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Based on the Green’s function (GF) equation-of-motion formalism, we develop a method to expand the
double-time Green’s function into Taylor series of the parameter λ in the Hamiltonian H = H0 + λH1. Here
H0 is the exactly solvable part and H1 is regarded as the perturbation. To restore the analytical structure of
GF, we use the continued fraction to do resummation for the obtained series. The problem of zero-temperature
divergence is identified and remedied by the self-consistent series expansion. To demonstrate the implementation
of this method, we carry out the weak- as well as the strong-coupling expansion for the Anderson impurity
model to order λ2. Improved result for the local density of states is obtained by self-consistent second-order
strong-coupling expansion and continued fraction resummation.
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I. INTRODUCTION

Green’s function (GF) is widely used in the study of quan-
tum many-body problems in condensed-matter physics [1]. It
is not only a common language to describe the fundamental
physical concepts and processes but also an important tool to
do quantitative calculations for physical observables. Among
all the methods of calculating a GF, expanding it into the power
series of a certain parameter λ is a basic and straightforward
method for the Hamiltonian H = H0 + λH1, provided that
H0 is exactly solvable and its GF obtainable. In cases
where no other reliable results are available for GF, such
a series expansion provides a reference which is accurate
in the limit of small λ. Besides quantitative information,
important qualitative understanding of the system can also
be obtained by analyzing the properties of GF series. Well-
known examples are the Fermi liquid properties of weakly
interacting fermions [2] and the simplification of theory for
lattice fermions in the large spatial dimension limit [3,4].

Various GF series expansion methods have been developed
so far. For a weakly interacting system, the weak-coupling
expansion applies, where the noninteracting part of the
Hamiltonian is chosen as H0 and H1 is the interaction part.
Using Wick’s theorem, interacting GF is expanded in terms of
the interacting vertex and free GF. Standard Feynman diagram
techniques facilitate the representation and calculation of the
series. Various partial summation methods have been devel-
oped diagrammatically, including Hartree-Fock, random phase
approximation, and fluctuation-exchange approximation [5].

In the other limit where the interaction is strong, the strong-
coupling expansion can be considered if the interacting part of
Hamiltonian is exactly solvable. In this case, H0 and H1 denote
the interacting part and the noninteracting part of a given
Hamiltonian, respectively. Although the conventional Wick’s
theorem no longer holds, various diagram techniques have
been developed. Wick-like theorems were established [6–8] for
the standard basis operators [9] (an extension of the Hubbard
operators [10]) to develop diagrammatic expansions for GF. A
more convenient way is the cumulant expansion method [11]
introduced by Metzner. He expands the GF in terms of the
hopping lines and local cumulants [12] with unrestricted
summations. In another elegant approach, the strong-coupling

problem of original fermions is transformed into an effective
weak-coupling problem of the dual fermions through a Grass-
mann Hubbard-Stratonovich transformation [13]. The GF of
the dual fermions and of the original fermions are then obtained
from standard Feynmann diagram technique [14–17]. In both
the weak- and the strong-coupling expansion approaches, it is
necessary to sum partial contributions in the series to infinite
order with a resummation method to restore the analytical
structure of GF [14,18]. If done correctly, such resummation
can significantly extend the validity range of the theory.

In recent years, Monte Carlo (MC) sampling methods have
been used to carry out the series expansion of GFs, either in the
form of determinant calculation [19,20] or the direct diagram
summations [21]. In these methods, usually a large number of
expansion terms can be sampled and summed to give the GF
which is reliable in broad parameter regimes.

In this work, we develop a method for expanding the
double-time GF into power series of a given parameter λ,
based on its equations of motion (EOM). We call this method
EOM series expansion. Compared to the methods summarized
above, this approach is distinctive due to following features.
First, it is universal in the sense that the formalism does not
depend on the concrete form of H0. For any Hamiltonian H0

whose eigenstates and eigenenergies, or GF, can be obtained
exactly, one can always expand the full GF in terms of H1

in a recursive fashion. Second, there is no restriction in the
operators A and B that define the double-time GF G(A|B)ω.
Single-particle as well as many-particle GFs with two time
variables can be obtained in the same general formalism. Third,
the expansion calculation only involves double-time GFs of
H0. The complicated multiple-time integrations in traditional
expansion method are replaced with operator commutator
calculations here. Fourth, in the present framework, the issue of
partial infinite summation and the zero-temperature divergence
problem in the unrenormalized series expansion can be dealt
with by a standard procedure, i.e., by using the continued frac-
tion resummation and the self-consistent expansion scheme.
Fifth, EOM of the residue of a finite order expansion is
given, providing a possible means to estimate the error of
the truncated series and to improve the expansion result.

In this paper, we carry out the EOM expansion of single-
particle GF for the Anderson impurity model. Both the
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weak-coupling expansion to U 2 order and the strong-coupling
expansion to V 2

k order are obtained for single-particle GF.
In this work, we put the emphasis on the strong-coupling
expansion. By comparing the obtained local density of states
(LDOS) with that from the numerical renormalization group
(NRG) method, we evaluate the effect of the bare EOM
expansion and the self-consistent EOM expansion, supple-
mented with different resummation methods. We show that
the self-consistent EOM expansion together with the continued
fraction resummation gives qualitatively correct results which
are improved in several aspects over previous ones.

This paper is organized as follows. In Sec. II, we present
the formal formalisms, including the the double-time GF
EOM series expansion, the resummation methods using self-
energy and continued fraction, and the self-consistent EOM
expansion. In Sec. III, the single-impurity Anderson model
is studied by this method. The weak- and strong-coupling
expansions are carried out to second order, respectively. The
strong-coupling expansion results obtained from different
resummation methods are compared with NRG results. In
Sec. IV, several issues about the method are discussed and
a summary is given.

II. EQUATIONS OF MOTION SERIES EXPANSION
OF DOUBLE-TIME GREEN’S FUNCTIONS

A. Equations of motion series expansion

We start from the EOM of retarded GFs. Let us consider
the following retarded GF defined by two operators A and B

at two times t and t ′, respectively:

Gr [A(t)|B(t ′)] ≡ 1

i
θ (t − t ′)〈[A(t),B(t ′)]±〉. (1)

Here θ (x) is the step function. O(t) = eiHtOe−iH t is the
Heisenberg operator with respect to the Hamiltonian H ;
[X,Y ]± = XY ± YX. The plus sign is for fermion-type GF
and the minus sign for boson-type GF, respectively. 〈O〉 =
Tr(e−βH O)/Tre−βH is the average in thermal equilibrium state
of H . Here � = kB = 1 is used. In this paper, the target of
expansion is the GF defined in Eq. (1) with only two time
variables. We focus on the equilibrium state where the GF
depends only on t − t ′, although the method can be generalized
to the nonequilibrium case. In the equilibrium state, the
Fourier transformation of Gr [A(t)|B(t ′)] will be denoted as
G(A|B)ω+iη,

G(A|B)ω+iη =
∫ ∞

−∞
Gr [A(t)|B(t ′)]ei(ω+iη)(t−t ′)d(t − t ′).

(2)

Here η is an infinitesimal positive number to guarantee the
convergence of integration.

Calculating the derivative of Eq. (1) with respect to t or t ′
and transforming it onto frequency axis, one easily obtains the
EOM for the double-time GF as

ωG(A|B)ω = 〈[A,B]±〉 + G([A,H ]|B)ω

= 〈[A,B]±〉 − G(A|[B,H ])ω. (3)

On the right-hand side of Eq. (3), new operators emerge from
the commutator [A,H ] or [B,H ] and the GFs defined by

them usually involve more particles. When the EOM for these
new GFs are written down, even higher-order operators and
corresponding GFs will be generated. Usually, this heirarchical
EOM cannot close automatically and approximate truncations
have to be introduced to form a closed set of algebraic
equations. In this way, GFs will be expressed explicitly in
terms of ω and some unknown averages. Finally, these averages
will be calculated self-consistently from GFs through the
fluctuation-dissipation theorem,

〈BA〉 = − 1

π

∫ ∞

−∞
ImG(A|B)ω+iη

1

eβω ± 1
dω. (4)

Being flexible and nonperturbative, the above EOM for-
malism has been widely used in the study of quantum
many-body systems since the early works of Bogoliubov [22],
Anderson [23], Hubbard [24], and others. The applications
range from Kondo physics [25] to quantum magnetism [26,27].
However, due to the lack of a universal and systematic
truncation scheme, it is difficult to control the precision of
the resulting GFs. Especially, the analytical structure of GF
may be violated by the truncation. Usually, well-established
truncation schemes are obtained empirically and only apply to
specific problems. Here we will employ the EOM formalism
to obtain a systematic series expansion for the double-time
GFs.

We first discuss the type of Hamiltonian which is exactly
solvable in the context of EOM. For a large class of
Hamiltonians and operators A and B, the hierarchy of EOM
Eq. (3) can form a closed set of algebraic equations. The
GFs appearing in this set can be solved exactly even in
the thermodynamical limit. Such Hamiltonians include, for
example, the noninteracting Hamiltonian of free electrons
on a lattice H0 = ∑

k εkc
†
kck and the Hubbard model in the

atomic limit H0 = U
∑

i ni↑ni↓. The hierarchical EOM natu-
rally close for these Hamitonians. For such exactly solvable

Hamiltonians, the corresponding superoperator ˆ̂L, defined as
ˆ̂LO ≡ [H0,O], has certain symmetries and hence has finite-

dimensional invariant subspaces even in the thermodynamical
limit. G0(A|B)ω can be solved exactly if operators A and B

belong to the subspace.
In general cases where the closure of EOM is not obvious,

EOM of GFs can still be solved exactly if every eigenstate |μ〉
and eigenenergy Eμ of H0 can be obtained, H0|μ〉 = Eμ|μ〉.
In such cases one can construct the standard basis operators
(SBOs) [9] Aαβ ≡ |α〉〈β|. Any operator in the Hilbert space
of H0 can be expanded by SBOs as

A =
∑
αβ

fαβAαβ, B =
∑
αβ

gαβAαβ. (5)

Here fαβ = 〈α|A|β〉 and gαβ = 〈α|B|β〉. The EOM of GFs
defined by SBOs G0(Aαβ |Aμν)ω naturally close and give

G0(Aαβ |Aμν)ω = δβμδαν

〈Aαα〉 ± 〈Aββ〉
ω + Eα − Eβ

, (6)

where 〈Aαα〉 = e−βEα/Z0 and Z0 is the partition func-
tion of H0. G0(A|B)ω is then obtained as G0(A|B)ω =∑

αβ

∑
μν fαβgμνG(Aαβ |Aμν)ω.

Now suppose that the full Hamiltonian is a sum of an exactly
solvable part H0 and a perturbation H1. We add a bookmarking
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factor λ to H1 and the Hamiltonian reads H = H0 + λH1. We
will expand G(A|B)ω into a power series of λ and set λ as
unity afterwards. Formally, the Taylor series expansion of GF
and averages read

G(A|B)ω = G0(A|B)ω + λG1(A|B)ω + · · ·
+ λnGn(A|B)ω + �n(A|B)ω (7)

and

〈O〉 = 〈O〉0 + λ〈O〉1 + · · · + λn〈O〉n + 〈O〉Rn . (8)

Here Gi(A|B)ω and 〈O〉i are the (H1)i-order contributions
to GF and average, respectively. �n(A|B)ω ∼ O(λn+1) and
〈O〉Rn ∼ O(λn+1) are the residues of this expansion up to
order n.

Expanding the GFs and averages in Eq. (3) and comparing
the coefficients of λi on both sides of equations, one gets for
i � 1

ωGi(A|B)ω

= 〈[A,B]±〉i + Gi−1([A,H1]|B)ω + Gi([A,H0]|B)ω

= 〈[A,B]±〉i − Gi−1(A|[B,H1])ω − Gi(A|[B,H0])ω (9)

and for i = 0

ωG0(A|B)ω = 〈[A,B]±〉0 + G0([A,H0]|B)ω

= 〈[A,B]±〉0 − G0(A|[B,H0])ω. (10)

The residue �n(A|B)ω of the n-th order expansion satisfies the
EOM

ω�n(A|B)ω

= 〈[A,B]±〉Rn + Gn([A,H1]|B)ω + �n([A,H ]|B)ω,

= 〈[A,B]±〉Rn − Gn(A|[B,H1])ω − �n(A|[B,H ])ω. (11)

In this formalism, one can choose to use the left-side or the
right-side EOM formula differently for different order i.

To solve the averages involved in the above equations,
expanding Eq. (4) gives

〈BA〉i = − 1

π

∫ ∞

−∞
ImGi(A|B)ω+iη

1

eβω ± 1
dω (12)

for 0 � i � n. The residue 〈O〉Rn is obtained from

〈BA〉Rn = − 1

π

∫ ∞

−∞
Im�n(A|B)ω+iη

1

eβω ± 1
dω. (13)

Since H0 is exactly solvable in the sense discussed above,
the EOM of Gi(A|B)ω in Eq. (9) will close because the series
A, [A,H0], [[A,H0],H0], . . . , generates closed set of operators.
In cases where this is not obvious or too complicated, one
could decompose A and B into SBOs and study the Taylor
series expansion for the GFs defined with SBOs. In any case,
Gi(A|B)ω can be expressed in terms of the lower order GF
Gi−1(A′|B)ω with more complicated operators A′. Repeatedly
employing Eq. (9), one can then reduce Gi−1(A′|B)ω to
Gi−2(A′′|B)ω, and so on. Finally, the GF component of every
order i � 1 can be reduced to the type G0(A|B) with different
operators A. These zeroth-order GFs are exactly solvable.
Therefore, Eq. (9) provides a practical way of calculating
arbitrary order contributions to G(A|B)ω.

The n-th order residue of the expansion �n(A|B)ω is deter-
mined by its EOM Eq. (11) which cannot be solved exactly.
By truncating the hierarchical EOM Eq. (11), one could obtain
an approximate result for �n(A|B)ω. This result could be used
to evaluate or accelerate the convergence of the expansion.

Equation (9) contains 〈[A,B]±〉i , the ith-order contribution
to 〈[A,B]±〉. It must be calculated through Eq. (12), which
leads to a set of algebraic equations for the averages. In the
conventional GF EOM approach with truncation approxima-
tions, neither consistency nor sufficiency is guaranteed for this
set of equations. In the rigorous series expansion presented
here, for each order i, the set of equations is both consistent
and sufficient. That is, a unique solution of the averages at
i-th order is always obtainable. The nth-order residue of the
average 〈[A,B]±〉Rn needs to be calculated self-consistently
using Eq. (13).

B. Resummation methods

Truncating the Taylor series of a GF at a finite order always
produces the problem of causality. This is most easily demon-
strated by Taylor expanding the Lehmann representation of
G(A|B)ω (taking the fermion-type GF as an example)

G(A|B)ω = 1

Z

∑
m,n

e−βEm + e−βEn

ω + Em − En

Xmn. (14)

Here |m〉 and Em are the eigenstate and the eigenenergy of
H , respectively. Z = ∑

m e−βEm is the partition function, and
Xmn = 〈m|A|n〉〈n|B|m〉 is the matrix element. It is seen that
GF has only real simple poles and β appears on the exponent.

We can formally expand Z, Em, and Xmn into power series
of λ to obtain

Z =
∞∑
i=0

λiZi

Em =
∞∑
i=0

λiE(i)
m (15)

Xmn =
∞∑
i=0

λiX(i)
mn.

The Lehmann representation for the ith-order term Gi(A|B)ω
can be obtained by putting these expansions into Eq. (14) and
collecting terms proportional to λi . The first two orders read

G0(A|B)ω = 1∑
m e−βE

(0)
m

∑
m,n

e−βE
(0)
m + e−βE

(0)
n

ω + E
(0)
m − E

(0)
n

X(0)
mn (16)

and

G1(A|B)ω = 1

Z0

∑
m,n

e−βE
(0)
n

[−Z1
Z0

X(0)
mn − βE(1)

n X(0)
mn + X(1)

mn

]
ω + E

(0)
m − E

(0)
n

+ 1

Z0

∑
m,n

e−βE
(0)
m
[−Z1

Z0
X(0)

mn−βE(1)
m X(0)

mn+X(1)
mn

]
ω + E

(0)
m − E

(0)
n

− 1

Z0

∑
m,n

[
e−βE

(0)
m + e−βE

(0)
n

][
E(1)

m − E(1)
n

]
[
ω + E

(0)
m − E

(0)
n

]2 X(0)
mn.

(17)
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Equation (16) shows that G0(A|B)ω has real simple
poles which gives the expected causality of the retarded
GF G0(A|B)ω+iη. However, G1(A|B)ω has real second-order
poles and thus violates the causality. Moreover, some terms in
G1(A|B)ω, including Z1 = −β

∑
m E(1)

m e−βE
(0)
m , have a factor

β which comes from the Taylor expansion of Em in the
Boltzmann factor. Thus G1(A|B)ω will diverge in the zero-
temperature limit unless β factors in different terms cancel. We
call this problem the zero-temperature divergence problem,
which occurs when the ground state of H is unanalytical
at λ = 0. In general, the k-th order term Gk(A|B)ω has
(k + 1)-th-order poles and contains terms with factor βk . As
a result, a truncated series of GF almost always violates the
analytical structure and diverges at zero temperature. In order
to avoid these problems, it is necessary to sum part of the
expansion contributions to infinite order.

In the following, we discuss possible resummation methods
to recover the analytical structure of GF. The zero-temperature
divergence problem will be considered in the next subsection,
invoking the self-consistent EOM expansion. For interacting
electron systems, a conventional practice is to directly expand
the self-energy (SE) up to some finite order and then insert
it into the Dyson equation to produce GF. Suppose we
have obtained the series expansion of the single-particle GF
G(ckσ |c†kσ )ω for a lattice Hamitonian up to order λn,

G(ckσ |c†kσ )ω ≈ G0(ckσ |c†kσ )ω + λG1(ckσ |c†kσ )ω + · · ·
+ λnGn(ckσ |c†kσ )ω. (18)

Here ckσ and c
†
kσ are electron creation and annihilation opera-

tors, respectively. The GF obtained from the SE resummation
is denoted as GSE(ckσ |c†kσ )ω,

GSE(ckσ |c†kσ )ω = 1

G−1
0 (k,ω) − �(ckσ |c†kσ )ω

. (19)

Here G−1
0 (k,ω) = ω + μ − εk is the exact GF of the

noninteracting Hamiltonian H (V = 0). Here V represents
the interaction strength in H . In Eq. (19), we substi-
tute the SE with its formal series truncated at n-th
order �(ckσ |c†kσ )ω ≈ �0(ckσ |c†kσ )ω + λ�1(ckσ |c†kσ )ω + · · · +
λn�n(ckσ |c†kσ )ω. G−1

0 (k,ω) should also be expanded if H (V =
0) depends on λ. Expanding GSE(ckσ |c†kσ )ω into power series of
λ and comparing it with the series of G(ckσ |c†kσ )ω to order λn,
we can fix the expansion terms of SE. GSE(ckσ |c†kσ )ω obtained
in this way is exact up to order λn but contains approximate
terms from λn+1 to λ∞. Note that other equations derived from
the diagramatic resummation, such as the Larkin equation [18],
could also be used to do resummation in a similar way.

In the strong-coupling expansion of the Anderson impurity
model, the SE resummation method has been used to calculate
the impurity GF [28]. The resulting GF violates the causality
and does not obey the sum rule (see below). Similar problems
such as negative spectral function also appear in the weak-
coupling expansions [29]. Inspecting the analytical structure
of SE �(ckσ |c†kσ )ω = c0k + ∑

m cmk/(ω − ωmk) [2], we find
that a truncated series of SE violates the correct analytical
structure and has zero-temperature divergence problem if only
the poles {ωmk} and weights {cmk} contain λ and β. In special

cases where the poles have λi�n contributions only, the SE
expansion to order λn−1 does not produce nonsimple poles
and the causality will be fulfilled. As will be shown below,
this is the case of the weak-coupling expansion to order U 2.
We conclude that, in general, the resummation method from
the truncated bare expansion of SE can guarantee neither the
correct analytical structure nor the correct zero temperature
limit.

To overcome the problem with analytical structure, Pairault
et al. suggested a resummation method based on the continued
fraction (CF) [14,15]. For the single-particle GF G(ckσ |c†kσ )ω,
one can construct a CF of the form

GCF(dσ |d†
σ )ω = a0(λ)

ω + b1(λ) − a1(λ)
ω+b2(λ)− a2(λ)

ω+b3(λ)−···

. (20)

It was proven that for real parameters al(λ) � 0 and real bl(λ)
(l = 1,2, . . . ), the above expression always gives the correct
analytical structure of GF, i.e., it consists of real simple poles.
This can be understood by regarding Eq. (20) as the local GF
of a free semi-infinite chain Hamiltonian. To carry out the CF
resummation, we formally expand the coefficients al(λ) and
bl(λ) (l = 1,2, . . . ) into Taylor series of λ up to λn order and
then compare the obtained GCF(dσ |d†

σ )ω with G(dσ |d†
σ )ω to

order λn to fix the expansion coefficients of al(λ) and bl(λ).
Usually, due to the finite number of poles produced by the
GF expansion, a CF with finite levels is sufficient for this
task. Besides being exact up to order λn, the obtained GF
GCF(dσ |d†

σ )ω is causal. This resummation method was used
in the strong-coupling expansion study of two-dimensional
Hubbard model [14–16].

C. Self-consistent EOM series expansion

The CF resummation method can overcome the causality
problem in the truncated series of GF and recover the correct
analytical structure. However, it still has the problem of
zero-temperature divergence. Using Lehmannn representation,
we have shown that, in general, β factors will appear in
Gi(A|B)ω (i � 1). The CF resummation procedure transmits
these β factors into the parameters al(λ) and bl(λ), leading to an
unphysical shifting of certain poles to infinity as T approaches
zero. Indeed, in the strong-coupling expansion study of a
two-dimensional Hubbard model [14–17], β factors explicitly
appear both in the bare expansion terms of GF and in the
parameters of CF. The validity range of the CF-resummed GF
is thus limited to temperatures higher than some energy scale.
For the Hubbard model, this effect was attributed to the fact that
the intra-Hubbard-band hopping process of electrons involves
the energy scale t/T instead of t/U [17] and cannot be
described accurately by t/U expansion. Generally speaking,
this problem reflects that the ground-state energy or the density
matrix is not expanded on the same footing as the excitation
energies. Inspecting the Lehmann representation of SE shows
that this problem also exists in the SE resummation.

In the bare expansion formalism Eq. (9), the only
place where βi emerges is the component 〈[A,B]±〉i (i �
1). Gi(A|B)ω generally has (i + 1)-th order poles. When
〈[A,B]±〉i (i � 1) is calculated from the same order GF
component using the fluctuation-dissipation theorem, βi will
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be produced through the frequency integration. Therefore, this
problem could be solved if the averages are not calculated order
by order from each Gi(A|B)ω but from the full G(A|B)ω after
its correct analytical structure has been restored. Below, we
propose the self-consistent GF EOM expansion scheme in this
spirit.

We start from the EOM for the full GF Eq. (3). For
simplicity, here we consider the left-side EOM only. The
corresponding formula for the right-side EOM can be de-
rived similarly. We define the renormalized zeroth-order GF
G0(A|B)ω by the EOM

ωG0(A|B)ω = 〈[A,B]±〉 + G0([A,H0]|B)ω. (21)

Unlike in the bare expansion Eq. (10), 〈[A,B]±〉 here is the
thermodynamical average with respect to full Hamiltonian H .
It will be calculated self-consistently from the CF-resummed
GF which has correct analytical structure. Subtracting Eq. (21)
from the the left-side EOM Eq. (3) and defining the
renormalized n-th order residue as �n(A|B)ω ≡ G(A|B)ω −
G0(A|B)ω − G1(A|B)ω − · · · − Gn(A|B)ω, we get the EOM
for the zeroth-order residue �0(A|B)ω as

ω�0(A|B)ω = G0([A,H1]|B)ω + �0([A,H ]|B)ω. (22)

For the next order renormalized GF G1(A|B)ω, we require that
it satisfy the EOM of �0(A|B)ω at the leading order of λ, i.e.,
Eq. (22) with H replaced by H0. We have

ωG1(A|B)ω = G0([A,H1]|B)ω + G1([A,H0]|B)ω. (23)

Similarly, EOM of the residue �1(A|B)ω = �0(A|B)ω −
G1(A|B)ω can be obtained by subtracting Eq. (23) from
Eq. (22). This procedure is carried out repeatedly to produce
EOM of the renormalized GF component for i � 1,

ωGi(A|B)ω = Gi−1([A,H1]|B)ω + Gi([A,H0]|B)ω. (24)

For i = 0, Eq. (21) applies. The n-th-order residue �n(A|B)ω
satisfies the EOM

ω�n(A|B)ω = Gn([A,H1]|B)ω + �n([A,H ]|B)ω. (25)

Series expansion using the right-hand side EOM can be derived
similarly. Note that in this self-consistent series expansion, one
can use either the left-hand side or the right-hand side EOM
formula throughout the derivation but cannot mix them in
different orders. This differs from the bare EOM expansion.

This EOM expansion scheme only involves full averages
〈[A,B]±〉 which need to be calculated self-consistently from
the corresponding full GFs. To be free from the zero-
temperature divergence problem, these GF must have real
simple poles and therefore CF-resummed GF should be used.

A formal solution of the above self-consistent EOM
expansion can be obtained in terms of the Liouville operator
L as

G0(A|B)ω =
〈{

1

ω − L0
A,B

}〉
,

Gi(A|B)ω = Gi−1

(
L1

1

ω − L0
A

∣∣∣∣B
)

ω

(i � 1),

�n(A|B)ω = Gn

(
L1

1

ω − LA

∣∣∣∣B
)

ω

. (26)

Here L0 and L1 are the Liouville operators of H0 and H1,
respectively. They act on any operator Ô as L0Ô = [Ô,H0]
and L1Ô = [Ô,H1].

III. WEAK-COUPLING EXPANSION FOR ANDERSON
IMPURITY MODEL

In this section, we apply the formalism developed above
to the single-impurity Anderson model. This model is one of
the best-studied models for correlated electron systems, due to
its importance in the dilute magnetic impurity problem, in the
quantum dot physics, as well as in the application of dynamical
mean-field theory for Hubbard model. The Hamiltonian of the
single-impurity Anderson model reads

HAim =
∑
kσ

(εkσ − μ)c†kσ ckσ +
∑
kσ

Vkσ (c†kσ dσ + d†
σ ckσ )

+ (εd − μ)
∑

σ

nσ + Un↑n↓. (27)

Here we consider spin-dependent energies and hybridizations
of bath electrons. nσ = d†

σ dσ is the electron number operator
of impurity. The influence of bath to impurity is described
by the hybridization function �σ (ω) = ∑

k V 2
kσ δ(ε − εkσ ).

Throughout this work, we set the chemical potential μ = 0
as the zero point of frequency.

Both the weak- and the strong-coupling expansions for this
model have been obtained before. Here, for demonstration
purposes only, we apply the EOM series expansion method
to derive the weak-coupling expansion for the local GF to U 2

order to recover the well-known results of Yamada [30] at the
same level.

In the weak-coupling expansion, we decompose HAim =
H0 + H1 as

H0 =
∑
kσ

εkσ c
†
kσ ckσ +

∑
kσ

Vkσ (c†kσ dσ + d†
σ ckσ ) +

∑
σ

ε̃dσ nσ

(28)

and

H1 = Un↑n↓ −
∑

σ

ασnσ . (29)

Here ε̃dσ = εd + ασ . ασ is a parameter to be determined by the
principle of convenience. For an example, its value could be
fixed by requiring that the first-order contribution G1(dσ |d†

σ )ω
is zero. In that case, expanding GF into Taylors series of H1

amounts to perturbation around the Hartree-Fock Hamiltonian.
To facilitate comparison, we will apply the bare EOM series

expansion and use the SE resummation. Here the GF is of
fermion type and the anticommutator of operators A and B is
denoted as {A,B}. The zeroth-order GF G0(dσ |d†

σ )ω is easily
solved from its EOM,

G0(dσ |d†
σ )ω = 1

ω − ε̃dσ − �σ (ω)
. (30)

Here �σ (ω) = ∑
k V 2

kσ /(ω − εkσ ).
For i � 1, the EOM for Gi(dσ |d†

σ )ω reads

ωGi(dσ |d†
σ )ω = 〈{dσ ,d†

σ }〉i + Gi−1([dσ ,H1]|d†
σ )ω

+Gi([dσ ,H0]|d†
σ )ω. (31)
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Using 〈1〉i�1 = 0, [dσ ,H0] = ∑
k Vkckσ + ε̃dσ dσ , and

[dσ ,H1] = Unσ̄ dσ − ασdσ , we get

(ω − ε̃dσ )Gi(dσ |d†
σ )ω =

∑
k

VkGi(ckσ |d†
σ )ω − ασGi−1(dσ |d†

σ )ω

+UGi−1(nσ̄ dσ |d†
σ )ω. (32)

We use the left-side EOM for the ith-order new GF
Gi(ckσ |d†

σ )ω to obtain

Gi(ckσ |d†
σ )ω = Vkσ

ω − εkσ

Gi(dσ |d†
σ )ω. (33)

Putting Eq. (33) into Eq. (32), we get

Gi(dσ |d†
σ )ω = G0(dσ |d†

σ )ω[UGi−1(nσ̄ dσ |d†
σ )ω

−ασ Gi−1(dσ |d†
σ )ω]. (34)

For i = 1, this equation involves G0(nσ̄ dσ |d†
σ )ω,

which is easily solved from its right-side EOM as
G0(nσ̄ dσ |d†

σ )ω = 〈nσ̄ 〉0G0(dσ |d†
σ )ω. Equation (34) then

produces

G1(dσ |d†
σ )ω = U 〈nσ̄ 〉0 − ασ

[ω − ε̃dσ − �σ (ω)]2
. (35)

For i = 2, Eq. (34) involves a new GF G1(nσ̄ dσ |d†
σ )ω. After

some calculation, its EOM is solved to produce

G1(nσ̄ dσ |d†
σ )ω = [〈nσ̄ 〉1 + UKσ (ω)]G0(dσ |d†

σ )ω

+〈nσ̄ 〉0[U 〈nσ̄ 〉0 − ασ ]G2
0(dσ |d†

σ )ω. (36)

Details of this calculation is presented in Appendix. Putting
Eqs. (35) and (36) into Eq. (34) we obtain

G2(dσ |d†
σ )ω = U [〈nσ̄ 〉1 + UKσ (ω)]G2

0(dσ |d†
σ )ω

+ [U 〈nσ̄ 〉0 − ασ ]2G3
0(dσ |d†

σ )ω. (37)

The function Kσ (ω) appearing here reads

Kσ (ω) =
∫∫∫ ∞

−∞

ρ0σ̄ (ε1)ρ0σ̄ (ε2)ρ0σ (ε3)

ω + ε1 − ε2 − ε3

×F (ε1,ε2,ε3)dε1dε2dε3, (38)

where ρ0σ (ε) = −1/π ImG0(dσ |d†
σ )ε+iη is the free local den-

sity of states of spin σ and

F (ε1,ε2,ε3) = n(ε3)[n(ε2) − n(ε1)] + n(ε1)[1 − n(ε2)], (39)

with n(ε) = 1/(eβε + 1) being the Fermi-Dirac distribution
function. The unknown averages involved in the above
expressions are 〈nσ̄ 〉0 and 〈nσ̄ 〉1. From

〈nσ̄ 〉i = − 1

π

∫ ∞

−∞
ImGi(dσ̄ |d†

σ̄ )ω+iη

1

eβω + 1
dω. (40)

they are calculated as

〈nσ̄ 〉0 =
∫ ∞

−∞
ρ0σ̄ (ε)n(ε)dε

〈nσ̄ 〉1 = (U 〈nσ 〉0 − ασ̄ )
∫ ∞

−∞

ρ0σ̄ (ε1)ρ0σ̄ (ε2)

ε1 − ε2
(41)

× [n(ε1) − n(ε2)]dε1dε2.

Until now, we have obtained the lowest three orders of GF,
Gi(dσ |d†

σ )ω (i = 0,1,2). To carry out the SE resummation,

we insert the truncated expansion of SE �σ (ω) ≈ �0σ (ω) +
λ�1σ (ω) + λ2�2σ (ω) into the Dyson equation GSE(dσ |d†

σ )ω =
[G−1

0σ (ω) − �σ (ω)]
−1

, expand it into a Taylor series of λ, and
compare the λi term with Gi(dσ̄ |d†

σ̄ )ω (i = 0,1,2). G0σ (ω) =
1/[ω − εd − �σ (ω)] is the noninteracting local GF. The SE is
given as

�0σ (ω) = ασ

�1σ (ω) = G−2
0 (dσ |d†

σ )ωG1(dσ |d†
σ )ω

(42)
�2σ (ω) = G−2

0 (dσ |d†
σ )ωG2(dσ |d†

σ )ω

−G−3
0 (dσ |d†

σ )ωG2
1(dσ |d†

σ )ω.

Now we can choose ασ to simplify the expression. By
assigning ασ = U 〈nσ̄ 〉0, the expansion gets simplified as

G0(dσ |d†
σ )ω = [ω − ε̃dσ − �σ (ω)]−1

G1(dσ |d†
σ )ω = 0 (43)

G2(dσ |d†
σ )ω = G2

0(dσ |d†
σ )ω[U 〈nσ̄ 〉1 + U 2Kσ (ω)].

The corresponding SE reads

�σ (ω) = U [〈nσ̄ 〉0 + 〈nσ̄ 〉1] + U 2Kσ (ω) + O(U 3). (44)

The SE-resummed GF is finally obtained as GSE(dσ |d†
σ )ω =

[G−1
0σ (ω) − �σ (ω)]

−1
. Note that 〈nσ̄ 〉1 has a factor β and may

lead to zero-temperature divergence in SE. Here the causality
problem does not appear since the obtained SE has real simple
poles only. The reason, as analyzed in general in Sec. II B,
is that the poles of SE for the Anderson impurity model
contain terms of the order Ui�3 and expansion to order U 2

does not produce nonsimple poles. In the paramagnetic and
particle-hole symmetric case, 〈nσ̄ 〉0 = 1/2 and 〈nσ̄ 〉1 = 0, the
zero-temperature divergence problem does not appear. The
above expression is equivalent to the Matsubara SE obtained
by Yamada [30],

�σ (iωn) = U

2
+ U 2

∫ β

0
G3

0(τ )eiωnτ dτ

(45)
G0(iωn) = [iωn − �σ (iωn)]−1.

When combined with the dynamical mean-field theory,
the above SE produces the iterative perturbation theory [30]
(IPT) which describes the Mott metal-insulator transition very
well. For the particle-hole symmetric case and paramagnetic
bath, the above bare expansion with SE resummation has
neither causality problem nor a zero-temperature divergence
problem due to 〈nσ 〉 = 1/2. This simplest form of IPT
fails, however, away from particle-hole symmetry or in the
magnetic bath. Extension of the original IPT to such situations
received some research effort [31] in the spirit of interpolation
between various exact limits. Equation (44) reminds us that
the zero-temperature divergence problem may occur in the
bare expansion. The recovery of atomic limit is also difficult
by SE resummation away from particle-hole symmetry. These
problems could be remedied by the self-consistent EOM ex-
pansion supplemented with CF resummation. For the moment,
we leave in-depth discussions of this issue to the future and
focus on the strong-coupling expansion of the GF.
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IV. STRONG-COUPLING EXPANSION FOR ANDERSON
IMPURITY MODEL

In this section, we carry out the strong-coupling expansion
for G(dσ |d†

σ )ω to the order V 2
k . Besides testing the EOM

expansion methods, the obtained formula may also serve as
a useful strong-coupling impurity solver for the dynamical
mean-field theory to describe the antiferromagnetic insulating
phase, for which existing weak-coupling-based theories such
as IPT and the functional renormalization group method [32]
are faced with difficulties.

We investigate the impurity spectral function, electron
occupation, and the double occupancy at the particle-hole
symmetric point both for the paramagnetic and the magnetic
cases. In the paramagnetic case, our results agree with the
direct expansion results [28]. We compare the local density
of states from three different calculation schemes: bare EOM
expansion supplemented with SE resummation, bare EOM
expansion with CF resummation, and the self-consistent
expansion with CF resummation.

To do the strong-coupling expansion, we decompose
HAim = H0 + H1 into

H0 =
∑
kσ

εkσ c
†
kσ ckσ + Un↑n↓ + εd

∑
σ

nσ (46)

and

H1 =
∑
kσ

Vkσ (c†kσ dσ + d†
σ ckσ ). (47)

Obviously, H0 is exactly solvable. Due to the existence of
Un↑n↓ in H0, the hierarchy EOM for the local GF closes
at the second level and it is more convenient to work with
SBO formalism. We denote the eigenstate and eigenenergy of
ĥ0 ≡ Un↑n↓ + εd

∑
σ nσ as |α〉 and Eα , respectively. That is,

ĥ0|α〉 = Eα|α〉. The SBOs {Aαβ} are defined as the projector
operators Aαβ ≡ |α〉〈β|. They satisfy the algebraic relations
AαβAμν = δβμAαν and

∑
α Aαα = 1. The latter plays the role

of the kinematic sum rule [27] and is important for the self-
consistent solution for the averages. H0 is now written as

H0 =
∑
kσ

εkσ c
†
kσ ckσ +

∑
μ

Eμ|μ〉〈μ|. (48)

We express the operator dσ in H1 as dσ = ∑
μν f σ

μνA
σ
μν and

f σ
μν = 〈μ|dσ |ν〉. Here the superscript σ in Aσ

μν denotes that
this SBO, when acting on a state, decreases the number
of spin-σ electrons by 1. It is a Grassmann odd operator.
We use Aμν without the superscript for general SBOs with
unspecified quantum numbers. For Grassmann even (odd) Aαβ ,
its commutator (anticommutator) with ckσ is zero. The SBO
formalism has been used in the study of the Heisenberg model
with large spin [33]. Recently, this formalism is employed to
combine the GF EOM truncation approximation with the exact
diagonalization method to develop a new impurity solver for
the dynamical mean-field theory [34].

A. Bare strong-coupling expansion to V 2
k order

Below, we first carry out the bare EOM series expansion
for G(Aσ

αβ |Aσ†
γ δ)ω. The local single-particle GF is given by

G(dσ |d†
σ )ω = ∑

αβ

∑
γ δ f σ

αβf σ∗
γ δ G(Aσ

αβ |Aσ†
γ δ)ω. The EOM of

the zeroth-order GF reads

ωG0
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= 〈{
Aσ

αβ,A
σ†
γ δ

}〉
0 + G0

([
Aσ

αβ,H0
]∣∣Aσ†

γ δ

)
ω
.

(49)

Using the relations {Aσ
αβ,A

σ†
γ δ} = δβδAαγ + δγαAδβ , 〈Aαβ〉0 =

δαβe−βEα/Z0, and [Aσ
αβ,H0] = (Eβ − Eα)Aσ

αβ , we obtain

G0
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= δαγ δβδ

aα + aβ

ω + Eα − Eβ

. (50)

Here aα = e−βEα/Z0, and Z0 = ∑
μ e−βEμ is the partition

function of H0.
For i � 1, the EOM reads

ωGi

(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= 〈{
Aσ

αβ,A
σ†
γ δ

}〉
i
+ Gi−1

([
Aσ

αβ,H1
]∣∣Aσ†

γ δ

)
ω

+Gi

([
Aσ

αβ,H0
]∣∣Aσ†

γ δ

)
ω
. (51)

To simplify the notation, we expand the anticommutators
involved in [Aσ

αβ,H1] as

{
Aσ

αβ,d
†
σ ′

} =
∑
μν

Mσσ ′
αβ,μνAμν

(52){
Aσ

αβ,dσ ′
} =

∑
μν

Nσσ ′
αβ,μνAμν.

The coefficients Mσσ ′
αβ,μν and Nσσ ′

αβ,μν read

Mσσ ′
αβ,μν = δμαf σ ′∗

νβ + δνβf σ ′∗
αμ

(53)
Nσσ ′

αβ,μν = δμαf σ ′
βν + δνβf σ ′

μα.

Using these definitions, we have
[
Aσ

αβ,H1
] =

∑
kσ ′

∑
μν

Vkσ ′
[
Mσσ ′

αβ,μνAμνckσ ′ − Nσσ ′
αβ,μνc

†
kσ ′Aμν

]
.

(54)

Gi(Aσ
αβ |Aσ†

γ δ)ω is then obtained as

Gi

(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= δβδ〈Aαγ 〉i + δγα〈Aδβ〉i
ω + Eα − Eβ

+
∑
kσ ′

∑
μν

Vkσ ′Mσσ ′
αβ,μν

ω + Eα − Eβ

×Gi−1
(
Aμνckσ ′

∣∣Aσ†
γ δ

)
ω

−
∑
kσ ′

∑
μν

Vkσ ′Nσσ ′
αβ,μν

ω + Eα − Eβ

×Gi−1
(
c
†
kσ ′Aμν

∣∣Aσ†
γ δ

)
ω
. (55)

For i = 1, the above equation involves new GFs
G0(Aμνckσ ′ |Aσ†

γ δ)
ω

and G0(c†kσ ′Aμν |Aσ†
γ δ)

ω
. They are zero

because the impurity and bath are decoupled in H0. Using the
sum rule

∑
μ〈Aμμ〉i = 〈1〉i = δi,0, the self-consistent solution

gives 〈Aαβ〉1 = 0. Therefore we get

G1
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= 0. (56)

In general, Gi(Aσ
αβ |Aσ†

γ δ)ω = 0 for i odd. This is because,
starting from the impurity, an electron has to hop an even
number of times to come back to the impurity and a local
propagator contains only even powers of Vk .
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For i = 2, Eq. (55) has the unknown averages of the
type 〈Aαβ〉2 and new first-order GFs G1(Aμνckσ ′ |Aσ†

γ δ)ω and

G1(c†kσ ′Aμν |Aσ†
γ δ)ω. The former is to be solved self-consistently

with G2(Aμν |Aσ†
γ δ)ω later. For the latter, we can write down

their EOMs and solve them similarly. Note that Aμν here is
a Grassmann-even operator. In this process, new zeroth-order
GFs will be generated. They can be expressed by the known
quantities G0(Aαβ |Aσ†

γ δ)ω and 〈c†kσ ckσ 〉0, using the fact that the
impurity and bath are decoupled in H0. The final results are

G1
(
Aμνckσ ′

∣∣Aσ†
γ δ

)
ω

= −δνδ〈Aμγ ckσ ′ 〉1 + δμγ 〈Aδνckσ ′ 〉1

ω + Eμ − Eν − εkσ ′

+G0(Aγδ|A†
γ δ)ω

Vkσ ′
[
δμγ f σ ′

νδ − Hσ ′
μν,γ δ〈nkσ ′ 〉0

]
ω + Eμ − Eν − εkσ ′

(57)

and

G1
(
c
†
kσ ′Aμν

∣∣Aσ†
γ δ

)
ω

= δνδ〈c†kσ ′Aμγ 〉1 − δμγ 〈c†kσ ′Aδν〉1

ω + Eμ − Eν + εkσ ′

−G0(Aγδ|A†
γ δ)ω

Vkσ ′
[
δνδf

σ ′∗
μγ + Lσ ′

μν,γ δ〈nkσ ′ 〉0
]

ω + Eμ − Eν + εkσ ′
. (58)

In the above equations, the newly introduced coefficients
Lσ

μν,λτ and Hσ
μν,λτ are defined as

[Aμν,d
†
σ ] =

∑
λτ

Lσ
μν,λτAλτ

(59)
[Aμν,dσ ] =

∑
λτ

Hσ
μν,λτAλτ .

Their expressions are

Lσ
μν,λτ = δμλf

σ∗
τν − δντ f

σ∗
μλ

(60)
Hσ

μν,λτ = δμλf
σ
ντ − δντ f

σ
λμ.

The four averages 〈Aμγ ckσ 〉1, 〈Aδνckσ 〉1, 〈c†kσAμγ 〉1, and
〈c†kσAδν〉1 in Eqs. (57) and (58) need to be calculated from the
GFs like G1(ckσ |Aμγ )ω, etc., using the fluctuation-dissipation
theorem. For 〈Aμγ ckσ 〉1, we solve the EOM for G1(ckσ |Aμγ )ω
and get

G1(ckσ |Aμγ )ω = Vkσf σ
γμ(aγ + aμ)

Eγ − Eμ + εkσ

×
[

1

ω − εkσ

− 1

ω + Eγ − Eμ

]
, (61)

which gives

〈Aμγ ckσ 〉1 = Vkσf σ
γμ(aγ + aμ)

Eγ − Eμ + εkσ

[
1

eβεkσ + 1
− 1

eβ(Eμ−Eγ ) + 1

]
.

(62)

Using 〈c†kσAμγ 〉1 = 〈Aγμckσ 〉∗1 and the replacement (μ →
δ,γ → ν), the other three averages can be obtained. To carry

out the k summations in Eq. (55), it useful to introduce the
following intermediate quantity:

�σ
αβ(ω) ≡

∑
k

Vkσ 〈Aαβckσ 〉1

ω − εkσ

= f σ
βα(aα + aβ )

ω + Eβ − Eα

ϕσ
βα(ω), (63)

with

ϕσ
βα(ω) = �σ (ω) − �σ (Eα − Eβ) − �σ (ω) − �σ (Eα − Eβ)

eβ(Eα−Eβ ) + 1
.

(64)

Here the two involved functions are

�σ (ω) =
∫ ∞

−∞

�(ε)

ω − ε
dε

(65)

�σ (ω) =
∫ ∞

−∞

�(ε)

ω − ε

1

eβε + 1
dε.

Likewise, the Hermitian conjugate of Eq. (63) is

∑
k

Vkσ 〈c†kσAαβ〉1

ω − εkσ

= �σ
βα(ω). (66)

With these preparations, we put Eqs. (57) and (58) into
Eq. (55), simplify all the terms, and obtain

G2
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= δβδ〈Aαγ 〉2 + δγα〈Aδβ〉2

ω + Eα − Eβ

+ J σ
αβ,γ δ(ω) + Fσ

αβ,γ δ(ω)

(ω + Eα − Eβ)(ω + Eγ − Eδ)
, (67)

with J σ
αβ,γ δ(ω) and Fσ

αβ,γ δ(ω) given by

J σ
αβ,γ δ(ω) =−

∑
μσ ′

Mσσ ′
αβ,μδf

σ ′
γμ(aμ + aδ)ϕσ ′

γμ(ω + Eμ − Eδ)

+
∑
νσ ′

Mσσ ′
αβ,γ νf

σ ′
νδ (aν + aδ)ϕσ ′

νδ(ω + Eγ − Eν)

−
∑
μσ ′

Nσσ ′
αβ,μδf

σ ′
μγ (aμ + aγ )ϕσ ′

μγ (−ω − Eμ + Eδ)

+
∑
νσ ′

Nσσ ′
αβ,γ νf

σ ′
δν (aν + aδ)ϕσ ′

δν(−ω − Eγ + Eν).

(68)

Fσ
αβ,γ δ(ω)

= (aγ + aδ)
∑
νσ ′

Mσσ ′
αβ,γ νf

σ ′
νδ �σ ′(ω + Eγ − Eν)

− (aγ + aδ)
∑
μσ ′

Nσσ ′
αβ,μδf

σ ′∗
μγ �σ ′(−ω − Eμ + Eδ)

− (aγ + aδ)
∑
μν

∑
σ ′

Mσσ ′
αβ,μνH

σ ′
μν,γ δ�σ ′(ω + Eμ − Eν)

− (aγ + aδ)
∑
μν

∑
σ ′

Nσσ ′
αβ,μνL

σ ′
μν,γ δ�σ ′(−ω − Eμ + Eν).

(69)

Equations (67)–(69) are the results for G2(Aσ
αβ |Aσ†

γ δ)ω, where
J σ

αβ,γ δ(ω) involves ϕσ
αβ(ω) and comes from the averages
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〈c†kσAαβ〉1. Note that in the calculation we have made use of the
Grassmann-odd properties of Aσ

αβ . Therefore these equations

do not apply to GF G(Aαβ |A†
γ δ)ω with arbitrary Aαβ .

Below, we focus on the particle-hole symmetric case and
simplify these equations for numerical calculation. For the
single-impurity Anderson model considered in this paper,
the four eigenstates of the local impurity Hamiltonian ĥ0 ≡
Un↑n↓ − μ

∑
σ nσ are |1〉 = d

†
↑|0〉, |2〉 = d

†
↓|0〉, |3〉 = |0〉,

and |4〉 = d
†
↑d

†
↓|0〉. The corresponding eigenenergies are E1 =

E2 = εd , E3 = 0, and E4 = U + 2εd . There are total 16
SBOs Aαβ (α,β = 1 ∼ 4). The impurity electron annihilation
operator is expanded as d↑ = A31 + A24 and d↓ = A32 − A14,
meaning f

↑
31 = f

↑
24 = 1 and f

↓
32 = −f

↓
14 = 1 and others are

zero. In terms of electron operators, A11 = n↑(1 − n↓), A22 =
(1 − n↑)n↓, A33 = (1 − n↑)(1 − n↓), and A44 = n↓n↑. Their
averages play important role in the T dependence of GFs.

The particle-hole symmetry implies the following condi-
tions:

εd = −U/2
(70)

�σ (−ω) = �σ̄ (ω).

We have E1 = E2 = −U/2 and E3 = E4 = 0 to simplify
Eqs. (50) and (67)–(69). The local GF up to order V 2

k reads
G(dσ |d†

σ )ω ≈ G0(dσ |d†
σ )ω + G2(dσ |d†

σ )ω, with

G0(dσ |d†
σ )ω = 1/2

ω + U/2
+ 1/2

ω − U/2

G2(dσ |d†
σ )ω = Wσ

1 − 1/2

ω + U/2
+ Wσ

2 − 1/2

ω − U/2
+ Wσ

3 (ω)

(ω + U/2)2

+ Wσ
4 (ω)

(ω − U/2)2
+ Wσ

5 (ω)

(ω + U/2)(ω − U/2)
.

(71)

The weights Wσ
i (i = 1 ∼ 5) for spin up are

W
↑
1 = 1

2 + 〈A11〉2 + 〈A33〉2

W
↑
2 = 1

2 + 〈A22〉2 + 〈A44〉2

W
↑
3 (ω) = 1

2 [ϕ↓
14(−ω) − ϕ

↓
32(ω)]

+ 1
2 [�↑(ω) + �↓(ω) − �↓(−ω)]

W
↑
4 (ω) = 1

2 [ϕ↓
14(ω) − ϕ

↓
32(−ω)] + 1

2 [�↑(ω) + �↓(ω)

−�↓(−ω) − �↓(ω) + �↓(−ω)]

W
↑
5 (ω) = 1

2 [−ϕ
↓
14(ω) + ϕ

↓
32(−ω) − ϕ

↓
14(−ω) + ϕ

↓
32(ω)]

+ 1
2 [−�↓(ω) + �↓(−ω)]. (72)

For spin-down,

W
↓
1 = 1

2 + 〈A22〉2 + 〈A33〉2

W
↓
2 = 1

2 + 〈A11〉2 + 〈A44〉2

W
↓
3 (ω) = 1

2 [ϕ↑
24(−ω) − ϕ

↑
31(ω)]

+ 1
2 [�↓(ω) + �↑(ω) − �↑(−ω)]

W
↓
4 (ω) = 1

2 [ϕ↑
24(ω) − ϕ

↑
31(−ω)] + 1

2 [�↓(ω) + �↑(ω)

−�↑(−ω) − �↑(ω) + �↑(−ω)]

W
↑
5 (ω) = − 1

2 [ϕ↑
24(ω) − ϕ

↑
31(−ω) + ϕ

↑
24(−ω) − ϕ

↑
31(ω)]

− 1
2 [�↑(ω) − �↑(−ω)]. (73)

Note that only the averages of diagonal SBOs 〈Aαα〉 are
involved in G(dσ |d†

σ )ω. This is due to the fact that both
d↑ = A31 + A24 and d↓ = A32 − A14 consist of SBOs with
nonoverlap subscripts. It is found that the relation Wσ

3 + Wσ
4 +

Wσ
5 = �σ (ω) holds here. The second condition in Eq. (70)

implies �σ (−ω) = −�σ̄ (ω) and �σ (−ω) = �σ̄ (ω) − �σ̄ (ω)
which can further simplify the expressions for Wσ

i (ω) (i =
3 ∼ 5). Especially, we find Wσ

3 (ω) = Wσ
4 (ω).

Now let us consider the self-consistent determination of the
averages 〈Aαα〉2 (α = 1 ∼ 4) which appear in Wσ

1 and Wσ
2 .

They can be calculated from G2(A31|A†
31)ω, G2(A32|A†

32)ω,
G2(A24|A†

24)ω, and G2(A14|A†
14)ω, respectively. Using Wσ

i

(i = 1 ∼ 5) defined above, these GFs read

G2(A31|A†
31)ω = W

↑
1 − 1/2

ω + U/2
+ W

↑
3 (ω)

(ω + U/2)2

G2(A24|A†
24)ω = W

↑
2 − 1/2

ω − U/2
+ W

↑
4 (ω)

(ω − U/2)2

(74)

G2(A32|A†
32)ω = W

↓
1 − 1/2

ω + U/2
+ W

↓
3 (ω)

(ω + U/2)2

G2(A14|A†
14)ω = W

↓
2 − 1/2

ω − U/2
+ W

↓
4 (ω)

(ω − U/2)2
.

From these GFs, the self-consistent equations for 〈Aαα〉2 (α =
1 ∼ 4) are obtained as

〈A11〉2

eβU/2 + 1
− 〈A33〉2

e−βU/2 + 1
=

〈
W

↑
3 (ω)

(ω + U/2)2

〉

〈A44〉2

e−βU/2 + 1
− 〈A22〉2

eβU/2 + 1
=

〈
W

↑
4 (ω)

(ω − U/2)2

〉

(75)
〈A22〉2

eβU/2 + 1
− 〈A33〉2

e−βU/2 + 1
=

〈
W

↓
3 (ω)

(ω + U/2)2

〉

〈A44〉2

e−βU/2 + 1
− 〈A11〉2

eβU/2 + 1
=

〈
W

↓
4 (ω)

(ω − U/2)2

〉
.

In the above equations, the symbol 〈g(ω)〉 is defined as
〈g(ω)〉 ≡ −1/π

∫ ∞
−∞ Img(ω + iη)1/(eβω + 1)dω. Note that

the four equations in Eq. (75) are not independent. One needs
to supplement the fourth independent equation, i.e.,

〈A11〉2 + 〈A22〉2 + 〈A33〉2 + 〈A44〉2 = 〈1〉2 = 0. (76)

These equations have to be solved numerically except for the
case of paramagnetic bath where analytical solution is given
below. In the limit T = 0, care must be taken in evaluating the
right-hand side of Eq. (77) and solving the equations, because
the diverging β factors in the averages 〈Aαα〉2 (α = 1 ∼ 4)
can make the numerical process unstable. In our numerical
calculation, we isolate the most singular item from the above
equations to stabilize the solution.
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In the paramagnetic phase, �↑(ω) = �↓(ω). One finds
ϕ

↓
14(−ω) = ϕ

↓
32(ω) and ϕ

↑
24(−ω) = ϕ

↑
31(ω). Equations (72)

and (73) give Wσ
1 = Wσ

2 = 1/2, Wσ
3 (ω) = Wσ

4 (ω) = �(ω),
and Wσ

5 (ω) = −�(ω). The self-consistent calculation of Aαα

in Eq. (75) is no longer necessary. We obtain G(dσ |d†
σ )ω =

G0(dσ |d†
σ )ω + G2(dσ |d†

σ )ω + · · · and

G0(dσ |d†
σ )ω = 1/2

ω + U/2
+ 1/2

ω − U/2

G2(dσ |d†
σ )ω = �(ω)

(ω + U/2)2
+ �(ω)

(ω − U/2)2
(77)

− �(ω)

(ω + U/2)(ω − U/2)
.

This recovers the GF obtained by direct expansion in Ref. [28].

B. SE resummation and CF resummation

In this subsection, we do the resummation for the second-
order strong-coupling expansion obtained above. The most
frequently used resummation method is via SE Eq. (19).
Although we have argued that SE resummation cannot solve
the causality or the zero-temperature divergence problem in
general, here we will show the data for comparison. The
second method that we will use is the CF resummation method
Eq. (20), which is guaranteed to be causal but may have the
zero-temperature divergence problem.

For SE resummation, from Eq. (71) we obtain up to order
V 2

k

�0σ (ω) = U/2 + (U/2)2/ω

�1σ (ω) = 0 (78)

�2σ (ω) = G−2
0 (dσ |d†

σ )ωG2(dσ |d†
σ )ω − �σ (ω).

The SE-resummed GF is then obtained by inserting this SE

into the Dyson equation G
SE

(dσ |d†
σ )ω = [G−1

0σ (ω) − �σ (ω)]
−1

.
One gets [28]

GSE(dσ |d†
σ )ω = 1

ω + U/2 − �σ (ω) − �0σ (ω) − �2σ (ω)
.

(79)

To do the CF resummation, we first expand Eq. (71) into
Taylor series of 1/ω. Note that the ω dependence in Wσ

i (ω)
(i = 3,4,5) arises solely from the hybridization function �(ε)
which is proportional to V 2

k . We therefore only expand ω in
the denominators of Eq. (71) and treat Wσ

i (ω) (i = 3,4,5)
as constants. The obtained series is compared with the same
expansion of GCF(dσ |d†

σ )ω in Eq. (20). By requiring that for
every n ∈ [1,∞], ω−n terms in the two GFs agree on the level
of V 2

k , we obtain the expansion of the coefficients a0,a1, . . . ,
and b1,b2, . . . . It turns out that only two levels of fraction are
sufficient to match the GFs up to V 2

k . We get

GCF(dσ |d†
σ )ω = a0

ω + b1 − a1
ω+b2

, (80)

with coefficients

a0 = 1

a1 = (U/2)2

b1 = U

2

(
Wσ

1 − Wσ
2

) − �σ (ω)

b2 = −U

2

(
Wσ

1 − Wσ
2

) − �σ (ω) + 2Wσ
5 (ω). (81)

Here a0 � 0 and a1 � 0 guarantees that GCF(dσ |d†
σ )ω has real

simple poles and is causal. If we also expand ω in Wσ
i (i =

3,4,5) to make the comparison, due to the continuous bath
degrees of freedom, a CF with infinite number of levels will
be required to match Eq. (71) to V 2

k order.
Wσ

1 and Wσ
2 enters the pole position of GSE(dσ |d†

σ )ω and
GCF(dσ |d†

σ )ω, either through �2σ (ω) in Eq. (79) or through b1

and b2 in Eq. (80). Since they contain a β factor, both GFs have
the zero-temperature divergence problem as shown below.

For the paramagnetic bath, SE resummation and CF
resummation give, respectively,

GSE(dσ |d†
σ )ω = 1

ω − �(ω) − (
U
2

)2[ 1
ω

+ 3�(ω)
ω2

] (82)

and

GCF(dσ |d†
σ )ω = 1

ω − �(ω) − (
U
2

)2
/[ω − 3�(ω)]

. (83)

Equation (82) was obtained by a direct expansion method in
Ref. [28] and Eq. (83) was proposed there as an ad hoc remedy
of the causality problem. It is seen that GSE(dσ |d†

σ )ω has a
complex pole, leading to violation of sum rule in the local
spectral function ρSE

σ (ω), as shown below. GCF(dσ |d†
σ )ω has

real simple poles only and it conserves the rum rule. Because
of Wσ

1 = Wσ
2 = 1/2 in the paramagnetic bath, in both results,

the zero-temperature divergence problem does not appear.

C. Self-consistent strong-coupling expansion to V 2
k order

In this subsection, to remove the zero-temperature diver-
gence problem in the bare expansion both with SE and CF
resummation, we calculate G(dσ |d†

σ )ω to order V 2
k using the

self-consistent EOM expansion method.
We split the Anderson impurity model HAim = H0 + H1

as in the bare strong-coupling expansion and use the same
SBO definition. In the following, we use the self-consistent
EOM expansion method described by Eqs. (21) and (24). The
commutators and anticommutators involved in the calculation
are same as in Sec. IV A. We will skip the calculation details
whenever they are the same as before.

The zeroth-order GF can be obtained easily from its EOM
and we obtain

G0
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= δαγ 〈Aδβ〉 + δβδ〈Aαγ 〉
ω + Eα − Eβ

. (84)

Here 〈Aαβ〉 is with respect to the full Hamiltonian HAim.
The first-order renormalized contribution is similar to

Eq. (55) with i = 1 but without the average terms,

G1
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

=
∑
kσ ′

∑
μν

Vkσ ′Mσσ ′
αβ,μν

ω + Eα − Eβ

G0
(
Aμνckσ ′

∣∣Aσ†
γ δ

)
ω

−
∑
kσ ′

∑
μν

Vkσ ′Nσσ ′
αβ,μν

ω + Eα − Eβ

G0
(
c
†
kσ ′Aμν

∣∣Aσ†
γ δ

)
ω
.

(85)
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The new zeroth-order GFs G0(Aμνckσ ′ |Aσ†
γ δ)

ω
and G0(c†kσ ′Aμν |Aσ†

γ δ)
ω

can be solved from their EOM as

G0
(
Aμνckσ ′

∣∣Aσ†
γ δ

)
ω

= −δνδ

〈
Aσ†

γμckσ ′
〉 + δγμ

〈
A

σ†
νδ ckσ ′

〉
ω − εkσ ′ + Eμ − Eν

(86)

and

G0
(
c
†
kσ ′Aμν

∣∣Aσ†
γ δ

)
ω

= δνδ

〈
c
†
kσ ′Aσ

μγ

〉 − δγμ

〈
c
†
kσ ′A

σ
δν

〉
ω + εkσ ′ + Eμ − Eν

. (87)

Differing from the bare EOM expansion method, here the averages like 〈Aσ†
γμckσ ′ 〉 are with respect to the full Hamiltonian HAim

and nonzero in general. Putting Eqs. (86) and (87) into Eq. (85), we obtain the renormalized first order GF as

G1
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

=
∑
kσ ′

∑
μν

Vkσ ′Mσσ ′
αβ,μν

[−δνδ

〈
Aσ†

γμckσ ′
〉 + δγμ

〈
A

σ†
νδ ckσ ′

〉]
(ω + Eα − Eβ)(ω − εkσ ′ + Eμ − Eν)

−
∑
kσ ′

∑
μν

Vkσ ′Nσσ ′
αβ,μν

[
δνδ

〈
c
†
kσ ′Aσ

μγ

〉 − δγμ

〈
c
†
kσ ′A

σ
δν

〉]
(ω + Eα − Eβ)(ω + εkσ ′ + Eμ − Eν)

.

(88)

It contains contributions in all orders of Vkσ through the averages like 〈Aσ†
γμckσ ′ 〉.

The self-consistent EOM for the second order GF is solved in a similar way as the bare one and we obtain

G2
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

=
∑
kσ ′

∑
μν

Vkσ ′Mσσ ′
αβ,μνG0

(
[Aμνckσ ′ ,H1]|Aσ†

γ δ

)
ω

(ω + Eα − Eβ)(ω − εkσ ′ + Eμ − Eν)
−

∑
kσ ′

∑
μν

Vkσ ′Nσσ ′
αβ,μνG0

(
[c†kσ ′Aμν,H1]|Aσ†

γ δ

)
ω

(ω + Eα − Eβ)(ω + εkσ ′ + Eμ − Eν)
. (89)

Two new GFs of zeroth order appear and their EOM can be solved to give

G0
(
[Aμνckσ ′ ,H1]|Aσ†

γ δ

)
ω

= Vkσ ′
∑

τ

f σ ′
ντ

δτδ〈Aμγ 〉 + δμγ 〈Aδτ 〉
ω + Eμ − Eτ

+
∑
pσ ′′

∑
λτ

Vpσ ′′Lσ ′′
μν,λτ 〈(δτδAλγ + δλγ Aδτ )cpσ ′′ckσ ′ 〉
ω + Eλ − Eτ − εpσ ′′ − εkσ ′

−
∑
pσ ′′

∑
λτ

Vpσ ′′Hσ ′′
μν,λτ 〈(δτδAλγ + δλγ Aδτ )c†pσ ′′ckσ ′ 〉
ω + Eλ − Eτ + εpσ ′′ − εkσ ′

(90)

and

G0
(
[c†kσ ′Aμν,H1]|Aσ†

γ δ

)
ω

= −Vkσ ′
∑

τ

f σ ′∗
μτ

δνδ〈Aτγ 〉 + δγ τ 〈Aδν〉
ω + Eτ − Eν

−
∑
pσ ′′

∑
λτ

Vpσ ′′Lσ ′′
μν,λτ 〈c†kσ ′cpσ ′′ (δτδAλγ + δλγ Aδτ )〉
ω + Eλ − Eτ + εkσ ′ − εpσ ′′

+
∑
pσ ′′

∑
λτ

Vpσ ′′Hσ ′′
μν,λτ 〈c†kσ ′c

†
pσ ′′ (δτδAλγ + δλγ Aδτ )〉

ω + Eλ − Eτ + εkσ ′ + εpσ ′′
. (91)

To complete the full self-consistent EOM series expansion, the averages on the right-hand sides of Eqs. (84), (88), (90),
and (91) are to be calculated from the corresponding full GFs, which themselves should be obtained from a finite-order EOM
expansion and CF resummation. In this way, each average is obtained from a causal GF and contains β only on the exponent.
This process has certain degrees of variance because one can choose the expansion order for the GFs used to calculate these
averages. Given that the target GF G(Aσ

αβ |Aσ†
γ δ)ω is produced rigorously up to V 2

k , different ways of calculating the averages
amount to different approximations for the higher-order contributions.

Here, to avoid further complication, we will calculate the averages in the simplest way that keeps G(Aσ
αβ |Aσ†

γ δ)ω exact up to

V 2
k . For this purpose, the averages 〈Aδβ〉 and 〈Aαγ 〉 in Eq. (84) should be calculated from the CF-resummed GF GCF(Aσ

αβ |Aσ†
γ δ)ω.

Since the averages in G1(Aσ
αβ |Aσ†

γ δ)ω of Eq. (88) already has a factor Vk in front of them, they will be calculated accurately to the
Vk level. For example, 〈Aσ†

γμckσ ′ 〉 can be calculated from the approximate GF G(ckσ ′ |Aσ†
γμ)ω ≈ G0(ckσ ′ |Aσ†

γμ)ω + G1(ckσ ′ |Aσ†
γμ)ω.

Using the self-consistent EOM expansion, we obtain

G0
(
ckσ ′

∣∣Aσ†
γμ

)
ω

= 0
(92)

G1
(
ckσ ′

∣∣Aσ†
γμ

)
ω

= Vkσ ′

ω − εkσ ′

∑
αβ

f σ ′
αβG0

(
Aσ ′

αβ

∣∣Aσ†
γμ

)
ω
.

In the second equation above, G0(Aσ ′
αβ |Aσ†

γμ)ω is the renormalized zeroth-order contribution Eq. (84). Note that these contributions
have real simple poles already and the CF resummation is not necessary. After 〈Aσ†

γμckσ ′ 〉 is obtained from the above GF, other

averages in Eq. (88) can be obtained by subscript exchange, such as 〈c†kσ ′Aσ
μγ 〉 = 〈Aσ

γμckσ ′ 〉∗.
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The averages in G2(Aσ
αβ |Aσ†

γ δ)ω of Eqs. (90) and (91) appear on the level of V 2
k . We will use a truncation approximation which

is valid at the order V 0
k ,

〈Aλγ cpσ ′′ckσ ′ 〉 ≈ 〈Aλγ 〉〈cpσ ′′ckσ ′ 〉0 = 0

〈c†pσ ′′ckσ ′Aλγ 〉 ≈ 〈c†pσ ′′ckσ ′ 〉0〈Aλγ 〉. (93)

Similar decoupling approximations are used for other averages in Eq. (90) and those in Eq. (91). Putting these approximations
into Eqs. (90), (91), and Eq. (89), the second-order GF is obtained as

G2
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

=
∑
μν

∑
τσ ′

Mσσ ′
αβ,μνf

σ ′
ντ �σ ′(ω + Eμ − Eν)

ω + Eα − Eβ

G0
(
Aμτ

∣∣Aσ†
γ δ

)
ω

−
∑
μν

∑
λτσ ′

Mσσ ′
αβ,μνH

σ ′
μν,λτ�σ ′(ω + Eμ − Eν)

ω + Eα − Eβ

×G0
(
Aλτ

∣∣Aσ†
γ δ

)
ω

−
∑
μν

∑
τσ ′

Nσσ ′
αβ,μνf

σ ′∗
μτ �σ ′(−ω − Eμ + Eν)

ω + Eα − Eβ

G0
(
Aτν

∣∣Aσ†
γ δ

)
ω

−
∑
μν

∑
λτσ ′

Nσσ ′
αβ,μνL

σ ′
μν,λτ�σ ′(−ω − Eμ + Eν)

ω + Eα − Eβ

G0
(
Aλτ

∣∣Aσ†
γ δ

)
ω
. (94)

At this stage, we will make a further approximation to
G1(Aαβ |Aσ†

γ δ)ω [Eq. (92)] and G2(Aαβ |Aσ†
γ δ)ω [Eq. (94)]. In

these equations, G0(Aαβ |Aσ†
γ δ)ω appears on the level of V 2

k and
we can make simplifications which are exact at Vk = 0,

G0
(
Aαβ

∣∣Aσ†
γ δ

)
ω

= δαγ 〈Aδβ〉 + δβδ〈Aαγ 〉
ω + Eα − Eβ

≈ δαγ δβδ

〈Aαα〉 + 〈Aββ〉
ω + Eα − Eβ

. (95)

That is, among the contributions higher than V 2
k , we neglect the

processes that couple different SBOs and only consider the GFs
that are diagonal on the BSO basis. With this approximation,
Eqs. (92) and (94) are simplified greatly. Putting Eq. (95) into
Eq. (92) and introducing the intermediate quantity similarly as
in Eq. (63), one obtains

�̃σ
αβ(ω) ≡

∑
k

Vkσ 〈Aαβckσ 〉
ω − εkσ

≈ f σ
βα(〈Aαα〉 + 〈Aββ〉)

ω + Eβ − Eα

ϕσ
βα(ω). (96)

ϕσ
βα(ω) is given by Eq. (64). Comparing the obtained

G1(Aσ
αβ |Aσ†

γ δ)ω with the bare EOM expansion result Eqs. (67)–
(69), we obtain

G1
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= J̃ σ
αβ,γ δ(ω)

(ω + Eα − Eβ)(ω + Eγ − Eδ)
. (97)

To simplify G2(Aσ
αβ |Aσ†

γ δ)ω, we put Eq. (95) into Eq. (94)
and obtain

G2
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= F̃ σ
αβ,γ δ(ω)

(ω + Eα − Eβ)(ω + Eγ − Eδ)
. (98)

In the above two equations, J̃ σ
αβ,γ δ(ω) and F̃ σ

αβ,γ δ(ω) share the
expression of J σ

αβ,γ δ(ω) [Eq. (68)] and Fσ
αβ,γ δ(ω) [Eq. (69)]

but with the substitution aα → 〈Aαα〉 (α = 1 ∼ 4). Note that
the renormalized zeroth-order GF G0(Aαβ |Aσ†

γ δ)ω in Eq. (84)

is not changed and the averages there need to be calculated
self-consistently.

Summing up Eqs. (84), (97), and (98), we obtain one of
the simplest self-consistent schemes of EOM expansion for
G(Aσ

αβ |Aσ†
γ δ)ω which is exact to V 2

k ,

G
(
Aσ

αβ

∣∣Aσ†
γ δ

)
ω

= δαγ 〈Aδβ〉 + δβδ〈Aαγ 〉
ω + Eα − Eβ

+ J̃ σ
αβ,γ δ(ω) + F̃ σ

αβ,γ δ(ω)

(ω + Eα − Eβ)(ω + Eγ − Eδ)
. (99)

The averages of the type 〈Aαβ〉 in the above equation needs to
be solved self-consistently from the full GF. Due to the same
reason as discussed in the bare expansion, only averages of
diagonal SBOs 〈Aαα〉 (α = 1 ∼ 4) are involved in G(dσ |d†

σ )ω.
The advantage of the present self-consistent scheme is that it
keeps the form of the bare GF expansion but only renormalizes
the average values of the diagonal SBOs Aαα (α = 1 ∼ 4).

Let us now consider the self-consistent calculation of the
remaining averages 〈Aαα〉 (α = 1 ∼ 4). These averages need
to be calculated from the CF-resummed GFs GCF(A↑

31|A↑†
31)ω,

GCF(A↑
24|A↑†

24)ω, GCF(A↓
32|A↓†

32)ω, and GCF(A↓
14|A↓†

14)ω. Under
the particle-hole symmetry condition Eq. (70), Eq. (99) gives
these GFs before resummation as

G(A↑
31|A↑†

31)ω = W̃
↑
1

ω + U/2
+ W̃

↑
3 (ω)

(ω + U/2)2

G(A↑
24|A↑†

24)ω = W̃
↑
2

ω − U/2
+ W̃

↑
4 (ω)

(ω − U/2)2

(100)

G(A↓
32|A↓†

32)ω = W̃
↓
1

ω + U/2
+ W̃

↓
3 (ω)

(ω + U/2)2

G(A↓
14|A↓†

14)ω = W̃
↓
2

ω − U/2
+ W̃

↓
4 (ω)

(ω − U/2)2
.
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Their CF resummations read

GCF(A↑
31|A↑†

31)ω = (W̃↑
1 )2

(ω + U/2)W̃↑
1 − W̃

↑
3 (ω)

GCF(A↑
24|A↑†

24)ω = (W̃↑
2 )2

(ω − U/2)W̃↑
2 − W̃

↑
4 (ω)

(101)

GCF(A↓
32|A↓†

32)ω = (W̃↓
1 )2

(ω + U/2)W̃↓
1 − W̃

↓
3 (ω)

GCF(A↓
14|A↓†

14)ω = (W̃↓
2 )2

(ω − U/2)W̃↓
2 − W̃

↓
4 (ω)

.

The quantities W̃ σ
i (i = 1 ∼ 5) in the above equations are

given by

W̃
↑
1 = I13

W̃
↑
2 = I24

W̃
↑
3 (ω) = I14ϕ

↓
14(−ω) − I23ϕ

↓
32(ω)

+ I13[�↑(ω) + �↓(ω) − �↓(−ω)]

W̃4
↑
(ω) = I14ϕ

↓
14(ω) − I23ϕ

↓
32(−ω) + I24[�↑(ω) + �↓(ω)

−�↓(−ω) − �↓(ω) + �↓(−ω)]

W̃
↑
5 (ω) =−I14[ϕ↓

14(ω) + ϕ
↓
14(−ω)] +I23[ϕ↓

32(ω) + ϕ
↓
32(−ω)]

+ I24[−�↓(ω) + �↓(−ω) + �↓(ω) − �↓(−ω)]

+ I13[−�↓(ω) + �↓(−ω)] (102)

and

W̃
↓
1 = I23

W̃
↓
2 = I14

W̃
↓
3 (ω) = I24ϕ

↑
24(−ω) − I13ϕ

↑
31(ω)

+ I23[�↓(ω) + �↑(ω) − �↑(−ω)]

W̃
↓
4 (ω) = I24ϕ

↑
24(ω) − I13ϕ

↑
31(−ω) + I14[�↓(ω) + �↑(ω)

−�↑(−ω) − �↑(ω) + �↑(−ω)]

W̃
↓
5 (ω) = I24[ϕ↑

24(ω) + ϕ
↑
24(−ω)] − I13[ϕ↑

31(ω) + ϕ
↑
31(−ω)]

+ I14[�↑(ω) − �↑(−ω) − �↑(ω) + �↑(−ω)]

+ I23[�↑(ω) − �↑(−ω)]. (103)

Here Iαβ = 〈Aαα〉 + 〈Aββ〉. The relation W̃ σ
3 (ω) + W̃ σ

4 (ω) +
W̃ σ

5 (ω) = �σ (ω) still holds. Compared to the same quantities
{Wσ

i } in the bare expansion Eqs. (72) and (73), the 1/2 factor
there is replaced with the averages Iαβ in the renormalized
expansion. The self-consistent equations for the averages
〈Aαα〉 (α = 1 ∼ 4) are completed by

〈Aββ〉 =− 1

π

∫ ∞

−∞
ImGCF

(
Aσ

αβ

∣∣Aσ†
αβ

)
ω+iη

1

eβω + 1
dω (104)

and
∑

β〈Aββ〉 = 1.
With the averages 〈Aαα〉 (α = 1 ∼ 4) obtained, the single-

particle GFs G(d↑|d†
↑)ω = G(A↑

31 + A
↑
24|A↑†

31 + A
↑†
24)ω and

G(d↓|d†
↓)ω = G(A↓

32 − A
↓
14|A↓†

32 − A
↓†
14)ω are calculated as

G(dσ |d†
σ )ω = W̃ σ

1

ω + U/2
+ W̃ σ

2

ω − U/2
+ W̃ σ

3 (ω)

(ω + U/2)2

+ W̃ σ
4 (ω)

(ω − U/2)2
+ W̃ σ

5 (ω)

(ω + U/2)(ω − U/2)
.

(105)

The CF resummation is then carried out to it in the same way
as for the bare GF expansion Eqs. (80) and (81). The result is
denoted as GSC(dσ |d†

σ )ω and we obtain

GSC(dσ |d†
σ )ω = a0

ω + b1 − a1
ω+b2

, (106)

with coefficients

a0 = 1

a1 = (U/2)2

(107)

b1 = U

2

(
W̃ σ

1 − W̃ σ
2

) − �σ (ω)

b2 = −U

2

(
W̃ σ

1 − W̃ σ
2

) − �σ (ω) + 2W̃ σ
5 (ω).

To obtain these results, we have made use of the fact
that W̃ σ

3 − W̃ σ
4 ∝ V 4

k and neglected them when comparing
the 1/ω expansion of G(dσ |d†

σ )ω and GSC(dσ |d†
σ )ω. For the

paramagnetic bath, Eqs. (106) and (107) reduce to Eqs. (80)
and (81) of the bare EOM expansion with CF resummation.
Note that the inverse order: First doing CF resummation
for G(Aαβ |Aσ†

γ δ)ω and then summing them up to produce
G(dσ |d†

σ )ω does not work. This is because some components,
e.g., G(A31|A†

24)ω and G(A24|A†
31)ω, start from 1/ω2 in the

1/ω expansion and the form of CF Eq. (106) does not apply.

D. Numerical results

In this subsection, we present numerical results for the
formula obtained in previous subsections. We compare results
obtained from the three different combinations of second-order
strong-coupling expansions and resummation methods: bare
EOM expansion with SE resummation (bSE), bare EOM
expansion with CF resummation (bCF), and self-consistent
EOM expansion with CF resummation (SC). All these results
are compared with the numerical renormalization group
(NRG) data, which is believed to be accurate at the low- and
small-frequency regimes.

We use a Lorentzian hybridization function for the Ander-
son impurity model,

�σ (ω) = �ω2
c

(ω + σ�ω)2 + ω2
c

. (108)

Here ωc = 1.0 is the energy unit. � is the hybridization
strength. The spin-dependent energy shift �ω is introduced to
simulate the spin-dependent bath energies. σ = +1 for spin up
and σ = −1 for spin down. �ω = 0 gives paramagnetic bath
while �ω �= 0 mimics the spin-polarized bath. In this paper,
we only study the particle-hole symmetric point εd = −U/2.
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FIG. 1. (Color online) The impurity density of states ρ↑(ω for
various U ’s, obtained using (a) bSE; (b) bCF; (c) SC; and
(d) NRG. From top to bottom at the small-ω regime: U =
0.0,0.5,1.0,2.0,3.0,4.0, respectively. Other model parameters are
� = 0.1, �ω = 0.0, εd = −U/2, and T = 0.1. NRG parameters
are � = 3.0, Ms = [256,280], log-Gaussian broadening parameter
B = 0.08, and Nz = 8.

NRG calculation of the LDOS for this Anderson impurity
model is done with the full density matrix formalism [35],
supplemented with the SE trick [36]. To discern the sharp
Hubbard band in the large-U regime, we use a small
broadening parameter and average the LDOSs with Nz = 8
interleaved discretizations [37]. The final LDOS from this
standard procedure is believed to be accurate at least for low
temperature and in small frequencies. The thermodynamical
quantities 〈nσ 〉 and 〈n↑n↓〉 are obtained from the respective
spectral function by frequency integration.

Figure 1 presents LDOS at T = 0.1 and various U ’s for the
paramagnetic bath �ω = 0. The data are for bSE, bCF, SC,
and NRG in Figs. 1(a)–1(d), respectively. Among the three
combinations of expansion-resummation method, LDOS of
bSE has an unphysical dip at ω = 0 for any nonzero U . bCF
and SC give out identical LDOS because SC reduces to bCF
in the particle-hole symmetric and paramagnetic situation.
The height of the central peak obtained from bCF [Fig. 1(b)]
and SC [Fig. 1(c)] decreases gradually with increasing U .
This behavior, being consistent with NRG, is correct for
temperature higher than the Kondo temperature. In all the
obtained data, the Hubbard peak positions are slightly larger
than U/2 due to the hybridization shift. In the large-U limit, all
LDOSs tend to the atomic form ρat (ω) = 1/2δ(ω − U/2) +
1/2δ(ω + U/2) which is expected when U is much larger than
bath bandwidth. Compared to the NRG curve in Fig. 1(d),
qualitative agreement is reached by bCF and SC in both the

FIG. 2. (Color online) (a) The sum rule of impurity density of
states as functions of U in paramagnetic bath; (b) double occupancy
as functions of U . The symbols with guiding lines are bSE (circles),
bCF (up-triangles), SC (squares), and NRG (down-triangles). The
model parameters are � = 0.1, �ω = 0.0, εd = −U/2, and T = 0.1.
NRG parameters are same as in Fig. 1 but without the z average.

small- and large-U limits. The deviation is stronger in the
small-ω regime for intermediate U values 1.0 � U � 3.0.

The good quality of LDOS at small U obtained from strong-
coupling expansion is a consequence of resummation which
effectively extends the validity range of the series expansion.
Actually, all the three expansion-resummation schemes give
exact GF at U = 0. It is observed that for large U values,
the Hubbard peaks are significantly sharper than NRG results.
The neglecting of higher-order contributions of hybridization
may lead to sharper Hubbard peaks, but we believe that the
main reason for this discrepancy is the poor energy resolution
of NRG at high energies. It is known that NRG tends to
overbroaden high energy peaks. Indeed, the height of Hubbard
peaks increases when we use smaller broadening parameter,
larger Nz, and keep more states. Here we have used the
log-Gaussian broadening. Sharp features have been obtained
from Gaussian instead of log-Gaussian broadening and NZ up
to 32 [38].

Figure 2 presents the sum rule and double occupancy
as functions of U at T = 0.1 and �ω = 0.0. In Fig. 2(a),
integration of the LDOS in Fig. 1 are compared. As expected,
LDOS from bSE does not obey the sum rule, while those from
bCF and SC obey it at a precision 10−4. The tiny deviation
is due to numerical error. NRG result fulfills the sum rule at
machine precision.

The double occupancy 〈n↑n↓〉 can be calculated in various
ways. For bSE and bCF, it can be calculated directly from the
single-particle GF as

〈n↑n↓〉 = − 1

π

∫ ∞

−∞
ImG(nσ̄ dσ |d†

σ )ω+iη

1

eβω + 1
dω

(109)

G(nσ̄ dσ |d†
σ )ω = 1

U
G(dσ |d†

σ )ω�σ (ω).
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FIG. 3. (Color online) The impurity density of states ρ↑(ω for
various U ’s in a spin-polarized bath, obtained using (a) bSE, (b) bCF,
(c) SC, and (d) NRG. From top to bottom at the small-ω regime:
U = 0.0,0.5,1.0,2.0,3.0,4.0, respectively. Other model parameters
are � = 0.1, �ω = 0.2, εd = −U/2, and T = 0.1. NRG parameters
are same as in Fig. 1.

One can use either σ =↑ or σ =↓ in the above equations. For
SC, besides the above equation, one could also use 〈n↑n↓〉 =
〈A44〉 since 〈A44〉 has been obtained in the self-consistent
calculation. Different ways of calculating 〈n↑n↓〉 have relative
deviations smaller than 5%. In this paper, for bSE, bCF,
and NRG, we use Eq. (109) with σ =↑ and for SC we use
〈n↑n↓〉 = 〈A44〉.

In Fig. 2(b), the bSE result for the double occupancy is
much smaller than the other three and even slightly negative
near U = 1.0. The results of bCF and SC agree with that of
NRG at quantitative level. Similarly to LDOS, the agreement
of the bCF and SC results with NRG is better in both the small-
and large-U regimes.

In Figs. 3 and 4, we focus on the Anderson impurity model
with a spin-polarized bath �ω = 0.2, all at an intermediate
temperature T = 0.1 = �. In Fig. 3, the U dependence of
LDOS is shown. Since ρ↓(ω) = ρ↑(−ω) is obeyed very
well, here we only show ρ↑(ω). All the LDOS curves have
an asymmetric shape due to spin polarization in the bath.
Similarly to Fig. 1(a), bSE curves have unphysical dips at
ω = 0 for nonzero U . The bCF and SC results are similar but
no longer identical in the case of magnetic bath. It is seen that
the bCF result has more asymmetry in the upper and lower
Hubbard bands than does the SC result.

In Fig. 4(a), the sum rule of LDOSs is analyzed. bSE has
an incorrect sum rule while bCF and SC fulfill it perfectly.
In Fig. 4(b), the impurity electron occupancies 〈n↑〉 (filled
symbols) and 〈n↓〉 (empty symbols) are shown as functions of

FIG. 4. (Color online) Physical quantities as functions of U at
fixed T = 0.1 for the Anderson impurity model with spin-polarized
bath. (a) Sum rule; (b) averages 〈n↑〉 (filled symbols) and 〈n↓〉 (empty
symbols); and (c) double occupancy. The symbols with guiding lines
are bSE (circles), bCF (up-triangles), SC (squares), and NRG (down-
triangles). Model parameters are � = 0.1, �ω = 0.2, εd = −U/2.
NRG parameters are same as Fig. 1 but without the z average.

U . Due to the incorrect sum rule, bSE gives a total occupancy
less than half-filling. In contrast, 〈n↑〉 − 1/2 = −(〈n↓〉 − 1/2)
is preserved in the results of bCF, SC, and NRG. Being
consistent with the larger asymmetry in LDOS, bCF gives
qualitatively larger magnetization M = |〈n↑〉 − 〈n↓〉| than SC.
Compared to NRG data, the bCF result agrees better for
U � 3.0 while the SC result has better behavior for U � 1.0
and all curves are nonmonotonic. The SC result for M is
appreciably smaller than NRG even in U = 5.0.

This quantitative difference can be traced back to the
approximation scheme Eqs. (93) and (95) used for the self-
consistent calculation of averages. In those equations, the
atomic-like truncation scheme weakens the influence of the
asymmetric bath on the impurity and leads to smaller M . In
other words, although the single-particle GF being exact up to
V 2

k , the averages are actually evaluated with respect to a ground
state or a density matrix which is accurate to lower order.
As will be detailed later, the significant error in the large-U
regime hints that not only �/U but also �/T should be small
to guarantee quantitative accuracy in the present expansion
scheme.

In Fig. 4(c), the double occupancies are shown as functions
of U . They look similar to the paramagnetic case while the bCF
result has some drawback in the magnetic case: 〈n↑n↓〉 exceeds
the upper limit 1/4 in the small-U limit. This reflects that
although the single-particle GF obtained from bCF is exact at
U = 0, the two-particle GF is not. When U is small, something
is qualitatively wrong in the higher-order GFs obtained from
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FIG. 5. (Color online) The impurity density of states ρ↑(ω) for
U = 3.0 and various T ’s in a spin-polarized bath, obtained using
(a) bSE, (b) bCF, (c) SC, and (d) NRG. The curves are for T = 0.1
(solid line), T = 0.03 (dashed line), T = 0.01 (dotted line), and T =
0.005 (dash-dot line). Other model parameters are � = 0.1, �ω =
0.2, and εd = −U/2. NRG parameters are same as in Fig. 1.

bCF. In contrast, SC result agrees with NRG much better from
small to large U .

To study the temperature dependence of these results, in
Fig. 5 we show LDOS on log-scale at U = 3.0, �ω = 0.2
for various temperatures. In Fig. 5(a), it is seen that LDOS
from bSE are normal at T = 0.1 (black solid line) (the dip at
ω = 0 still present). As temperature lowers further, the lower
Hubbard band stays around −U/2 while the upper Hubbard
band begins to split and the higher branch moves to larger
values. Figure 5(b) shows the LDOS from bCF. In the limit T =
0, both the lower and the upper Hubbard bands move towards
±∞, with enhanced weight transfer from the lower Hubbard
band to the higher one. Numerically we find that the position of
these peaks is proportional to 1/T in the small-T limit. They
are the unphysical features due to the β factors in the bare
expansion of GF. After either bSE or bCF resummation, these
factors enter the denominator and influence the position of
poles. In the second-order bare EOM expansion Eq. (71), it is
Wσ

1 and Wσ
2 that contain the β factor via 〈Aαα〉2 (α = 1 ∼ 4).

For the paramagnetic bath, Wσ
1 = Wσ

2 = 1/2, the β-dependent
terms cancel and the problem does not appear. For the magnetic
bath, we numerically find that 〈A11〉2 and 〈A22〉2 are propor-
tional to β, while 〈A33〉2 and 〈A44〉2 are almost independent
of β.

The LDOS from SC shown in Fig. 5(c) has very weak
temperature dependence. As T decreases from T = 0.1, the
Hubbard peak positions move weakly and converge to ±1.8.
The weight distribution does not change much down to

FIG. 6. (Color online) Physical quantities as functions of T in
log scale at U = 3.0 for the Anderson impurity model with spin-
polarized bath. (a) Sum rule; (b) averages 〈n↑〉 (filled symbols) and
〈n↓〉 (empty symbols); and (c) double occupancy. The symbols with
guiding lines are bSE (circles), bCF (up-triangles), SC (squares), and
NRG (down-triangles). Model parameters are � = 0.1, �ω = 0.2,
εd = −U/2. NRG parameters are same as in Fig. 1 but without the z

average.

T = 0.005. Compared to the NRG results in Fig. 5(d), SC gives
quantitatively correct peak position of Hubbard bands. What
is missing in the SC results is the central Kondo resonance
at small T and the continuous weight transfer from the lower
Hubbard band to the higher one as T decreases. This is again
a consequence of the atomic-like truncation scheme used in
Eq. (93) and Eq. (95). Overall, in the low-temperature limit,
bSE and bCF have diverging positions of Hubbard peaks, while
SC maintains correct peak position but has weaker spectral
weight transfer compared to NRG. In the high-temperature
regime T � �, the shape of LDOS from bCF and SC agree
well with NRG.

In Fig. 6, the sum rule, electron occupation, and the double
occupancy as functions of T are presented. The sum rule in
Fig. 6(a) shows that bSE result is incorrect for all temperatures,
while bCF and SC results keep at unity, as expected. The
electron occupations in Fig. 5(b) show significant difference
among the four results at low T . The result of bSE does not
fulfill particle-hole symmetry and 〈n↓〉 exceeds unity. bCF and
SC give qualitatively correct results. At the low-temperature
limit, bCF gives out a fully polarized impurity M = 1.0,
consistent with the enhanced asymmetry in LDOS at the low-T
regime. In contrast, SC gives much weaker polarization, with
M saturating to 0.084 at T = 0.005, much smaller than the
NRG value 0.742. At the high-temperature regime T � �,
bCF and SC results agree well with NRG.

Double-occupancy results are shown in Fig. 6(c). The
result from bSE is much smaller than the others and slightly
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negative around T = 0.4. At low temperatures, bCF produces
a qualitatively wrong result: 〈n↑n↓〉 tends to negative for
T � 0.02. In contrast, the SC result decreases with lower T at
high temperatures and reaches a constant 〈n↑n↓〉 = 0.03 for
T � 0.4, close to the NRG value 0.039 at the low-temperature
limit. At high temperatures, the double occupancy from bCF
and SC agree well with that of NRG.

V. DISCUSSION AND SUMMARY

We first discuss the validity range of the expansion schemes.
The quality of an expansion is controlled by the small
parameter λ in H , which in our strong-coupling expansion
for the Anderson impurity model is characterized by the
hybridization strength �. Roughly speaking, the validity range
of the expansion is � much smaller than all the other
energy scales, including the interaction U , temperature T ,
and frequency ω. In Figs. 1–4, T = � = 0.1 is used which
is on the boundary of the validity range, and the results have
significant errors. It is seen from Fig. 6 that the agreement
between the expansion and NRG is good for T � � and
U � �. Figures 3 and 4 shows that the agreement is also
good for small U ∼ 0 due to the U 1-order accuracy acquired
from the CF resummation.

Figures 7(a) and 7(b) demonstrate that � indeed sets in
as the breakdown temperature scale in the present strong-
coupling expansion approaches. Taking the impurity mag-
netization M = 〈n↑〉 − 〈n↓〉 as an example, we show the
difference between the expansion and NRG results Mexp −

FIG. 7. (Color online) [(a) and (b)] The differences between the
impurity magnetization M = |〈n↑〉 − 〈n↓〉| obtained from expansions
and NRG, as functions of T . The parameters are (a) U = 0.05 and (b)
U = 3.0, at �ω = 0.2. The filled symbols are for bCF and the empty
symbols are for SC. Squares, circles, and triangles correspond to
� = 0.03, � = 0.1, and � = 0.3, respectively. (c) Checking Friedel
sum rule at T = 0.005 and � = 0.1 for small U values. Filled symbols
are π 2�↑(0)ρ↑(0) and empty symbols are sin2(πn↑).

MNRG as functions of T/� for U = 0.5 ∼ � in Fig. 7(a) and
for U = 3.0 � � in Fig. 7(b). For � values ranging from 0.03
to 0.3, the magnetization from both bCF and SC approach the
NRG values at T/� � 1 and deviate significantly at T/� �
1. Similar behavior is observed in the double-occupancy curve
(not shown here). In Fig. 7(c), we examine to what extent
the Friedel sum rule π2�σ (0)ρσ (0) = sin2(πnσ ) is satisfied at
low temperatures [35]. It is seen that for both spin-polarized
and unpolarized cases, this relation is fulfilled exactly only
at U = 0. Approximate fulfillment in seen in U < � = 0.1.
Since the Friedel sum rule is a consequence of the Fermi
liquid ground state, it is not expect to be fulfilled well by the
strong-coupling expansion which starts from the local moment
limit. However, due to the CF resummation method used in
our approach, GF acquires the correct U term and the Friedel
sum rule is satisfied in the regime U < �.

To summarize, for T � �, both bCF and SC schemes are
quantitatively accurate in the regime U � � and produce a
smoothly interpolation between large U and small U . For
T � �, accurate results can only be expected for U ∼ 0.
Since the Kondo scale TK is much smaller than � for large U ,
the Kondo resonance cannot be described by the the present
strong-coupling expansion method.

Although the SC scheme improves over bSE and bCF on
the causality and the zero-temperature divergence problems,
the appearance of a breakdown scale � in the temperature
axis is an obvious shortcoming, similar to the strong-coupling
expansion for the Hubbard model [14,15]. Considering that for
the Anderson impurity model much better results are available
from methods such as NRG, QMC, and functional renormal-
ization group method [32], the present expansion schemes
receives only partial success at this stage. However, the results
are amenable to further improvement. The appearance of the
breakdown scale in temperature and the zero-temperature
divergence problem are related to the fact that Vk = 0 is a
singular point in the ground state of H with a spin-polarized
bath. One could avoid these problems by selecting a suitable
H0 whose ground state is continuously connected to that of H .
This issue will be studied in the future.

Below, we discuss some distinct features of the present
expansion method compared to existing theories. The present
approach is universal in the sense that it has no requirement on
the form of H0. For any H0 that is exactly solvable, i.e., either
its GF EOM closes naturally or its eigenstates and eigenvalues
are obtainable, series expansion of GF can be constructed in
a unified framework. H0- and H1-specific diagrammatic rules
are not needed in this method. By using the self-consistent
EOM expansion supplemented with CF resummation, causal-
ity of GF is guaranteed and the zero-temperature divergence
problem removed. The resulting GF has extended range of
validity. Therefore, for those Hamiltonians that both H0 and
H1 are exactly solvable, by expanding GF from the two limits
and comparing the results, one can obtain reliable knowledge
in both the small and large interaction regimes. In principle,
expansion around a cluster or impurity Hamiltonian H0 is also
possible. This could provide a possible alternative derivation of
the cluster perturbation theory [39] or dual fermion dynamical
mean-field theory [40].

The present approach is distinctive in that arbitrary double-
time GF can be expanded in the same framework. In the

165126-17



NING-HUA TONG PHYSICAL REVIEW B 92, 165126 (2015)

traditional methods, calculation of GFs of more than one
particle is a laborious task. Here, due to the universality
of the formalism, multiple-particle GF can be expanded
in a way parallel to one-particle GF. For an example, the
strong-coupling expansion method used in this paper for
calculating the single-particle GF can also be used to produce
the dynamical spin- or charge-correlation functions, with only
slight modification in the formalism.

Next, we discuss possible improvement and extensions
of the present approach. As seen in Figs. 4(b) and 6(b),
〈nσ 〉 from the second-order self-consistent strong-coupling
expansion deviates significantly from the NRG result, even
for U as large as 5.0. Also, the temperature dependence of
M is too weak. Obviously there is much room to improve
the result. To calculate the averages of the type 〈Aσ†

γμckσ ′ 〉 [in
Eq. (88)] and 〈Aλγ cpσ ′′ckσ ′ 〉 [in Eqs. (90) and (91)], instead
of using the atomic-like truncation scheme, we can carry out
the self-consistent EOM expansion for GFs G(ckσ ′ |Aσ†

γμ)ω and
G(ckσ ′ |Aλγ cpσ ′′ )ω to V 2

k order and calculate the averages from
the CF-resummed GFs. Also, a suitable selection of H0 may
help remedy the zero-temperature divergence problem and
remove the breakdown scale in temperature.

A by-product of the present method is the EOM for the
nth-order residue �n(A|B)ω, Eq. (11) or Eq. (25). It could be
employed to produce higher-order modifications to the series
up to Gn(A|B)ω. The EOM of �n(A|B)ω is formally similar
to that of the full GF G(A|B)ω, except that the lower-order
contributions have been singled out. In principle, it can be
solved approximately by standard truncation schemes. This
provide possibilities of constructing new types of truncation
approximations which are exact up to order λn or develop-
ing improved CF resummation formulas with a terminator
[41].

An ideal expansion scheme may be that the resulting GF
is exact simultaneously to V 2

kσU∞ and V ∞
kσ U 2 and hence

accurate in both the weak- and strong-coupling limits. As
it is difficult to realize in traditional perturbation theories,
it is apparently possible to achieve this goal in the EOM
expansion method. One could first carry out the weak-coupling
expansion to obtain G(2)(dσ |d†

σ )ω and then carry out the strong-
coupling expansion to V 2

k order for the residue �2(dσ |d†
σ )ω

by employing its EOM. The resulting GF G(2,2)(dσ |d†
σ )ω

satisfies the above requirement. In practice, however, the
resummation method suitable for such an expansion is yet to be
developed.

Direct multiple-variable expansion is also possible within
the framework of EOM expansion. For an example, the
splitting of Hamiltonian H = H0 + λH1 + θH2 can be used
to generate a GF expansion G(A|B)ω = ∑

i,j λiθjGij (A|B)ω.

If we choose H0 = ∑
kσ εkσ c

†
kσ ckσ , H1 = ∑

kσ Vkσ (c†kσ dσ +
d†

σ ckσ ), and H2 = Un↑n↓ + εd

∑
σ nσ , then the expansion

up to lowest several orders can be obtained with ease. A
subsequent resummation can be used to produce a physically
meaningful result, being correct in both the strong- and
weak-coupling limits. If the full Hamiltonian is treated as a
perturbation, then the self-consistent expansion will produce
a moment expansion of GF, while the bare expansion is
equivalent to the simultaneous moment and high temperature
expansions.

The same strategy of expanding the double-time GF can
be extended straightforwardly to other GFs, if only the EOM
formalism also applies there. For an example, the Keldysh
GF describing the nonequilibrium process can be described
by EOM. The present EOM-based expansion method can be
extended to calculate the the Keldysh GF.

From our demonstrative calculation for the weak- as well as
strong-coupling expansions, it is clear that the present method
also has some shortcomings. For most of the models, it is
difficult to obtain explicit expansion higher than second order
because the complexity of calculation increases very fast with
order. This feature is common in every expansion method
such as the Feynman diagram for weak-coupling expansion,
Metzner’s diagram for strong-coupling expansion [4], or Dai’s
direct expansion [28]. In these techniques, the time ordering
and multiple integrals will complicate the problem. With
the aid of computer algebra, we hope that higher-order GF
could be obtained, similarly to the situation of strong-coupling
expansion [14–16]. Another drawback of the present approach
is that the partition function can only be obtained indirectly by
using the coupling constant integral method. The calculation
of free energy is important for studying thermodynamical
properties and constructing the conserving approximations.
The present EOM-based expansion basically expands the
excitation energies instead of the eigenenergies. We have not
yet found ways to construct the direct expansion of partition
function. Finally, differing from the diagrammatic methods
where a diagram in arbitrary order can be evaluated directly,
in the present method, series can be generated only recursively
and calculated order by order.

In summary, we have presented an EOM-based method for
doing series expansion of double-time GFs. We developed both
the bare expansion and the self-consistent expansion formula.
Using this method, we carried out the second-order weak-
coupling expansion as well as the strong-coupling expansion of
the single-particle GF for the single-impurity Anderson model.
For the weak-coupling expansion, Yamada’s SE up to U 2

is obtained. For the strong-coupling expansion, we obtained
results from three different expansion-resummation schemes:
the bare expansion with SE resummation, bare expansion
with CF resummation, and the self-consistent expansion with
CF resummation. The latter overcomes both the causality
problem and the zero-temperature divergence problem. We
found that although they agree with NRG well in the large-U
and T � � regimes, quantitative accuracy is not achieved
at low temperature. Some features of this new approach and
possible extensions are discussed.
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APPENDIX: CALCULATION OF G1(nσ̄ dσ |d†
σ )ω IN

WEAK-COUPLING EXPANSION

In this Appendix, we calculate G1(nσ̄ dσ |d†
σ )ω using the

bare EOM expansion. Straightforward calculation with the
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right-side EOM gives

G1(nσ̄ dσ |d†
σ )ω = G0(dσ |d†

σ )ω[〈nσ̄ 〉1 + UG0(nσ̄ dσ |nσ̄ d†
σ )ω

−ασ G0(nσ̄ dσ |d†
σ )ω]. (A1)

This equation involves a zeroth-order two-particle GF
G0(nσ̄ dσ |d†

σ )ω and a three-particle GF G0(nσ̄ dσ |nσ̄ d†
σ )ω.

G0(nσ̄ dσ |d†
σ )ω can be solved easily by its right-hand side

EOM as G0(nσ̄ dσ |d†
σ )ω = 〈nσ̄ 〉0G0(dσ |d†

σ )ω. Direct EOM for
the three-particle GF G0(nσ̄ dσ |nσ̄ d†

σ )ω will lead to new three-
particle GFs and the closure of the hierarchy is slow. So we
first diagonalize the unperturbed Hamiltonian H0 [Eq. (28) in
the main text] in the single-particle space and obtain

H0 =
∑
sσ

εsσ a†
sσ asσ . (A2)

Here s is the single-particle orbital index. We assume dσ =∑
s hsσ asσ with

∑
s |hsσ |2 = 1. Using the quasiparticle GF of

H0

G0(asσ |a†
s ′σ ′)ω = δss ′δσσ ′

ω − εsσ

, (A3)

we express G0(dσ |d†
σ ′)ω as

G0(dσ |d†
σ ′)ω =

∑
ss ′

hsσh∗
s ′σ ′G(asσ |a†

s ′σ ′)ω = δσσ ′
∑

s

|hsσ |2
ω − εsσ

.

(A4)

The free LDOS is obtained as ρ0σ (ε) =
−1/π ImG0(dσ |d†

σ )ε+iη = ∑
s |hsσ |2δ(ε − εsσ ).

Similarly, the two-particle GF is expressed in terms of the
quasiparticle GFS as

G0(nσ̄ dσ |nσ̄ d†
σ )ω

=
∑
suv

∑
s ′u′v′

Asuv,s ′u′v′G0(a†
sσ̄ auσ̄ avσ |a†

s ′σ̄ au′σ̄ a
†
v′σ )ω, (A5)

where Asuv,s ′u′v′ = h∗
sσ̄ huσ̄ hvσ h∗

s ′σ̄ hu′σ̄ h∗
v′σ . The EOM for

G0(a†
sσ̄ auσ̄ avσ |a†

s ′σ̄ au′σ̄ a
†
v′σ )ω gives

G0(a†
sσ̄ auσ̄ avσ |a†

s ′σ̄ au′σ̄ a
†
v′σ )ω = 〈{a†

sσ̄ auσ̄ avσ ,a
†
s ′σ̄ au′σ̄ a

†
v′σ }〉0

ω + εsσ̄ − εuσ̄ − εvσ

.

(A6)

The nominator of this GF is easily calculated as
δvv′δus ′δsu′nvσ (nuσ̄ − nsσ̄ ) + δvv′δus ′δsu′nsσ̄ (1 − nuσ̄ ) +
δvv′δusδu′s ′nsσ̄ ns ′σ̄ . Here nsσ = 〈a†

sσ asσ 〉0 = 1/(eβεsσ + 1).
Putting it into Eqs. (A6) and (A5), one obtains

G0(nσ̄ dσ |nσ̄ d†
σ )ω =

∑
suv

|hsσ̄ |2|huσ̄ |2|hvσ |2
ω + εsσ̄ − εuσ̄ − εvσ

× [nvσ (nuσ̄ − nsσ̄ ) + nsσ̄ (1 − nuσ̄ )]

+〈nσ̄ 〉2
0G0(dσ |d†

σ )ω. (A7)

In terms of the free LDOS, this equation is written as

G0(nσ̄ dσ |nσ̄ d†
σ )ω = 〈nσ̄ 〉2

0G0(dσ |d†
σ )ω

+
∫∫∫ ∞

−∞

ρ0σ̄ (ε1)ρ0σ̄ (ε2)ρ0σ (ε3)

ω + ε1 − ε2 − ε3

×F (ε1,ε2,ε3)dε1dε2dε3, (A8)

with F (ε1,ε2,ε3) = nε3 (nε2 − nε1 ) + nε1 (1 − nε2 ). Finally,
putting Eq. (A8) into Eq. (A1) and using the function Kσ (ω)
defined in Eq. (38), we get

G1(nσ̄ dσ |d†
σ )ω = [〈nσ̄ 〉1 + UKσ (ω)]G0(dσ |d†

σ )ω

+〈nσ̄ 〉0[U 〈nσ̄ 〉0 − ασ ]G2
0(dσ |d†

σ )ω. (A9)

This completes the calculation of G1(nσ̄ dσ |d†
σ )ω.
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[38] R. Žitko and Th. Pruschke, Phys. Rev. B 79, 085106 (2009).
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