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Holstein-Hubbard model at half filling: A static auxiliary field study
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We study the Holstein-Hubbard model at half filling to explore the ordered phases such as the charge density
wave and antiferromagnet. The Coulomb interaction is rewritten in terms of auxiliary fields. By treating the
auxiliary fields and phonons as classical, we obtain real-space features of the system and transition between the
phases from weak to strong coupling. When both interactions are weak, mutual competition between them leads
to a metallic phase in an otherwise insulator-dominated phase diagram. Spatial correlations induced by thermal
fluctuations lead to pseudogap features at intermediate range of coupling.
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I. INTRODUCTION

Several materials, notably transition metal oxides [1],
have strong Coulomb interactions among their constituent
electrons [2], as well as strong coupling between electrons
and the underlying lattice [3]. Interplay of such competing
many-body interactions often leads to the emergence of effec-
tive energy scales and various broken-symmetry phases and
transitions among them, giving rise to significant changes in
their low-energy behavior [4,5]. Understanding the combined
effect of these two is a challenging problem and there has been
some remarkable progress in the last couple of decades. Some
of the systems that are known to have both these interactions
playing a role include high-Tc superconducting cuprates [6–9],
alkali-doped fullerides [10–12], bismuthates [13,14], and most
notably doped manganites [15,16]. In cuprates [6,17], kinks
observed in ARPES are believed to be features arising from
strong electron-phonon coupling which also give rise to promi-
nent features in inelastic neutron scattering and tunneling. The
system also has strong electron-electron interactions as evi-
denced by the Mott-insulating state of the parent compound. In
fullerides, an antiferromagnetic phase stabilized by Coulomb
interactions evolves to an s-wave superconducting state and
it is believed that phonon effects are likely to be present. In
doped bismuthates, a charge density wave [18] transforms
to an s-wave superconducting state upon doping; valence
skipping arising due to Coulomb interactions and coupling
of charge carriers to breathing-mode phonons are believed to
be responsible for the behavior. Manganites [19–21] present
the most compelling case where orbitally degenerate electrons
experience strong Mott-Hubbard interactions and are also
coupled to octahedral symmetry lifting Jahn-Teller phonon
modes. It is being realized that the conventional way of
treating only one of the interactions is inadequate for a proper
understanding of these materials.

The Holstein-Hubbard model [22–35] is the simplest
starting point to theoretically explore the combined effect
of these two interactions. It describes a single-band electron
coupled to an Einstein phonon mode. The Coulomb interaction
is modeled by an on-site Hubbard term capturing the energy
cost when two electrons of opposite spins are present at a
given site. In real systems, this model could be an oversim-
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plification. There could be multiple orbitals relevant [36] as
in manganites, leading to inter- and intra-Coulomb matrix
elements. There could also be multiple phonon modes involved
as happens in Jahn-Teller systems [37]. However, general
features, leaving out specifics such as orbital ordering, would
be very well captured by the simplest model itself. For
example, on a two-dimensional square lattice at half filling,
the Hubbard interaction is expected to give rise to a weak-
coupling spin density wave transforming to a local-moment
antiferromagnetic Mott-Hubbard insulator (MHI) at strong
coupling accompanied by a metal-insulator transition at finite
temperatures [38,39]. On the contrary, the Holstein interaction
promotes coexisting charge density wave and superconducting
ground states, if phonon dynamics is retained. However, for
static phonons, it is expected that a weak-coupling charge den-
sity wave would crossover to a bipolaronic insulator at strong
coupling. Obviously, these phases will compete strongly when
both interactions are present. Motivated by this, there have
been several studies in recent years. These include analysis
of various aspects of the problem using Migdal-Eliashberg
theory [26], quantum Monte Carlo (QMC) [26,40], exact
diagonalization [41,42], variational treatments [43] such as the
Gutzwiller approximation [44] for correlation, and dynamic
mean field theory (DMFT) [24,27,45–49]. In particular, Bauer
and Hewson [27] studied the ground state of the model at half
filling using DMFT [29,50–53] in conjunction with numerical
renormalization group (NRG) [54,55]. A recent study [24]
using dynamical mean field theory with continuous-time quan-
tum Monte Carlo as an impurity solver has brought out several
interesting features. These include strong renormalization of
superconducting Tc and the emergence of a paramagnetic
metallic phase in the weak-coupling limit. While DMFT
is by far one of the most reliable tools to study strongly
correlated systems, it has certain limitations. It is exact in
infinite dimensions or when coordination number is large;
however the theory being a local one does not capture the full
real-space features. If the system has geometrical constraints
or frustration, a local theory will not be able to shed light on
features intrinsic to them. It is also not possible to include
disorder in any meaningful way since crucial features of
interference cannot be captured in a single-site theory. Some
new techniques are needed to overcome these problems and
complement DMFT in the cases mentioned above. While
such methods too will have their own limitations and range
of applicability, they may be able to explore systems that
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DMFT cannot handle, especially when they are benchmarked
in known cases. We use such a method to explore the problem
at hand.

The method [38,39,56–61] includes rewriting the quartic
fermion interaction in terms of auxiliary fields corresponding
to charge and spin degrees of freedom. However, the resulting
problem is still a many-body one, albeit with new fields. To
simplify matters, we concentrate on the static part of these
fields [60,61] and also assume that the phonons are static.
This results in a problem of a single-band electron moving
in the background of three classical fields: the charge and
magnetization auxiliary fields and lattice displacements. At
any temperature, the statistically significant configurations of
classical fields can be sampled employing a Monte Carlo (MC)
procedure [7,62]. The electron problem can be solved by exact
diagonalization. The method captures both weak and strong
coupling regimes as described in Sec. III.

We find that when only the Hubbard interaction is present,
the system evolves from a Slater [63] to a Mott insulator
(MI) [1] with nonmonotonic variation of the Néel temperature.
When only the lattice coupling is present, it transforms from
a weak-coupling charge density wave [18] to a bipolaronic
insulator at strong coupling. When both are present, a critical
line separates the two phases. At finite temperatures, the
disordered phase appears to be metallic at weak coupling,
but insulating at strong coupling. However, at intermediate
coupling significant pseudogap features appear [64] in the
spectral function that modifies response of the electronic
system such as optical transport in a significant way.

The paper is organized as follows. In Sec. II, we describe
the model in detail and the method employed. Section III is
devoted to benchmarking with previous studies when only one
of the interactions is present. In the next section, we give the
ground-state (low temperature) phase diagram of the model
resulting from the present study, followed by a detailed finite-
temperature analysis of the electronic properties. Finally we
conclude, describing the limitations of the method, advantages
it has, and spell out future plans.

II. MODEL AND THE STATIC AUXILIARY FIELD
METHOD

As mentioned earlier, we look at the simplest model of a
one-band electronic model coupled to a single-mode Einstein
phonon with the Coulomb interaction assumed to be local on
a two-dimensional square lattice. The Hamiltonian is given by

H = Htb + HHubbard + Hel−ph + Hph,

Htb = −t
∑
〈ij〉,σ

c
†
iσ cjσ + H.c.,

HHubbard = U
∑

i

ni↑ni↓, (2.1)

Hph =
∑

i

p2

2m
+ K

2

∑
i

Q2,

Hel−ph = g
∑

i

niQi .

Here Htb is the kinetic energy of the electronic system with t

being the hopping parameter, ci being an electron destruction
operator at site i, and 〈ij 〉 representing the nearest neighbors
j of site i. U is the on-site Hubbard interaction and g is the
Holstein electron-phonon coupling. Hph is the Hamiltonian
for the Einstein phonon with frequency ω = √

K/m. Since
we are interested in half filling 〈ni〉 = 1. Since the classical
single-site Holstein Hamiltonian has a polaronic minimum
with a distortion ρ = (g/K), and polaronic binding energy
Epol = −(g2/2K), we scale the phonon coordinate Q by
ρ and phonon energies by |Epol|. This results in a single
dimensionless parameter (scaled in terms of energy unit t)
for the phonon part of the Hamiltonian which we denote
as V . From now on, we denote the dimensionless Hubbard
interaction (in units of t) as U . We shall explore the physics of
this model as functions of these two dimensionless parameters.

To simplify this many-body problem, we perform a
Hubbard-Stratanovich (HS) [56,57] transformation of the
quartic interaction term by introducing two auxiliary fields,
one each for the charge and magnetization sectors. The
scalar-valued charge auxiliary field at each site is φi(τ ) and
the vector-valued magnetization auxiliary field is mi(τ ). Since
ni↑ni↓ = n2

i /4 − (si · mi)2, where si = 1
2

∑
α,β c

†
iα �σαβciβ , we

can write

eUni↑ni↓ =
∫

dφidmi

4π2U
exp

(
φ2

i

U
+ iφini + m2

i

U
− 2mi · si

)
.

(2.2)
This results in a quadratic fermion problem in which

fermions move around in a (quantum-mechanical, time-
dependent) background of the two auxiliary fields and the
phonon field which is computationally, still, a challenging
problem. The partitions function is given by

Z =
∫


i

dc
†
i dcidφidmi

4π2U
dQi exp

(
−

∫ β

0
dτL(τ )

)
,

L(τ ) =
∑
i,σ

c
†
iσ (τ )∂τ ciσ (τ ) − t

∑
〈ij〉,σ

c
†
iσ cjσ

+Lcl(φi(τ ),mi(τ )) + Lph,

Lcl =
∑

i

[
φ2

i

U
+ iφini + m2

i

U
− 2mi · si

]
, (2.3)

where Lph is the phonon Lagrangian.
We make the following approximations. We assume that

all three background fields are classical and hence neglect
their time dependence. We retain their spatial dependence
and do a thermal averaging of their configurations at every
temperature numerically. We limit ourselves to half filling,
i.e., one electron per site, in this paper. In this spirit, we make
a saddle-point approximation for the static charge field, i.e.,
−iφi → −i〈φ〉 = (U/2)〈ni〉 = U/2, and this is taken to be
site independent. Upon rescaling mi → (U/2)mi , the resulting
Hamiltonian reads [38,61]

Heff = −t
∑
〈ij〉,σ

c
†
iσ cjσ − μeffN − U

2

∑
i

mi · �σi

+ U

4

∑
i

m2
i + V

∑
i

niQi + V
∑

i

Q2
i , (2.4)
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where μeff = μ − U/2 with the partition function being given
by

Z =
∫

DmDQD[c†,c] exp(−βHeff). (2.5)

For a given configuration of Qi and mi , the Hamiltonian
(quadratic in fermions) needs to be diagonalized just once.
However, one needs to sample most probable configurations
of both Qi and mi at every temperature and they have to be
determined from corresponding distributions:

P (Qi) =
∫
DmD[c†,c]e−βHeff∫

DmDQD[c†,c]e−βHeff
, (2.6)

P (mi) =
∫
DQD[c†,c]e−βHeff∫

DmDQD[c†,c]e−βHeff
. (2.7)

While it appears that the neglect of the time-dependent
effects reduces this method to unrestricted Hartree-Fock (HF)
for the ground state, it retains the full classical thermal fluctu-
ations in an unbiased way which leads to significant changes
from HF results at finite temperature and smoothly interpolates
between known limits at weak and strong coupling.

The probability distribution functions appearing above
are not exactly calculable since they involve tracing over
fermions and integrating over all static configurations of the
classical fields. We generate the equilibrium configurations
for the classical field self-consistently using a Monte Carlo
method [19]. This is achieved by starting with a given set
of configurations, and attempting an update which requires
diagonalizing the fermion Hamiltonian and generating most
probable configurations using the standard MC method.
However, this severely restricts the system size of the problem,
even though the fermionic part is quadratic. To explore higher
system sizes, we use a traveling cluster algorithm [62], in
which a small cluster around the reference site is diagonlized
and energy cost evaluated for MC update. During the MC
procedure, as the reference site keeps moving on the lattice,
so does the cluster. The results presented in this paper employ
a cluster size of 8 × 8 and the largest system size used is
32 × 32. Once the system reaches equilibrium, we evaluate
thermal averages of structure factor for charge density and
magnetization:

N (q) = 1

N2

∑
ij

〈ninj 〉eiq·(ri−rj ), (2.8)

S(q) = 1

N2

∑
ij

〈mi · mj 〉eiq·(ri−rj ). (2.9)

Spectral and transport properties for the fermion system have
also been evaluated in thermal equilibrium which is described
in Sec. V.

III. EXPLORING THE HUBBARD AND HOLSTEIN
PHYSICS

In this section, we present the phase diagram of the model
for the individual cases when either the Holstein term is
absent (the Hubbard model) or the Hubbard term is absent
(the Holstein model). Both these problems have been studied
extensively in the past and it will help us benchmark our results.

When the Holstein term is absent, the model reduces to
a single-band Hubbard model on a two-dimensional square
lattice at half filling. This does not have a metallic ground
state [39,58,64] for any nonzero value of U and has long-range
antiferromagnetic insulating (AFI) order in the ground state.
For small U , a Slater instability results due to nesting of the
Fermi surface and the system is a spin density wave with a gap
in the spectrum. For large U , the physics of superexchange
takes over, due to the “no double occupancy constraint” and
the resulting kinetic energy reduction due to virtual hopping.
The system is a Mott-Hubbard insulator with local moments
present whose low-energy properties are governed by the
antiferromagnetic Heisenberg model. The magnetic transitions
resulting from these two behaviors have very different U

dependence. At small U the TN scales with U as expected
in an unrestricted HF treatment and results in a paramagnetic
metallic phase (PM) above TN due to the closing of the Slater
gap. However, at large U , TN ∼ (1/U ) due to Mott physics and
results in a paramagnetic insulator (PI). The present method
captures both these behaviors very well. The finite-temperature
phase diagram also looks qualitatively different from the HF
phenomenology. While for small U , the Slater gap closes at
TN , there is a pseudogap (PG) state that appears at intermediate
values which crosses over to a paramagnetic Mott-Hubbard
insulating state at large U . The paramagnetic state has strong
AF fluctuations, especially in the intermediate range of the
coupling constant, which results in pseudogap features in the
spectral function.

We now consider the case when the Hubbard term is
absent, resulting in the half-filled Holstein model on a two-
dimensional square lattice. This model again does not have
a metallic ground state for any nonzero V . For small V ,
there is a Peierls instability leading to a charge density wave
due to nesting, with a gap in the spectrum, which we call a
charge-ordered insulator (COI). The charge modulation occurs
at a wave vector (π,π ). At finite temperatures, the gap shrinks
and vanishes at TCDW above which the system is a nonmagnetic
metal (NMM) with passive spin degrees of freedom. As V

increases, the ground state of the system evolves through
this charge-ordered state resulting in a bipolaronic insulator
(BPI) at very large V . This can be understood due to a
mechanism similar to superexchange for the spins. Since U

is absent, there is no energy cost for double occupancy and a
bipolaronic state lowers the energy through virtual fluctuations
of charge. In this limit the physics can be described using
a nearest-neighbor-interaction model, i.e., H = α

∑
〈ij〉 ninj ,

where α ∼ (1/V ) and hence the charge-ordering temperature
goes as (1/V ). At intermediate values of V , a pseudogap phase
intervenes which has spectral and transport features similar to
the one previously mentioned. The finite-temperature, large-V
phase is insulating with charges remaining as bipolarons, but
losing their long-range order. The spin degrees of freedom
are passive in the entire phase diagram and the magnetization
vanishes. We give the two phase diagrams in the U-T and V-T
planes in Fig. 1.

In passing, we wish to point out that the above results
are indeed not exactly what is expected in two dimensions
since there cannot be any finite-temperature transitions. These
results should be taken as suggestive of what would happen
in higher dimensions or as crossover scales where correlation
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FIG. 1. (Color online) (a) The phase diagram of the Hubbard
model on a two-dimensional square lattice at half filling. AFI,
PM, PI, PG represent antiferromagnetic insulator, paramagnetic
metal, paramagnetic insulator, and pseudogap phases. (b) The phase
diagram of the Holstein model on a two-dimensional square lattice
at half filling. COI, NMM represent charge-ordered insulator and
nonmagnetic metal.

lengths increase rapidly. (See the concluding section.) Further,
we characterize the pseudogap phase as one in which the
density of states does not have any perceptible hard gap, but
has a dip at the chemical potential, suggesting a dramatic
decrease of the low-energy spectral weight. There is no real
phase transition occurring here. It should be thought of as a
crossover to a region where the density of state appears quite
different from that of an insulator with a hard gap.

IV. GROUND-STATE PROPERTIES AND PHASE
TRANSITIONS OF THE HOLSTEIN-HUBBARD MODEL

Having clarified the trends that one obtains for the Hubbard
and Holstein interactions separately, we now proceed to
discuss the results for the full problem. However, in this
section, we will concentrate on the ground-state properties and
the nature of the phase transitions at finite temperatures. This
includes the U-V phase diagram at T = 0, spectral functions
of the fermions, probability density functions for the lattice
variables, and charge and magnetization field configurations
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FIG. 2. (Color online) The ground-state and finite-temperature
phase diagram of the Holstein-Hubbard model as a function of scaled
parameters U and V . AFI, COI, NMM represent antiferromagnetic
insulating, charge-ordered insulating, and nonmagnetic metal phases.
The transition between AFI and COI is a weak first-order one. The
temperatures are (a) T = 0.001 and (b) T = 0.050.

in real space. The above information would help us correlate
various trends and elucidate the physics that emerges. As
the phases change while changing parameters, we will see
that correlated changes occur in properties of the fermionic,
phononic, and auxiliary field variables.

In Fig. 2 we present the ground-state phase diagram of
the Holstein-Hubbard model as a function of U and V . As
expected the results along the horizontal and vertical axes
(corresponding to cases when one of the parameters is absent)
confirm the discussion in the previous section. The phase
diagram is almost entirely dominated by insulating regions.
This is not surprising since individually, each interaction tries
to localize electrons giving rise to a band/Mott/bipolaronic in-
sulator. In the intermediate [24,27] to large values of the scaled
parameters, there is a transition between a charge-disordered
magnetic insulator to a charge-ordered nonmagnetic insulator.
For example, at large values of U , an otherwise MI in the
absence of Holstein interaction transforms to a BPI as V

increases. This is a result of the two competing interactions.
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FIG. 3. (Color online) Structure factor corresponding to charge
density wave N (π,π ) (left) and the antiferromagnetic structure
factor S(π,π ) (right) versus temperature for U = 4.0 and some
representative values of V .

While a large U tries to localize individual electrons at every
lattice site at half filling, the Holstein interaction develops
bipolaronic instability as discussed in the last section. When
the energy scales become comparable, the system develops an
instability and moves from one to the other. Notice that the spin
structure factor at (π,π ) is nonzero in the AF phase and S(q) =
0 in the BPI phase signaling a nonmagnetic state. Similarly,
the charge structure factor has a peak at q = (0,0) in the AF
phase, and the modulation vector changes to (π,π ) in BPI
phase. At intermediate values of U and V this behavior persists
for both the structure factors but is much less pronounced
compared to the strong-coupling limit. This is the crossover
regime between the Slater-MHI due to Hubbard correlations
and Peierls-BPI crossover due to Holstein interaction. Figure 3
depicts trends of both the structure factors as a function of
U and V and confirms our conclusion about the transitions.
Previous studies [65] on the t-J–Holstein model have shown
that as the exchange J decreases, the critical electron-phonon
coupling required for the transition from AFI to COI increases.
This is consistent with our results since J ∼ 1/U . However,
there exists a thin sliver of window in the U-V plane at low
interaction strengths where the system is metallic. This is in
contrast to the case where the system is insulating when only
one of the interactions is present. This behavior is exemplified
in Fig. 3 where the structure factor at these values is plotted.
This metallic behavior has been observed in previous studies
of this model employing DMFT [24,27] using continuous-time
QMC and NRG as impurity solvers. This unexpected metallic
phase results from the fact that while the nesting [18,63]
at half filling in the two-dimensional tight-binding model
supports magnetic or charge-ordering instabilities separately,
the competing interactions have a destructive effect on the
transition since it frustrates different degrees of freedom, viz.,
charge and spin in our case. The energy gained by a small
mean field gap opening up in either channel is not sufficient to
lower the absolute ground state energy when the other channel
is included. This phase, in fact, brings out the true competition
between the two interactions, where one acts predominantly
over the spin sector while the other over the charge sector.
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FIG. 4. (Color online) Phonon probability distribution for differ-
ent values of U at V = 2.0,T = 0.001.

A previous DMFT study [47] has revealed that this metallic
region expands to larger U and V values as phonon frequency
increases, which could explain the stability of this phase
in the classical phonon limit. Further, notice that the phase
boundaries merge to zero values of both parameters in our
case in contrast to DMFT results. This is easily understood
since our method preserves the nesting instability of the two-
dimensional noninteracting electron system whereas methods
such as DMFT ignore them.

The MC procedure allows us to track the PDF of the phonon
displacement variables across the transitions/crossover which
is plotted in Fig. 4. In the AF phases we see that P (Q) is
a unimodal function peaked at Q = −1, which implies that
while every lattice site is distorted, it accommodates at most
one electron per site. The distribution grows sharper as we
go from Slater to Mott limit, but the unimodal nature does
not change. In this limit, Hubbard correlations play a larger
role and the system tries to reduce the maximum number of
electrons to one per site. At intermediate and strong coupling,
at fixed U as we increase V , we find that this unimodal
distribution slowly crosses over to a bimodal one. This occurs
because of the weakening of the Hubbard correlation and
increasing role of the polaronic distortion energies. Two
electrons of opposite spin occupying the same site lower
the electron phonon energy more and the system develops
a bipolaronic instability [also see Figs. 2(a) and 2(b)]. In the
nontrivial metallic phase, while every site is still distorted, the
amplitude is very small. These results, indeed, correlate with
the charge structure factor and phonon probability distribution
function.

Our method allows us to provide a direct picture of the
real-space correlations between the static magnetic auxiliary
field, charge density, and phonon variables at various sites.
This will elucidate the character of the transition and especially
the metallic phase that arises. In Fig. 5 we present snapshots
of spin and charge over the lattice for a given set of
parameters at a given instant of MC simulation after the
system has equilibrated. Nonlocal correlations among charge
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FIG. 5. (Color online) Charge ni (upper) and spin configuration
Si · S0 (lower) for U = 2.0. Temperature increases from left to right.
Center column shows the configuration near the Tc. Three rows for
V = 0.50 (top), 1.0 (middle), 2.0 (bottom), and the system size is
32 × 32.

and magnetization fields can, in principle, be extracted from
here. As expected, for lower values of V , spin correlations
develop as U increases moving to a local moment value in the
MI phase. Such spin correlations are absent in the COI phase.
On the contrary, charge densities modulate as V is changed for
a given U resulting in a bipolaronic state. In the corresponding
phases spin modulation is negligible. In the metallic phase,
both densities remain negligible on average, but there are
fluctuations. The snapshots show a given configuration with
some variation in the densities. However, an average over such
configurations results in uniform charge density and negligible
magnetization confirming that it is indeed a metallic phase.

The various physical quantities that we have used to
characterize the ground-state properties confirm the expected
behavior and is reflected in such diverse variables as charge,
magnetization, distribution of lattice displacements, and
fermion spectral functions. The real-space picture gives a
handle on how to correlate them. As will be discussed in the
final section, this gives the added advantage of visualizing such
changes in nontrivial geometries and especially on frustrated

lattices, which is intractable or computationally expensive
using other methods such as DMFT or its cluster variants.

To conclude this section, within the static auxiliary field
approximation of the decoupled HS fields that we have resorted
to, we find a phase diagram that at low values of electron-
phonon coupling crosses over from a Slater to MH insulator
as U is increased, and a Peierls to BPI as V is increased
for low values of Hubbard interaction. At intermediate to large
values of coupling, there is a transition from antiferromagnetic
MHI to a nonmagnetic charge-ordered or bipolaronic insulator.
However, there is a sliver of metallic phase at low coupling that
results from frustrating effects of two interactions in different
(charge and spin) channels. The behavior of different degrees
of freedom correlates with these changes providing us with an
efficient way to extract physics from weak to strong coupling.

V. SPECTRAL AND TRANSPORT PROPERTIES

Significant changes are expected in the phase diagram
at finite temperatures due to the inclusion of “full” thermal
fluctuations of the static field through configuration sampling.
This was already noted in Sec. III where the effect of each
interaction was looked at separately. In this section we present
the results for various physical properties at finite temperatures
and converge on the finite-temperature phase diagram.

Figure 6 shows the thermal-averaged single-electron spec-
tral function A(ω) for different parameters at different temper-
atures. Deep in the insulating phase and at low temperatures
they show a very clear gap and there are no states available
at the Fermi energy as expected. In the region where metallic
ground state appears, on the contrary, there is nonzero spectral
weight at the Fermi energy even at the lowest temperatures.
As temperature increases, we notice three regimes signifying
different spectral features. For large values of U and/or V , we
find that the gap persists even for large temperature. This is
due to the Mott-Hubbard or bipolaronic nature of the phases.
The fact that this feature survives at these values of parameters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
(ω

)

(a)

0.0

0.1

0.2

0.3

0.4
(b)T =0.001

T =0.051
T =0.101
T =0.151

−8−6−4−2 0 2 4 6 8
ω

0.0

0.1

0.2

0.3

N
(ω

)

(c)

−6−4−2 0 2 4 6
ω

0.0

0.1

0.2

0.3(d)T =0.001
T =0.051
T =0.101
T =0.151

FIG. 6. (Color online) Density of state for different values of
temperature at constant V = 2.00 and U varying across the charge
density wave–antiferromagnetic transition. U = 1.0 (a), 4.0 (b), 6.0
(c), 8.0 (d).
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shows that the present method is capable of capturing the
strong-coupling physics of this problem in both channels. At
weak couplings, where a Slater or Peierls insulating phase is
expected or the metallic phase emerges, the spectral features
are very different at high temperatures. The gap vanishes
entirely in the former cases and there is sufficient weight at
the Fermi energy in all the three regimes. This clearly shows
that the gap arises solely due to the nesting instability of the
underlying Fermi system and the resulting order in either spin
or charge channels. Once the order is destroyed, so is the gap.
The most interesting features arise at intermediate values. Here
a hard gap is not seen though there is significant reduction
of spectral weight near the Fermi energy. There is spectral
weight transfer from the coherence peaks to energies within
the gap. This pseudogap feature arises due to persistence of
local correlations in static fields even after the long-range order
is destroyed.

The MC snapshots throw more light on the existence of
short-range order in either spin or charge degrees of freedom
at temperatures near or above the ordering temperatures.
This is shown in Fig. 5. In each case, the states evolve
from the ground states shown in Fig. 5. However, unlike
the low-coupling counterparts, the local order persists even
above transition temperatures. This local order, we believe, is
the reason for the appearance of pseudogap-like features in
spectral functions. However, unlike the strong-coupling cases,
where a local moment or a bipolaron formation is favored and
the spectrum shows a hard gap, the intermediate range does
allow fluctuations in charge and spin variables at very site,
leading to spectral weight appearing in the otherwise gapped
region. We have verified that the phonon PDFs also exhibit
persistence of bimodality in this region.

The transport can be captured in an exact way without
resorting to approximations as in cluster DMFT. To this end,
we use Kubo formula [61] for the in-plane resistivity which
involves the exact eigenvalues (εα,εβ) and wave functions
(|α〉,|β〉) of fermions obtained from diagonalization at several
equilibrium configurations:

σxx(ω)= σ0

N

∑
α,β

f (εα) − f (εβ)

εβ −εα

|〈α|Jx |β〉|2δ(ω − (εβ − εα)).

(5.1)

Here f denotes the corresponding Fermi function and the
current operator Jx is given by

Jx = −it
∑
i,σ

(c†i,σ ci+x,σ − H.c.), (5.2)

where σ0 = πe2

�
. The dc conductivity is obtained by letting

ω → 0.
Figure 7 shows the evolution of optical conductivity for a

fixed value of V , but for varying U at different temperatures. A
notable feature is the non-Drude behavior of σ (ω). Further, the
pronounced low-frequency hump in the optical conductivity
for small frequencies evolves into an interband Hubbard peak
as U increases. A similar feature has been observed as we
vary V where the Hubbard peak gets replaced by the higher
energy bipolaronic peak. The non-Drude behavior emanates
from the pseudogap nature of the electronic spectral function
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FIG. 7. (Color online) Temperature dependence of the optical
conductivity for V = 2.0 and U = 1.0 (a), 4.0 (b), 6.0 (c), 8.0 (d).

that originates from strong local charge/spin fluctuations as
discussed earlier. The dc resistivity is plotted in Fig. 8 for
a fixed value of V , but varying values of U at different
temperatures. A metal-to-insulator transition is clearly visible
for the weak-coupling regime (U = 1) in the inset.

Finally, we present the finite-temperature phase diagram of
the model in Fig. 9. The phases include AF or CO insulating
phases at low temperatures except for the sliver of metallic
phase discussed earlier, metallic nonmagnetic phases at weak
couplings, Mott-Hubbard and bipolaronic insulating phases
at large couplings, and the pseudogap phase at intermediate
coupling. The high-temperature behavior from metallic to
insulating is a crossover. Note that we characterize the finite-
temperature metallic phase by sign of the temperature variation
of the resistivity, dρ/dT . It remains open as to how these
instabilities would be affected due to quantum dynamics of the
auxiliary field or phonons. However, the remarkable qualitative
agreement with previous DMFT studies suggests that the
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FIG. 8. (Color online) Temperature dependence of resistivity,
ρ(T ), for various values of U at V = 2.0. Metal-insulator transition
in the weak-coupling region for U = 1.0 (inset).
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FIG. 9. (Color online) Transition temperature for the charge den-
sity wave and antiferromagnetic phase for different values of U

and V .

quantum dynamics of these fields may not be relevant for the
regime we have concentrated on. Further, it appears that the
current method may be used for geometries and systems where
DMFT treatment may not be applicable as we discuss below.

VI. CONCLUSIONS

We presented above a numerical study of the static Holstein-
Hubbard model by employing Hubbard-Stratanovich auxiliary
fields for the charge and spin sectors. It captures many
of the features obtained in previous DMF studies. More
importantly, it sheds light on new physics at finite temperatures
and intermediate couplings due to the inclusion of spatial
dependence (unlike DMFT) and classical thermal fluctuations
through configuration sampling. The method works very well
at all strengths of coupling. Being a real-space method it
allows one to visualize the phases at various temperatures
and how different orders develop and transform into others.
It is numerically more efficient and large system sizes can be
accessed. Various physical properties such as single-particle
spectral functions, phonon distributions, and transport can be
readily evaluated.

The salient results include the appearance of a nonmagnetic
metallic phase at low values of coupling parameters, which was
also seen in previous DMFT study, in addition to the ordered
phases, including antiferromagnetic and charge-modulated
ones. However, the finite-temperature phase diagram shows
rich features and includes a pseudogap phase at intermediate
coupling. This arises due to the persistence of local order in
charge and spin degrees. Inclusion of spatial correlations is
essential to capture this region. However, a couple of remarks
are in order. First, the ground-state transition from AF to CO
is expected to be a first-order one. However, we find that this
is a very weak transition and we are not able to resolve it
accurately within the numerical error bars. The weak nature
of this transition was also noted in previous DMFT studies.
The low-temperature insulating states at small couplings could
be a result of the fact that we used a two-dimensional
square lattice. This necessarily gives a nesting instability
at half filling and results in Slater or Peirels transition at

low temperatures. Inclusion of quantum fluctuations or use
of different lattice geometries may obscure these phases.
Indeed, DMFT study shows that the metallic phase exists
at low strengths even when one of them is zero. Third, one
could wonder whether these transitions are numerical artifacts
since we have used a two-dimensional system. Since thermal
fluctuations destroy any order at nonzero temperatures, we
expect TN = 0 and TCDW = 0. However, it is expected that
there would be a coherence temperature roughly mimicking the
above transition temperatures even in two dimensions below
which the correlation lengths increase rapidly. In other words,
the system enters the renormalized classical regime [38]. If so,
even a weak coupling to a third dimension will stabilize the
ordered phases. There could be some qualitative changes such
as disappearance of insulating phases at weak couplings since
nesting is no longer possible, but we expect gross features to
remain the same.

The method presented neglects time dependence in auxil-
iary fields and phonons. Comparison of our results with pre-
vious DMFT studies suggests that quantum dynamical effects
may not be highly relevant for these phases especially since
the system orders at low temperatures. However, this is indeed
a handicap and does not allow us to explore other instabilities
such as superconductivity. The present method may be thought
of in the same spirit as spin wave theory applied to spin
systems, whereby one starts with a classical ground state
configuration for the spins and builds up quantum corrections
perturbatively in some small parameter. The present method
is a step towards implementing such a procedure for many
constituents interacting among themselves. However, it goes
beyond the analogy of spin wave theory in several aspects.
We do not need to assume a classical ground state; the Monte
Carlo procedure selects it naturally. The latter also incorporates
thermal fluctuations. The procedure handles the weak to strong
coupling limits in a unified way by smoothly interpolating
between them. A further approximation is made by treating
the charge fields at the saddle-point level. The charge fields
(φ) turn out to be purely imaginary and their contribution
to the classical action does not have a lower bound. This
makes the classical Monte Carlo sampling of these fields
very unstable and necessitates the saddle-point approximation
which we have resorted to. The results obtained this way,
for the pure Hubbard and Holstein models, respectively (see
Fig. 1), suggest that the saddle-point approximation does not
affect the results severely. Finally, since quantum fluctuations
of the auxiliary fields are neglected, the results become less
reliable at low temperatures and lower dimensions, where
quantum effects may either destroy or modify the classical
ground state as happens in spin systems. A natural way
of capturing corrections would be to allow small-amplitude
fluctuation of the classical variables around their equilibrium
value at a Gaussian level and look at the stability of phases.
That necessitates a new line of study and we postpone it for
the future [66].

The current work is not aimed at probing the physics of
various families of experimentally accessible systems in which
phonon dynamics is crucial along with electron correlation
effects. Instead, we attempted to study a model system
using some physically appealing simplifications. However, we
believe that the results would provide us some insight into the
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behavior of systems in which relevant phonon frequencies
are very large. Let us look at some relevant experimental
systems. For the cuprate family [6,8], t ∼ 0.25 eV, U∼3 eV,
ω ∼ 75 meV, and the dimensionless electron-phonon coupling
constant V ∼ 1. Thus the scaled Hubbard interaction is
roughly three times the electron-phonon coupling and at half
filling they would be Mott insulators with no charge-ordering
tendencies. However, the phonon dynamics is relevant since
the relevant frequencies are not very large. For fullerides, band-
width is roughly 0.6 eV, U ∼ 1 eV, ω ∼ 90 meV, and V lies in
the range of 0.5–1 [11,12]. Here again, Coulomb interactions
dominate, though phonon dynamics is crucial. The family of
manganites presents a more complex and rich scenario [15,67].
The parameter values relevant for these systems turn out to be
t ∼ 0.2–0.4 eV, U ∼ 3–4 eV, ω ∼ 0.05 eV (the energy of the
Jahn-Teller phonons), while the Jahn-Teller polaronic energy
EJT ∼ 0.5–1 eV. While the scaled electron-phonon coupling
V is large (in the range of 1–4), the adiabaticity parameter
γ = �ω/EF ∼ 0.2–0.3, where EF is the Fermi energy, and
hence small. Naturally these are candidates more relevant for
the present study, albeit at half filling. However, the physics
gets more complicated due to a variety of reasons: multiorbital
and multi-(JT)-phonon effects and the Hund’s rule coupling,
not to mention the cooperative nature of the JT modes and
associated charge-ordering tendencies. A generalization of our
method should be appropriate to studying these systems.

The method can be expanded to study many problems of
current interest. We mention a couple of them. In the present

study we have limited ourselves to a single-band Hubbard
model coupled to a single-phonon mode. Many interesting
realistic systems, such as manganites [15,16] and iridates [68],
involve multiorbitals and multiphonon modes. However, the
present method can be generalized naturally to include them.
The computational complexity increases marginally, but the
problem is tractable within the approximations used. The
method could also be extended to study interfaces [69] and/or
heterostructures [70] of correlated, electron-phonon problems
which are difficult to handle in conventional methods that are
being currently used.

A central feature of the method lies in capturing spatial
correlations. This is essential for capturing features arising
due to local order. More importantly, methods such as
DMFT that neglect spatial dependence are not suited to study
geometries [68,71,72] where spatial features are important.
A relevant case is the Holstein-Hubbard physics in frustrated
geometries. We are currently pursuing this problem which
shows rich physics including transition from charge-ordered
phases to charge stripes, nontrivial spin orders, etc. These
results will be presented elsewhere [73].
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(2003).
[6] A. Lanzara et al., Nature (London) 412, 510 (2001).
[7] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[8] A. Damascelli, Z. Hussain, and Z-X. Shen, Rev. Mod. Phys. 75,

473 (2003).
[9] Y. Bar-Yam, T. Egami, J. M. Leon, and A. R. Bishop,

Lattice Effects in High-TcSuperconductors (World Scientific,
Singapore, 1992).

[10] Y. Takabayashi et al., Science 323, 1585 (2009).
[11] M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Rev. Mod.

Phys. 81, 943 (2009).
[12] O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).
[13] A. Taraphder, R. Pandit, H. R. Krishnamurthy, and T. V.

Ramakrishnan, Int. J. Mod. Phys. B 10, 863 (1996).
[14] R. J. Cava et al., Nature (London) 332, 814 (1988).
[15] T. V. Ramakrishnan, J. Phys.: Condens. Matter 19, 125211

(2007).
[16] E. Dagotto, Nanoscale Phase Separation and Colossal Mag-

netoresistance: The Physics of Manganites and Related Com-
pounds (Springer Science, 2013).

[17] A. S. Mishchenko and N. Nagaosa, Phys. Rev. Lett. 93, 036402
(2004).
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