
and spin-antiparallel quasiparticles. At finite polarization the
major contribution from scattering is from the backward
scattering process depicted in Fig. 2. We note that in such
processes scattering events with a wide range of relative angle
θ (from 0 to π ) have to be taken into account. This backward
scattering contributes to the second term in the denominator
in Eq. (3.78). At low energies, where the s-wave scattering
favors the spin singlet configuration, we expect the second
term should always dominate the first term in the denominator,
until the polarization hits a certain high value (see Fig. 4).

3. Full polarization P = 1

At full polarization we ignore those terms that involve
scattering between antiparallel-spin quasiparticles since there
are no particles in the minority Fermi sea. Thus we ignore the
ν(3) term in (3.73), and therefore λ↑ = 1 − ν

f

↑ τ1. The solution

FIG. 4. (Color online) Dimensionless scattering amplitudes (4.1)

versus polarization at n = 0.0132 Å
−2

on a graphite substrate.
Comparison of Ã

↑↑
0 with Ã

↑↑
1 , and Ã

↑↓
0 with Ã

↑↓
1 . We note that at

P = 0 we find Ã
↑↑
0 ≈ Ã

↑↑
1 . For all polarizations Ã

↑↓
0 > Ã

↑↓
1 .

becomes Q↑ = c(λ↑)/(2ν
f

↑ ) ≈ 3/(8ν
f

↑ ). From Eqs. (3.77)
and (3.78) the shear viscosity at full polarization becomes

η(P = 1) = 3π

32h2

(pF↑)4

m∗
↑

1

ν
f

↑
≈ 3

8

h2

π

v2
F↑

W
↑ ↑
f,0

(
εF↑
kBT

)2

. (3.79)

Summary

We find that the temperature dependence for the shear
viscosity at arbitrary polarization 0 � P � 1 is η−1 ∼ T 2.
This is in agreement with the zero-polarization results of Fu
and Ebner [17].

C. Spin diffusion

The longitudinal spin diffusion coefficient D for a two-
dimensional Fermi liquid at arbitrary polarization was cal-
culated by Miyake and Mullin. The derivation of D is very
similar to that of κ in Sec. III A. However, unlike κ or η, the
temperature dependence of D depends on whether one is at
zero polarization or nonzero polarization. For the details of
the derivations of the zero and nonzero polarization forms of
D we refer the reader to Ref. [18]. At the time MM did their
calculation nothing was known of the Fermi liquid parameters
for 3He films. Thus, MM applied their general results to the
weakly interacting limit. In this section we shall briefly discuss
and display D at zero and nonzero polarization and arbitrary
density. Further, using our results for the Landau parameters
for 3He films we can calculate predicted values for D which
will be presented in the following section.

1. Zero polarization

The diffusion coefficient at zero polarization in the 
 = 0
approximation is

D = 1

2

(
h4

π2

) (
1 + Fa

0

)
(m∗)3Wσ −σ

b,0

c(λ−)(
kBT
εF

)2
ln

( 2εF

kBT

) , (3.80)

where λ− = 1 − 2[Wσ −σ
b,0 /(Wσ σ

f,0 + Wσ −σ
f,0 + Wσ −σ

b,0 )]; the se-
ries c(λ) is defined in (3.61). The dependence of D on the spin-
parallel transition probability through the eigenvalue mimics
the solution for bulk Fermi liquids [12]. In a more general
form than the 
 = 0 approximation, the eigenvalue λ− depends
on the transition probabilities Wσσ

f ,Wσ−σ
f , and Wσ−σ

b through
the angular averages that appear in the generalized frequencies
and quasiparticle lifetimes.
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2. Nonzero polarization

The spin diffusion coefficient at P �= 0 in the 
 = 0 approximation is given by

D = 3

2

(
h4

π2

)
εF↑εF↓R↑|R↓|

m∗
↑m∗

↓
[
m∗

↑
p2

↓
p2

↑
|R↓| + m∗

↓
p2

↑
p2

↓
R↑

]
(W↑↓

b,0) ln
∣∣p↑+p↓
p↑−p↓

∣∣ (kBT )−2, (3.81)

where the Rσ parameters are the proportionality constants that connect the chemical potential gradients with magnetization
gradients. They are given by

Rσ = σn−σ

N−σ
0

(
1 + Fσσ

0

)(
1 + F−σ−σ

0

) − Fσ−σ
0 F−σσ

0

nσ

(
1 + Fσσ

0 + Fσ−σ
0

)/
Nσ

0 + n−σ

(
1 + F−σ−σ

0 + F−σσ
0

)/
N−σ

0

, (3.82)

and we associate σ = {+1,−1} with σ = {↑ , ↓}, respec-
tively. The dimensionless Landau parameters are defined by

Fσσ ′
0 = Nσ

0

∫ 2π

0

dθ

2π
f σσ ′

pp′ , (3.83)

where Nσ
0 = m∗

σ /(2π�
2) is the single spin-state density of

states at the Fermi surface. The absence of the ln (T )
divergence in D at finite polarization was first noticed by MM
who pointed out that the change in temperature dependence
from zero polarization was due to the inability of the system to
conserve momentum in spin-antiparallel collisions at nonzero
polarization and low enough temperature.

The limits of small polarization and full polarization
of (3.81) are important for the numerical work to be presented
in the following section. In the limit of very small polarization
|P| � 1 (3.81) becomes

D(|P| � 1) ≈ 3

8

(
h4

π2

) (
1 + Fa

0

)
(m∗)3W

↑↓
b,0

1

ln
(

1
2|P|

)(
εF

kBT

)2

,

(3.84)

where all terms have been set to their P = 0 values except for
the term that is singular in that limit. Although this expression
appears to vanish in the limP → 0, we note that there exists a
lower limit of polarization beyond which these results may not
be applied. This lower limit is determined by the requirement
that a well-defined polarization requires εF↑ − εF↓ � kBT .
In the opposite limit of full polarization the spin diffusion
coefficient does vanish. From (3.81) it can be seen that D(P →
1) ∼ O(p3

↓). Equivalent results can be found in MM in the
weak interaction limit.

IV. APPLICATION TO THIN 3He FILMS

In this section we calculate transport coefficients for
thin-film 3He systems. The system-specific information is
provided by the angular integrals of the transition rates
Wσσ ′

(θ ) that appear in the quasiparticle lifetimes τ and the
generalized frequencies ν. The transition rates can be written
in terms of the scattering amplitudes: Wσσ ′

f,b (θ ) = 2π
�

|aσσ ′
f,b (θ )|2.

Dimensionless scattering amplitudes can be defined by

Ãσσ ′
f,b (θ ) = Ñ0a

σσ ′
f,b (θ ), (4.1)

where Ñ0 = m/(2π�
2). The transition rates then become

Wσσ ′
f,b (θ ) = h3

m2

∣∣Ãσσ ′
f,b (θ )

∣∣2
. (4.2)

In turn, for forward scattering, the Fourier components of the
scattering amplitudes can be written in terms of the Landau
parameters [26]:

a
↑↑
f,
 = f

↑↑

 (1 + N

↓
0 f

↓↓

 ) − N

↓
0 (f ↑↓


 )2

(1 + N
↑
0 f

↑↑

 )(1 + N

↓
0 f

↓↓

 ) − N

↑
0 N

↓
0 (f ↑↓


 )2
, (4.3a)

a
↑↓
f,
 = f

↑↓



(1 + N
↑
0 f

↑↑

 )(1 + N

↓
0 f

↓↓

 ) − N

↑
0 N

↓
0 (f ↑↓


 )2
. (4.3b)

We note in passing that in this notation the forward
scattering sum rules [27] become Wσσ

f (0) = 0.
At zero polarization one can also write the backward

scattering transition probability Wσ −σ
b in terms of the forward

scattering amplitudes [18] by utilizing

aσ −σ
b (θ ) = aσ −σ

f (θ ) − aσσ
f (θ ). (4.4)

It is not known whether a comparable exact result can be
obtained for nonzero polarization in two dimensions. The
important point is that at zero polarization in two dimensions
D can be written solely in terms of the Landau parameters [28].
This point was made by Miyake and Mullin [18]. In fact this is
valid for all of the transport coefficients. In order to compute
backward scattering contributions at nonzero polarization, and
also head-on transition rates used for the shear viscosity, we
shall proceed by making some reasonable assumptions. For
backward scattering at nonzero polarization,

aσ −σ
b (θ ) ≈ aσ −σ

f (θ ), (4.5)

and for the head-on scattering needed for the shear viscosity,

aσ σ ′
head-on(θ = π,φ = 0 or π ) ≈ aσ σ ′

f (θ = π ). (4.6)

In three dimensions one faces a similar problem because
one also needs information concerning the φ dependence of
the scattering amplitudes where φ is the angle between the
planes formed by the momenta of the incoming and outgoing
quasiparticles. An approximate solution at zero polarization
was obtained by Dy and Pethick [29]. Unfortunately the s-p
approximation does not generalize to nonzero polarization. In
two dimensions as noted previously φ can only take on the
values 0 and π .

For 3He in two dimensions we can calculate Landau
parameters to high orders [16] by utilizing effective s-wave
and p-wave T -matrix elements determined by experimental
data. Thus in principle we can also calculate the Fourier sum
for Wσσ ′

f (θ ) to high orders. For the numerical work to be
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TABLE I. Expressions for the transport coefficients at P = 0 and P = 1 rewritten in forms that are useful for analyzing the density
dependence.

Transport coefficient Polarization Expression

κ P = 0 κT ln ( 2TF

T
) = ( h3

8πm2 )H (1) n2

(m∗/m)4
1

|Ã↑↑
f,0|2+|Ã↑↓

f,0|2+|Ã↑↓
b,0|2

κ P = 1 κT ln ( 2TF

T
) = ( h3

4πm2 )H (1) n2

(m∗
↑/m)4

1

|Ã↑↑
f,0|2

η P = 0 ηT 2 = ( 3π�
5

4k2
B

m2 ) n3

(m∗/m)4
1

|Ã↑↑
f,0|2+|Ã↑↓

f,0|2+|Ã↑↓
b,0|2

η P = 1 ηT 2 = ( 3π�
5

k2
B

m2 ) n3

(m∗
↑/m)4

1

|Ã↑↑
f,0|2

D P = 0 DT 2 ln ( 2TF

T
) = ( π�

5

k2
B

m3 )c(1) n2

(m∗/m)5

1+Fa
0

|Ã↑↓
b,0|2

discussed below, however, we shall use the lowest-order 
 = 0
approximation for the transition rates. In Fig. 4 we compare

Ã
↑↑

 and Ã

↑↓

 for 
 = 0,1 at n = 0.0132 Å

−2
on a graphite

substrate. We see, at zero polarization, Ã
↑↓
0 dominates the

other three components: as one expects, the singlet channel
dominates the s-wave scattering. As the polarization increases
however, Ã

↑↑
0 increases rapidly and eventually becomes the

dominant component. Therefore we can approximate the
transition rates by simply keeping the 
 = 0 components over
the whole polarization range.

We begin by examining the transport coefficients in the
forms κT ln (2TF /T ), ηT 2, and DT 2 ln (2TF /T ) to analyze
their density dependence for P = 0 and P = 1. The results
are presented in this manner in order to take advantage of the
fact that at zero polarization and full polarization the explicit
temperature dependence factors; see Table I. In Table II we
show the values for the system of second layer 3He on graphite.
We include in the table the Fermi energies and the effective
masses. The values of the effective masses at full polarization
come from Ref. [16]. We can compare the qualitative behavior
of the transport coefficients with their bulk 3He analogs.
Figure 3 in Bedell and Pines [30] shows the pressure
dependence at zero polarization of κT , ηT 2, and DT 2. In three
dimensions each of these quantities appears to be a monoton-
ically decreasing function of pressure. In two dimensions this
is not necessarily the case. One can easily extract the explicit
density and effective mass dependence of the transport coeffi-
cients by examining Eqs. (2.24), (3.34), (3.64), and (3.80). By
inspection of Table I, we find κ ∼ n2/(m∗)4, η ∼ n3/(m∗)4,

and D ∼ n2/(m∗)5. Thus, the explicit density dependence
tries to increase the transport coefficients with increasing
density whereas the explicit effective mass dependence tries
to decrease the transport coefficients with increasing effective
mass.

At P = 0, κT ln (2TF /T ) decreases monotonically with
increasing density. This behavior is dominated by the increase
in the effective mass. There is additional density dependence
carried by the scattering amplitudes. In Table III we include
the most important scattering amplitudes for the 3He system
of Table II. The contribution of the scattering amplitudes to
κ is shown in the second column of Table III. The quantity
|Ã↑↑

f,0|2 + |Ã↑↓
f,0|2 + |Ã↑↓

b,0|2 is nonmonotonic; however, the
extent of variation is small compared to that of the effective
mass. This is also the case for the spin diffusion coefficient.
The important scattering amplitude in this case is |Ã↑↓

b,0|2,
which is fairly constant. Thus, the density dependence of the
spin diffusion coefficient is dominated by that of the effective
mass. The case of ηT 2 is more intriguing, as it seems first to
increase, and then to decrease with density. At low density,
the cubic density dependence dominates the viscosity. Thus
at low densities the viscosity increases with increasing n. At
higher densities the increase in the effective mass eventually
takes over, and the viscosity starts to decrease. This “bump”
feature is also present in the density-dependent behavior
of TF .

In contrast to zero polarization, at full polarization the
transport coefficients exhibit an increase with increasing
density. This behavior can be understood by referring to the

TABLE II. 3He on a graphite substrate. The zero-polarization P = 0 and full-polarization P = 1 thermal conductivity κ , shear viscosity
η, and spin diffusion coefficient D as functions of areal density n with the explicit temperature dependencies factored out. The units are
κT (10−5 ergs s−1); ηT 2 (10−9 g s−1 mK2); DT 2 (cm2 s−1 mK2). We also include the effective masses, the Fermi energies, and we note that
D(P = 1) = 0 from its definition. The values of κ are obtained from (3.34) and (3.36), for η from (3.64) and (3.79), and for D from (3.80), for
zero and full polarization, respectively.

m∗/m εF (K) κT ln (2TF /T ) ηT 2 DT 2 ln (2TF /T )

Density (Å
−2

) P = 0 P = 1 P = 0 P = 1 P = 0 P = 1 P = 0 P = 1 P = 0

0.013 1.29 0.82 0.52 1.64 0.138 5.4 4.88 0.38 × 103 5.42
0.025 1.72 0.81 0.75 3.16 0.123 10.4 8.34 1.41 × 103 2.67
0.037 2.64 0.86 0.72 4.36 0.047 15.2 4.70 3.01 × 103 0.47
0.046 3.66 0.92 0.64 5.10 0.040 18.7 4.91 4.61 × 103 0.29
0.054 4.88 0.95 0.57 5.82 0.014 23.3 2.06 6.79 × 103 0.06
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TABLE III. 3He on a graphite substrate. The dimensionless
scattering amplitudes Ãσσ ′

f/b, 0 and Landau parameter F a
0 that are the

input into calculating the transport coefficients shown in Table II.

|Ã↑↑
f,0|2 + |Ã↑↓

f,0|2 + |Ã↑↓
b,0|2 F a

0 |Ã↑↓
b,0|2 |Ã↑↑

f,0|2
Density (Å

−2
) P = 0 P = 0 P = 0 P = 1

0.013 1.12 −0.51 0.64 0.35
0.025 1.44 −0.62 0.88 0.68
0.037 1.46 −0.72 0.93 0.79
0.046 0.72 −0.71 0.46 0.78
0.054 0.90 −0.79 0.59 0.76

effective masses at P = 1 shown in Table II. In the limit of
full polarization the effective mass shows only a slow increase
with increasing density. Thus, at full polarization the explicit
increases with density dominate the small increases in the
effective masses.

In Tables IV, V and VI, VII we show analogous results for
3He adsorbed to 3.14 Å and 4.33 Å superfluid 4He films,
respectively. It is important to note that these results are
restricted to a much smaller density range than for 3He on
the second layer of graphite. The reason for this difference
is that in the superfluid 4He environment the 3He undergoes
a transition to a transverse excited state at an areal density

n = 0.036 Å
−2

[33]. The data in Tables IV–VII cover a density
range less than the first three data points in Tables II, III.
Using Tables III, V, and VII, we can compare the Landau
parameter Fa

0 and some of the scattering amplitudes for the
two substrates. Over the same density range Fa

0 is markedly
smaller in magnitude in the mixture film than on graphite.
The denominators for κ and η, |Ã↑↑

f,0|2 + |Ã↑↓
f,0|2 + |Ã↑↓

b,0|2, are
considerably smaller for the mixture films than for graphite.
We also note that the effective masses only increase moderately
with increasing density. However, they are fairly constant over
the density range of interest. As a consequence, we can identify
the density n as the major component driving the increases in
κT ln (2TF /T ) and ηT 2 for P = 0 and P = 1.

On the other hand, for the mixture film in Table IV
DT 2 ln (2TF /T ) follows an irregular pattern with increasing
density. This is primarily due to the drastic variation of |Ã↑↓

b,0|2
as can be seen in column 4 of Table V. This behavior is
due to the fact that Ã

↑↓
b,0 is calculated from Eq. (4.4): Ã

↑↓
b,0 =

Ã
↑↓
f,0 − Ã

↑↑
f,0. Thus a small change in the difference between the

two forward scattering amplitudes can result in a significant
change in the backward scattering amplitude. We note that
in comparing the denominators of the mixture film transport
coefficients |Ã↑↓

b,0|2 � |Ã↑↑
f,0|2 + |Ã↑↓

f,0|2 + |Ã↑↓
b,0|2, and thus we

expect for example that the spin diffusion coefficient for the
mixture films may be the most sensitive quantity with regard
to our use of the lowest order “
 = 0” approximation for
numerical calculations.

In Figs. 5, 6, and 7 we show the polarization dependence
of the thermal conductivity, shear viscosity times temperature
squared, and the spin diffusion coefficient times temperature

squared, respectively, for 3He on graphite at n = 0.0252 Å
−2

,

and 3He on a 4.33 Å 4He film at n = 0.0248 Å
−2

. The data
for κ were calculated at a temperature T = 5 mK which was
chosen to ensure that the inequality T < TF ↓ is obeyed at all
polarizations. The units for κ are different in the figure than in
the table because for this quantity the temperature dependence
is not factorable for 0 < P < 1. The major prediction for this
section then is that κ and η increase dramatically, by roughly
an order of magnitude for 3He on graphite, as P increases
from 0 to 1 for both substrates. The spin diffusion coefficient
goes through a similar large increase from its zero-polarization
value to its maximum value in the region P ≈ 0.74 for both
graphite and 4He, and then vanishes in the full-polarization
limit. D vanishes like (1 − P)3/2 in the limit of full polarization
(see Sec. III C). Thus we predict an increase in D from
zero polarization to its maximum value of 1 ∼ 2 orders of
magnitude.

In a recent interesting development, Kovtun, Son, and
Starinets [34] have conjectured that there is a universal lower
bound to the ratio of the shear viscosity to entropy density:

4π
η/�

s/kB

� 1, (4.7)

where s = S/A, and S is the entropy. The authors describe
the distance from the lower bound as a way to characterize
how close a fluid is to being perfect. They argue that
possible systems that may satisfy the lower bound ought to be
strongly interacting systems that are normally characterized
by a small viscosity (i.e., a small mean-free path). They
suggested that quark-gluon plasmas and ultracold gases at
the unitarity limit are candidates. There is now evidence that
an ultracold Fermi gas nearly satisfies the lower bound [35].

TABLE IV. 3He in a 3.14 layer film of 4He. The zero-polarizationP = 0 and full-polarizationP = 1 thermal conductivity κ , shear viscosity
η, and spin diffusion coefficient D as functions of areal density n with the explicit temperature dependencies factored out. The units are κT

(10−5 ergs s−1); ηT 2 (10−9 g s−1 mK2); DT 2 (cm2 s−1 mK2). For this mixture film mH = 1.56m is the hydrodynamic effective mass [31]. The
values of κ are obtained from (3.34) and (3.36), for η from (3.64) and (3.79), and for D from (3.80), for zero and full polarization, respectively.

m∗/mH εF (K) κT ln (2TF /T ) ηT 2 DT 2 ln (2TF /T )

Density (Å
−2

) P = 0 P = 1 P = 0 P = 1 P = 0 P = 1 P = 0 P = 1 P = 0

0.013 1.31 0.84 0.32 0.99 0.285 0.92 0.098 0.63 1.34
0.016 1.47 0.87 0.36 1.21 0.341 1.24 0.147 1.07 3.33
0.019 1.60 0.88 0.39 1.43 0.398 1.63 0.206 1.69 5.21
0.024 1.70 0.88 0.46 1.78 0.510 2.52 0.330 3.26 1.99
0.029 1.77 0.88 0.53 2.14 0.615 3.66 0.476 5.67 1.07
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TABLE V. 3He in a 3.14 layer film of 4He. The dimensionless scattering amplitudes Ãσσ ′
f/b, 0 and Landau parameter F a

0 that are the input
into calculating the transport coefficients shown in Table IV.

|Ã↑↑
f,0|2 + |Ã↑↓

f,0|2 + |Ã↑↓
b,0|2 F a

0 |Ã↑↓
b,0|2 |Ã↑↑

f,0|2
Density (Å

−2
) P = 0 P = 0 P = 0 P = 1

0.013 0.20 −0.11 0.0098 0.71
0.016 0.16 −0.08 0.0036 0.75
0.019 0.14 −0.07 0.0022 0.76
0.024 0.14 −0.12 0.0063 0.76
0.029 0.14 −0.17 0.0132 0.77

Using the results from Sec. III B we can estimate the value
of this expression for a 3He film. From Fig. 6 we see
that the viscosity is a monotonically increasing function of
polarization. The polarization-dependent entropy density is
given by s/kB = (π/6�

2)(m∗
↑ + m∗

↓)kBT [16]. This entropy
is a monotonically decreasing function of polarization. Thus,
we need only to concern ourselves with the zero-polarization
limit. Using (3.64) we find for the left-hand side of (4.7)

4π
η/�

s/kB

= 9

π2

(m/m∗)2[|Ã↑↑
f,0|2 + |Ã↑↓

f,0|2 + |Ã↑↓
b,0|2

](
TF

T

)3

≈ 0.28

(
TF

T

)3

, (4.8)

where we have used (4.2) to write the transition rates in
terms of the dimensionless scattering amplitudes. The numbers
come from Tables II and III, and so they refer to the second

layer of 3He on graphite at n = 0.025 Å
−2

(TF = 0.74 K). It
is clear from the inverse cubic temperature dependence that
deep in the Fermi-liquid regime the system satisfies the lower
bound. At higher temperatures this expression passes through
1 when T ≈ 0.5 K. This is not that high, and suggests that at
temperatures on the order of hundreds of mK the ratio may not
be very far from 1 for this 3He thin film system.

V. CONCLUSION

We have derived exact expressions for the transport co-
efficients κ and η utilizing methods developed by numerous
groups [6] for application to bulk 3He. We calculated predicted

values for the polarization dependence of κ , η, and D for thin,
degenerate 3He films using previously determined Landau
parameters. The key to performing the principal angular
integration in phase space is the procedure suggested by
Miyake and Mullin [18] for avoiding a finite-temperature
singularity. The Miyake-Mullin approach is discussed in
detail in Sec. II. In that section we derive the polarization-
dependent expression for the quasiparticle lifetime due to
quasiparticle-quasiparticle collisions. We compare that result
with that of a previous derivation of the quasiparticle lifetime
using completely different techniques, and note that they are
identical up to factor of order 1.

The derivation of the transport coefficients in Sec. III
follows the methods developed by Abrikosov and Khalat-
nikov [4] and Sykes and Brooker [12]. The calculation of
κ is very similar to that of the spin diffusion coefficient D

as described by Miyake and Mullin. The collision integral is
reduced to an integral eigenvalue problem whose integrand
depends on both spin-up and spin-down fluctuations. The
system is diagonalized by standard methods, and is reduced
to an independent pair of equations in Sykes-Brooker form.
The temperature dependencies for the transport coefficients
are in agreement with older work at zero polarization by Fu
and Ebner [17]. Further, we find that, unlike spin diffusion,
these dependencies (T ln T for κ and T 2 for η) are not
changed by polarization. The solution for the shear viscosity
is unlike that of any other fermion transport coefficient. The
key physics lies in including the contributions of scattering
from quasiparticles whose momenta differ slightly from their
zero-temperature values but are still allowed by energy and
momentum conservation at nonzero temperature. In Ref. [19]

TABLE VI. 3He in a 4.33 layer film of 4He. The zero-polarization P = 0 and full-polarization P = 1 thermal conductivity κ , shear
viscosity η, and spin diffusion coefficient D as functions of areal density n with the explicit temperature dependencies factored out. The units
are κT (10−5 erg s−1); ηT 2 (10−9 g s−1 mK2); DT 2 (cm2 s−1 mK2). For this mixture film mH = 1.29m is the hydrodynamic effective mass [32].
The values of κ are obtained from (3.34) and (3.36), for η from (3.64) and (3.79), and for D from (3.80), for zero and full polarization
respectively.

m∗/mH εF (K) κT ln (2TF /T ) ηT 2 DT 2 ln (2TF /T )

Density (Å
−2

) P = 0 P = 1 P = 0 P = 1 P = 0 P = 1 P = 0 P = 1 P = 0

0.015 1.22 0.83 0.50 1.46 0.68 2.29 0.28 1.88 1.74
0.019 1.32 0.84 0.56 1.77 0.80 3.03 0.40 3.03 2.05
0.022 1.37 0.84 0.62 2.03 0.93 3.87 0.53 4.46 1.93
0.025 1.40 0.84 0.70 2.34 1.08 5.18 0.72 6.89 1.61
0.028 1.45 0.84 0.76 2.63 1.21 6.40 0.91 9.60 1.59
0.031 1.50 0.84 0.82 2.92 2.17 7.73 1.08 12.9 1.42

165130-16



TRANSPORT IN THIN POLARIZED FERMI-LIQUID FILMS PHYSICAL REVIEW B 92, 165130 (2015)

TABLE VII. 3He in a 4.33 layer film of 4He. The dimensionless
scattering amplitudes Ãσσ ′

f/b, 0 and Landau parameter F a
0 that are the

input into calculating the transport coefficients shown in Table VI.

|Ã↑↑
f,0|2 + |Ã↑↓

f,0|2 + |Ã↑↓
b,0|2 F a

0 |Ã↑↓
b,0|2 |Ã↑↑

f,0|2
Density (Å

−2
) P = 0 P = 0 P = 0 P = 1

0.015 0.23 −0.16 0.03 0.64
0.019 0.21 −0.16 0.02 0.68
0.022 0.21 −0.18 0.03 0.71
0.025 0.22 −0.21 0.04 0.71
0.028 0.22 −0.22 0.04 0.72
0.031 0.22 −0.24 0.04 0.73

Novikov, in the zero-polarization limit, allows all four quasi-
particle momenta to drift from their zero-temperature values.
We introduced a simplified model in which at arbitrary
polarization we fix the incoming quasiparticle momenta at
the zero-temperature values, and allow the outgoing momenta
to vary (see Fig. 3). We find that in lowest order the
viscosity is formally independent of the quasiparticle lifetime
[see Eq. (3.64), for example]. We note however that 1/ν0,
Eq. (3.62), is very similar to τ0. We find at zero polarization, in
agreement with Novikov, that the head-on collisions between
quasiparticles with opposite momenta dominate the scattering
processes; at finite polarization, we find that the backward
scattering between spin-antiparallel quasiparticles takes over
and becomes the dominant process determining the shear
viscosity. The temperature dependence in our final result of
the shear viscosity at zero polarization differs from that of
Novikov because he assumes a logarithmic divergence in the
denominator of the Landau parameters at θ = π , and this gives
an extra factor of ln2 (TF /T ) in his final result for the viscosity.

In Sec. IV we apply these results to a system of thin
3He films both in the second layer on a graphite substrate,
and also in a thin 3He - 4He film mixture. In Table VIII we
gather together the main results from this paper concerning
the temperature dependence of the thermal conductivity and
the shear viscosity, and we have also included the spin diffusion
coefficient results from Miyake and Mullin [18].

The predicted polarization dependence of the transport
coefficients for 3He on the second layer of graphite and also
for the 4.33-Å-thick 4He film is shown in Figs. 5, 6, and 7.
These results show a dramatic increase in the magnitudes of
the coefficients as the polarization increases from zero. We
showed in Sec. III A that for the thermal conductivity in two
dimensions κ is proportional to the quasiparticle lifetime. Fur-

TABLE VIII. The temperature dependencies of the inverse
transport coefficients as a function of polarization. The thermal
conductivity κ and the shear viscosity η are calculated in Sec. III.
The spin diffusion coefficient D is from Ref. [18]. We note that D−1

is undefined at P = 1.

Coefficient P = 0 0 < P � 1

κ−1 T ln T T ln T

η−1 T 2 T 2

D−1 T 2 ln T T 2

FIG. 5. (Color online) The thermal conductivity κ (3.33) as a
function of polarization for 3He on substrates of graphite (solid
line), and a 4.33 Å superfluid 4He film (dashed line). Both results

are at T = 5 mK, and the 3He areal densities are 0.0252 Å
−2

and
0.0248 Å

−2
on graphite and 4He, respectively.

ther, we showed in previous work, see Fig. 7 in Ref. [16], that
the magnitude of the contribution to the quasiparticle lifetime
from the majority spin component decreases dramatically as
a function of increasing polarization. Thus, for the thermal
conductivity a fairly simple qualitative picture emerges of the
role of polarization: increasing P induces an increase in the
quasiparticle lifetime, and thus the transport coefficient. For
very dilute systems this mechanism is basically understood
as the quenching of s-wave scattering with increased P .
However for the shear viscosity such a simple picture does

FIG. 6. (Color online) The shear viscosity η (3.78) times tem-
perature squared as a function of polarization for 3He on substrates
of graphite (solid line), and a 4.33 Å superfluid 4He film (dashed

line). The results are shown for 3He areal densities of 0.0252 Å
−2

and 0.0248 Å
−2

on graphite and 4He, respectively.
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FIG. 7. (Color online) The spin diffusion coefficient D (3.81)
times temperature squared as a function of polarization for 3He on
substrates of graphite (solid line), and a 4.33 Å superfluid 4He
film (dashed line). The results are shown for 3He areal densities of

0.0252 Å
−2

and 0.0248 Å
−2

on graphite and 4He, respectively.

not seem to be relevant if for no other reason than because
the quasiparticle lifetime does not contribute directly to the

transport coefficient. In this case we must consider instead the
complicated dynamical question of the relative importance of
the spin-antiparallel backward scattering to the spin-parallel
head-on scattering as per the discussion in Sec. III B, which
itself is related to the balance of s-wave and p-wave scattering.

In lowest order of temperature the derivation of the
expressions for the transport coefficients is essentially exact.
The calculation of explicit results for 3He films suffers
from the use of the 
 = 0 approximation for the scattering
amplitudes. An improvement in the present results would
be the inclusion of additional Fourier components in the
expressions for the transition probabilities in terms of the
scattering amplitudes; see Eq. (2.16). The approximations used
in the determination of the 3He film Landau parameters from
experimental measurements of the specific heat effective mass
and the spin susceptibility have been discussed in Ref. [16].

At this time to the best of our knowledge there have been no
measurements of any transport coefficient in a thin 3He film. In
addition there have been no measurements at all in a polarized
thin 3He film. These experiments would be very difficult. In
fact the first measurement of zero sound in a thin, unpolarized
3He film was only reported in 2010 by Godfrin, Meschke,
Lauter, Böhm, Krotscheck, and Panholzer [36]. Our Landau
parameters do yield excellent agreement with this zero-sound
measurement. For bulk 3He there has been some work on
the polarization dependence of transport coefficients. A recent
review [37] summarizes the state of the field.
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