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Theory of two-dimensional spatially indirect equilibrium exciton condensates
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We present a theory of bilayer two-dimensional electron systems that host a spatially indirect exciton condensate
when in thermal equilibrium. Equilibrium bilayer exciton condensates (BXCs) are expected to form when two
nearby semiconductor layers are electrically isolated, and when the conduction band of one layer is brought
close to degeneracy with the valence band of a nearby layer by varying bias or gate voltages. BXCs are
characterized by spontaneous interlayer phase coherence and counterflow superfluidity. The bilayer system we
consider is composed of two transition metal dichalcogenide monolayers separated and surrounded by hexagonal
boron nitride. We use mean-field theory and a bosonic weakly interacting exciton model to explore the BXC
phase diagram, and time-dependent mean-field theory to address condensate collective mode spectra and quantum
fluctuations. We find that a phase transition occurs between states containing one and two condensate components
as the layer separation and the exciton density are varied, and derive simple approximate expressions for the
exciton-exciton interaction strength which we show can be measured capacitively.
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I. INTRODUCTION

Recent advances in the study of two-dimensional van der
Waals materials [1] have opened up new horizons in condensed
matter physics by allowing familiar properties, including
those of metals, superconductors, gapless semiconductors,
semiconductors, and insulators, to be combined in new ways
simply by designing stacks of atomically thick layers. In this
article we consider condensation of spatially indirect excitons
in the case of a two-dimensional semiconductor bilayer formed
by two group-VI transition metal dichalcogenides (TMDs)
that are separated and surrounded by an insulator, for example
hexagonal boron nitride (hBN). The TMDs are in their 2H
structure monolayer form. Two-dimensional material stacks
of this type are promising hosts for exciton condensation,
both because they host strongly bound excitons [2-8], and
because of recent progress in realizing flexible high quality
TMD heterostructures [9-14].

In van der Waals heterostructures it is possible [15,16] to
tune the positions of the Fermi levels in individual layers over
wide ranges while maintaining overall charge neutrality, either
by applying a gate voltage between surrounding electrodes
or a bias voltage between the semiconductor layers. When
the indirect band gap between the conduction band of one
layer and the valence band of the other layer is reduced to
less than the indirect exciton binding energy, charge will be
transferred between layers in equilibrium. At low densities, the
transferred charges form spatially indirect excitons, and these
are expected [17-24] to form Bose condensates. The bilayer
exciton condensate (BXC) state has spontaneous interlayer
phase coherence and supports dissipationless counterflow
supercurrents [25,26] that could enable the design of low-
dissipation electronic devices [27].

Exciton condensates in TMD heterostructures are similar
to atomic spinor Bose-Einstein condensates because of the
presence of both spin and valley degrees of freedom. The
spin-valley coupling of conduction band electrons and valence
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band holes that are specific to TMD heterostructures [28]
enriches the excitonic physics. In this paper we study the
interplay between the exciton condensation and spin and
valley internal degrees of freedom to construct an exciton
condensate zero temperature phase diagram as a function of
effective layer separation d and exciton chemical potential
W, or equivalently exciton density. We demonstrate that there
are two distinct condensate phases with different number of
condensate flavors, as shown in Fig. 1.

Our paper is organized as follows. In Sec. II we explain how
we model the heterostructure, and present the mean-field phase
diagram implied by Hartree-Fock theory. In Sec. III we derive
an effective boson model that incorporates exciton-exciton
interaction effects and can be used to describe excitons in the
low density limit. The difference between the strengths of the
repulsive interactions between excitons with the same internal
label and between excitons with different internal labels
changes sign as the layer separation increases. This change
drives the transition from phase II, a phase with two condensate
flavors present, to phase I, a phase with only one condensate
flavor. Both phases spontaneously break the symmetry of
the model Hamiltonian, and the symmetry breaking pattern
of each phase is analyzed. In this section we also explain how
capacitance measurements can be used to study the exciton
phase diagram experimentally and to extract the value of
the exciton-exciton interaction strength within each phase.
In Sec. IV we use a time-dependent Hartree-Fock theory
to study the stability of phase I against small fluctuations,
and to calculate the collective mode spectra of these exciton
condensates. Finally, in Sec. V we present a brief summary,
discuss issues related to experiments, and comment on the
relationship between our work and previous studies.

II. MEAN-FIELD PHASE DIAGRAM

We consider two monolayer TMD semiconductors sepa-
rated and surrounded by hBN (Fig. 1). Many of the points we
make apply with minor modification, however, to any bilayer
two-dimensional semiconductor system. Monolayer TMDs
are direct-gap semiconductors with band extrema located at
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FIG. 1. (Color online) Transferred charge density and exciton
condensate phase as a function of effective layer separation d and
chemical potential . The solid orange line marks the second-order
phase transition from the phase in which there is no charge transfer
between the bilayers, i.e., the phase with no excitons present, to
the bilayer exciton condensate (BXC) phase. The blue dashed line
separates phase II in which two condensate flavors are present from
phase I in which the ground state has a single condensate flavor. The
twored dotted lines are contours at the density values na? = 0.01 and
0.1. (For na}* 2 0.1 the exciton-condensate ground state is expected
to be superseded by an electron-hole plasma state. See text for a more
complete discussion.) The arrows mark the values of d examined
in Figs. 2(a) and 2(b), and the crosses (x) indicate the parameter
values examined in Figs. 2(c) and 2(d). The left inset is a schematic
experimental setup for BXC studies in which the spatially indirect gap
is tuned by an interlayer bias potential, and the right inset illustrates
the bilayer band structure in the absence of the bias potential V.

valleys K and K'. Because these TMD layers lack inversion
symmetry, spin degeneracy in the TMD bands is lifted by spin-
orbit interactions. Because of differences between the orbital
character of conduction and valence band states [28], it turns
out that spin splitting is large at the valence band maxima and
small at the conduction band minima. As illustrated in Fig. 1,
we therefore retain in our theory the two valley-degenerate
valence bands labeled by v = 1,2, and four conduction bands
with labels ¢ = 1,2,3,4 corresponding to spin and valley. We
assume that exciton binding energies and densities are small
enough to justify a parabolic band approximation for all band
extrema. Our mean-field ansatz allows up to two types of
excitons to be present; for example pairs formed from holes
in band v =1 and electrons, selected by spin splitting, in
band ¢ = 1, can condense, along with pairs formed from holes
in band v =2 and electrons in band ¢ = 2. Although the
unpaired conduction bands ¢ = 3,4 are only slightly higher
in energy, this pairing ansatz is fully self-consistent at low
exciton density, because of the substantial exciton binding
energy. Our pairing ansatz is also justified by an interacting
boson model, described in Sec. III, which allows for the most
general possible pairing scenario.
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The ansatz leads to the mean-field Hamiltonian
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where the prime in the first summation restricts the pair index
(ve) to (11) and (22) contributions. a’ and a are fermionic
creation and annihilation operators. The kinetic term ¢; =
R2k*[1/(4m.) — 1/(4m;,)] accounts for the difference between
conduction and valence band effective masses m, and m;,, and
o, are Pauli matrices. The dressed energy difference between

conduction and valence bands élévc), and the coherence induced
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effective interlayer tunneling amplitude A%”C) , are defined as
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In Eq. (2) m = m.my/(m, + my,) is the reduced mass, and
A is the area of the system. The paramter /i is

HZ_ZZ ck Ck )

Kk oe=12

fi = —4me’nd/e,

where p is the chemical potential for excitons, and #n is the
total charge density transferred between layers. Equations (2),
(3), and (4) form a set of mean-field equations that can be
solved self-consistently. Note that the (11) and (22) pairing
channels are coupled through the dependence of /i on the total
transferred density n.

The exciton chemical potential can be tuned electrically by
applying a bias potential V,, between the electrically isolated
layers 1 =V, — E,, where E, is the spatially indirect band
gap between the conduction band of the electron layer and the
valence band of the hole layer. The band gap E, can be adjusted
to a conveniently small value by choosing two-dimensional
materials with favorable band alignments [29,30].

V(q) =2me?/(eq)and U(g) = V(g)e ¢ are the Coulomb
interaction potentials within and between layers. The forms of
Coulomb potentials are determined by solving the Poisson
equation for our schematic experimental setup (Fig. 1).
€ = /€ €], where €, and ¢, are hBN dielectric constants
perpendicular and parallel to the z axis, is the effective
dielectric constant due to an insulator layer (hBN) between
electron and hole layers. d = D,/e, /€|, where D is the
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TABLE 1. Parameter values for different combinations of mono-
layer layer 2H-TMDs. my is the electron bare mass. € = 5 for hBN.
Electrons reside in MoS,, and holes in other TMDs. The listed energy
gaps E, apply in the absence of a gate voltage.

me/my  my/mg ap Ry” E,

[32] [32] (A) (meV) (eV) [29]
MoS,/MoTe, 0.47 0.62 9.89 145 1.1
MoS,/WSe, 0.47 0.36 12.97 111 1.4
MoS, /WTe, 0.47 0.32 13.89 104 0.8

geometric layer separation between electron and hole layers,
is the effective layer separation and slightly larger than D [31].

Below we express lengths and energies in terms of the
characteristic scales a} = eh?/(me?) and Ry* = e*/(2ea}).
Typical values for different material combinations are listed in
Table I.

The indirect exciton binding energy E, determines the
value for p at which excitons first appear. When u < —E,
no excitons are present. In this state each layer is electrically
neutral and there is no interlayer coherence. Equation (2) has
nontrivial (n,A; # 0) solutions only for y > —E;,. We find
two distinct types of BXC phase. In phase I, only one type
of exciton condenses (e.g., A](;I D # 0 and A](:22> = 0). In phase
11, excitons associated with both valence bands condense and
have equal population (e.g., Agl) = Al(zzz) # 0). Both phases
are allowed by Eq. (2). We obtain the phase diagram in Fig. 1
by comparing the total energy of phase I and II as a function
of (d, ;). Below a critical layer separation d. =~ 0.25a}, phase
II always has a lower energy, as illustrated in Fig. 2(a). Above
d., a transition from phase I to phase II occurs as the chemical
potential p increases [Fig. 2(b)]. Typical quasiparticle energy
bands in phase I and I are depicted in Figs. 2(c) and 2(d), and
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FIG. 2. (Color online) (a) and (b) Energy difference (0E = Ey —
E)) per area between phase I and II states as a function of w at
d/aj = 0.1 (a)and d/aj = 0.5 (b). (c) and (d) Typical quasiparticle
energy bands in phase II (c), and in phase I (d) with (blue) and without
(black) interlayer coherence. (d/aj,u/Ry*) is (0.1,—2.5) in (c) and
(0.5,—1.1) in (d), corresponding to the two crosses (x) in Fig. 1.
These results were calculated with m, = my,.
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show that the system is an excitonic insulator with a charge
gap.

In our mean-field theory, condensation of one type or the
other always occurs at 7 = 0 when excitons are present.
It is well known however that at high electron and hole
densities a first-order Mott transition occurs [33—-37] from the
gapped exciton condensate phase to an ungapped electron-
hole plasma state. The electron-hole plasma state is pre-
ferred energetically because it can achieve better correlations
between like-charge particles, reducing the probability that
they are close together, while maintaining good correlations
between oppositely charged particles. The density at which
the Mott transition occurs is most reliably estimated via
a nonperturbative approach [34]. No estimate is currently
available for the TMD case, for which the valley degeneracy
and the small spin splitting in the conduction band will
tend to favor plasma states over exciton condensate states.
Based on existing estimates [34] we can conclude that the
Mott transition density is below naj’ ~ 0.3 as d /a}; — 0 and
below naj* ~ 0.05 for d/a} ~ 1. Corrections to mean-field
theory which go in the direction of favoring plasma states
can be partially captured by accounting for screening of the
electron-hole interaction which becomes stronger as exciton
sizes increase and excitons correspondingly become more
polarizable. The results reported here are intended to be
reliable only in the low exciton density limit.

III. INTERACTING BOSON MODEL

To understand the phase diagram more deeply, we employ
a boson Hamiltonian designed to describe weakly interacting
excitons in the low density limit. Our strategy to obtain
the boson Hamiltonian is to construct a Lagrangian based
on a variational wave function which parametrizes a family
of states with electron-hole coherence. The Berry phase
part of the Lagrangian has the same form as that in the
field-theory functional integral representation of a standard
interacting boson model [38]. Appealing to this property,
we promote variational parameters in the wave function to
bosonic operators. The details of the derivation are presented
in Appendixes A and B.

The boson Hamiltonian is

hZQZ
Hy = Z( M

T -
_ Eb — /,L) B(UC)QB(UC)Q

/

1 -
T T - .
2 > {8n(Q1)B 5 B, 5 Buero, Buos,
A A f T - .
+gx(Q13, QM)B(vc)Ql B(u’c’)éz B(U/C)Q3 B(UC,)Q4 }’ (5)

where By, is a bosonic operator for an exciton with a hole
in valence ba_r}d v, an electron in conduction banﬁd c, arld total
momentum Q. Q, is the momentum transfer Q, — Q,. For
the TMD system, there are eight possibilities for the composite
index (vc). The quadratic term in Eq. (5) accounts for exciton
kinetic energy (M = m, 4+ m;) and chemical potential. The
quartic terms describe exction-exciton interactions. The prime
on the quartic term summation enforces momentum conserva-

tion Q1 + 0s = Q03 + Q4.
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FIG. 3. (Color online) (a) Chemical potential p as a function
of density n obtained from Hartree-Fock calculations in which a
single exciton flavor is condensed. The line is a linear fit of the
numerical data to Eq. (6). (b) Exciton-exciton interaction strength
extracted from the self-consistent Hartree-Fock equation solutions
(blue dashed line), and exciton-exciton interaction strength calculated
from the interacting boson model (red solid line). The black dashed
line is the Hartree contribution gy to the total interaction strength.
(c) The blue and red lines separate the interlayer (g&”) and intralayer
(gg(z)) exchange contributions to the total exciton-exciton interaction
strength.

The two types of exciton interaction arise from the
fermionic Hartree and exchange interactions, respectively.
In the exchange interaction, two excitons swap constituent
electrons or holes. Analytic expressions for the coupling
strength g5 () and gx(g’,q) are given in Appendix A.

We focus here on their zero-momentum limits gz = gy (0)
and gx = gx(0,0), which are more easily interpreted and
capture much of the exciton-exciton interaction physics. For
the case in which the exciton condensate is populated by a
single flavor we find that for low exciton densities

u=—Ey,+gn, (6)

where g = gy + gx is the total exciton-exciton interaction, as
expected from the mean-field theory for weakly interacting
bosons. This behavior is illustrated in Fig. 3(a). We have
verified that the interaction parameter obtained by examining
the dependence of u on n in the fermion mean-field theory
agrees with the analytic expression in Appendix A, as
illustrated in Fig. 3(b), which plots g as a function of layer
separation d. We find that gy = 4mwe’d/e and that gx =
gg(l) - gg(z), where g;l) and gg(z) are both positive and originate
from inter- and intralayer fermionic exchange interactions,
respectively. The binding energy of isolated excitons is due
microscopically to attractive interlayer exchange interactions.
When excitons overlap and interact with each other, coherence
between layers is reduced weakening interlayer exchange, but
strengthening intralayer exchange. This explains the signs of
the two contributions to gx. The overall sign of gx is positive
at d = 0 because the loss of interlayer exchange energy when
excitons overlap is greater than the gain in intralayer exchange
energy. In Fig. 3(c) we show that gy becomes negative
beyond a critical layer separation d. ~ 0.25a}. It turns out that

although both gg(l) and g§§) increase with layer separation d, the

rate of increase of gg(l) is smaller than for gg(z). The difference

in behavior can be traced to the exponential decrease in the
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momentum space interlayer Coulomb interaction with layer
separation d as shown in Egs. (A19) and (A20).

To find the ground state in the realistic multiflavor case,
we assume that all excitons condense into Q = 0 states and
introduce the following matrix:

B
( (14))>. o

(B(12))
(B22))

(Ba3sy)

1 ({(Bay)
F=—
VA\(Ba) (Be3))  (Bowy)

Neglecting the small spin-orbit splitting of conduction band

states, the total energy per area can be written in a compact

form,

(Hp)
A

— —(Ep + )TIT + %H(TrT)Z + ‘%"Trﬁ, )

where 7 = F1F.InEq. (8) Tr7 is the total density of excitons,
summed over all flavors, and Tr7? — (Tr7)? measures the
flavor polarization of the exciton condensate. This energy
functional is invariant under the following transformation:

F > U FU]. 9)

Here ¢'® captures the U(1) symmetry which originates from
separate charge conservation in the individual layers. ¢/, and
Uy are, respectively, 2 x 2 and 4 x 4 special unitary matrices,
which capture the SU(2) symmetry of the valence bands
and the SU(4) symmetry present in the conduction bands
when their spin splitting is neglected. The overall symmetry
group of the system is U(1) x SU(2) x SU(4). When the
conduction band spin-orbit splitting is included, the higher
energy conduction band states in each valley are not occupied
and the symmetry group is reduced to U (1) x SU(2) x SU(2),
corresponding to separate charge conservation and rotations in
both conduction and valence band valley spaces.

JF acquires a nonzero value in the ground state only if
@ > —E,. By minimizing the energy functional, we verify
that the sign of gy determines the position of a phase boundary
between two different classes of exciton condensate which we
refer to as phase I and II. When gx < 0, phase I is energetically
favorable and a representative realization of the ground state
is

1 0 0 O
fl=¢n_1(0 0 0 O>, (10)

where ny = (u + Ep)/(gu + gx) is the exciton density. F is
invariant under the transformation

ew O) <e_i¢ 0)
0 )7 - A, (1n
(0 )7 o v

where V3 is a 3 x 3 unitary matrix. Therefore, phase I
spontaneously breaks the U(1) x SU(2) x SU(4) symmetry
down to U(1) x U(3) symmetry.

When gx > 0 phase II is realized. Energy minimization
shows that a representative realization of the ground state in
phase II is

—=(1 0 0 O
]:H = nH/2<0 1 0 O)’ (12)
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FIG. 4. (Color online) (a) Four representative degenerate ground
states in phase I. For illustration purpose, only two conduction bands
are shown. (The other two are slightly higher in energy because
of spin-orbit splitting and do not participate in the ground state
manifold.) The dashed black oval highlights the two bands with
spontaneous phase coherence in phase 1. Charge is transferred from
the valence band partner to the conduction band partner. In the
upper panels (11) and ({ ), coherence is established between like
spins and the ground state is not spin polarized. In the lower panels
(14) and ({ 1), charge is transferred between opposite spins and the
ground state is spin polarized, with a finite spin polarization that
is proportional to the transferred charge density. Because spin and
valley are locked by spin-orbit coupling, spin-polarized states are
stabilized by an infinitesimal Zeeman field. (b) In the presence of
an infinitesimal Zeeman field that favors spin up, the spin-polarized
state (| 1) is selected as the unique ground state in phase I. (c) Two
representative degenerate ground states in phase II. Both states have
zero spin polarization, and remain degenerate in an infinitesimal
Zeeman field as shown in (d).

d

whereny = (u + Ep)/(gn + gx/2)is the total exciton density
in phase II. Fy; is invariant under the transformation

u o
UFu| 2 = T, 13
2 II(0 V;) 1§ ( )

where V), is a 2 x 2 unitary matrix. Phase II spontaneously
breaks the U (1) x SU(2) x SU(4) symmetry down to SU(2) x
U(2) symmetry. A similar analysis can be applied to identify
the symmetry breaking pattern when the spin splitting of the
conduction bands is considered. In phase I, an application of
an infinitesimal external Zeeman field lifts both conduction
and valence band valley degeneracies, and selects a unique
condensate ground state with a finite spin polarization, as
illustrated in Fig. 4. Phase I therefore satisfies the definition of a
ferromagnet, defined as a system with a finite spin polarization
in an infinitesimal Zeeman field, but has a distinct set of broken
symmetries compared to the usual spin rotational symmetry
breaking.

Based on this mean-field calculation, we conclude that
although the system has eight types of excitons in total, only
one or two flavors condense in the ground state. The number
of condensed flavors is in general limited by the number of
distinct valence or conduction bands, whichever is smaller
in number. Although the boson model correctly captures the
phase transition position as a function of d, it is important to
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emphasize that it is valid only in the low exciton density limit.
For this reason, it fails to accurately predict the u dependence
of the phase boundary. In addition it fails to capture the
tendency toward weaker electron-hole pairing at high exciton
densities, which eventually leads to an electron-hole quantum
liquid state with no interlayer coherence.

The relationship between the exciton density 7, the exciton
chemical potential 1, and the coupling strength g makes it pos-
sible to extract the value of g from capacitance measurement.
The differential capacitance per area for the heterostructure is

a
c=e2" (14)
I
The Hartree coupling strength gy can be identified as the
inverse of the geometric capacitance:

Coco = €% /¢ = €/(4nd). (15)

Therefore, capacitance measurement provides a simple way to
determine the value of gx in the low-exciton density limit:

gx <0, phase I,

A ) =

geo

16
%gx>0, phase II. (16)

The sign of gx helps to distinguish phase I and II.

IV. FLUCTUATIONS AND STABILITY

The bilayer exciton condensate is a state with spontaneously
broken continuous symmetries, and therefore hosts low-energy
collective fluctuations. Theoretical studies of fluctuation prop-
erties are of interest in part because they can reveal mean-field
state [39] instabilities. The collective modes can be studied
using the interacting boson model, which is described in detail
in Appendix C. The interacting boson model admits analytic
solutions for collective modes associated with exciton density,
phase, and flavor fluctuations in both phase I and II. However,
it is valid only in the low exciton density limit. Here we study
another approach that can be applied to any exciton density.
This approach is based on the following variational wave
function which captures exciton density and phase fluctuations
in phase I:

)= | 24D =@k, 5, %0 |IXC) (A7)

k.0

where |XC) is the phase I ground state. yg 0 and yg , are,

respectively, quasiparticle creation operators for occupied and
empty quasiparticle states in | X C) associated with the ground
state condensate and are defined as follows:

T

o T -
ylz.O - ukac/g + vkavl;’

f gt — gt
Vea = V4 — xd,

(18)
I‘(’v

where uj and v; are parameters determined by self-consistent
Hatree-Fock equations (2),

ug = /30 —&/Ep., vp =21+ &/Ep. (19)
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Z is a normalization factor,

z=1-Y 1z(0)P, (20)
K,

and z,;(é) are complex parameters.
To study fluctuation dynamics we construct the Lagrangian

Q1

= (®lid, — H|®) ~ B—SE?, (21)

where Bis the harmonic Berry phase, and § E® is the harmonic
energy variation [40]

SE? =Y { 1 5(0)7H(0)Z5(0)

P

Q
=1

1
+50 (Q)[Zk(Q)Zp( Q)+Z*(Q)Z( Q)]}
(22)

Explicit forms for the matrices £ and I' are given in
Appendix D. To decouple +=Q contributions in Eq. (22), we
perform a change of variables, defining

7(0) = x(0) + iy7(0), (23)
2 (= 0) = xp(0) — iyi(0). (24)

Note that x,;(é) and y,;(é) are complex numbers, and that
there is a redundancy,

x_1(—0) = xX(0),

- R (25)
V_i(=0) =y (Q).
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FIG. 5. (Color online) (a) and (b) Eigenvalues of K& for d /ay = 0.5 as a function of momentum Q at na

Eigenvalue/Ry*
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In terms of the x and y fields, the Berry phase B and energy
variation § E® are

1 o
B=- Z(y*a,x + yd,x* — x*d,y — x0,y");(Q).

(26)
8E(2) _ ZZ *IC(Jr)xp + y*IC( -yp)(Q)

The kernel matrices ICSE;(Q) = (5,;,1-7» == I 75)(Q) are real and

symmetric. The x and y fields in 8 E® can be identified with
exciton density and phase, respectively, and the Berry phase
contribution to the action captures the conjugate relationship
between these fluctuation variables.

Stability of the mean-field ground states against small
fluctuations requires that the matrices *) are nonnegative.
We have verified that this condition is satisfied out to large d
by explicit numerical calculations like those summarized in
Figs. 5(a) and 5(b). At Q = 0, the matrix L always has a
zero-energy eigenvalue since

Aj
=) Po_
E. }C/}’,ﬁ(o) E; =0, 27)
p

which follows from the fact that ground state energy is
independent of global interlayer phase.

For low exciton density n [Fig. 5(a)], the lowest eigenvalues
of K™ and K have similar behavior and are separated from
the continuum. This is expected since K™ and X~ are identi-
calinthelimitn — 0. Figure 5(b) demonstrates that the lowest
eigenvalues of K" are close to the particle-hole continuum
when the exciton density becomes large; the interacting boson
model discussed above fails qualitatively in this limit.

© =2 A A
0 O N B

0.6 B 1
0.4 ="~ eh continuum
0.2 _.»"" ° denSIty ’C(+)
. - phase KO
0.0 0.5 1.0 * 1.5 2.0
ap
1.4} lll!!ly!lx|g|..|:!:
1.2 st P
1.0 '
0.8
PP S S oo
0.4} el
0.2}
[ ///
0.0ke”. . . . e R
0.0 0.5 1.0 * 1.5 2.0
Qag

= 0.008 (a) and na}? = 0.08

(b). Red solid and blue dashed lines connect the lowest eigenvalues of the density fluctuation matrix X and the phase fluctuation matrix I,
respectively. Small red points label higher eigenvalues of ICW The gray lines mark the lower edge of the quasiparticle electron-hole continua

[Min(Ej + E, 5)]. (¢) and (d) Collective mode spectra at na

= 0.008 (c) and na

= 0.08 (d) for d/aj = 0.5. Larger points are used for the

lowest energy excitations. In (c), the red and black lines are, respectlvely, a linear ﬁt at small Q and a quadratic fit at large Q to the collective

mode energy. For the results presented here, we assumed m, = m;,.
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The Euler-Lagrange equation for the Lagrangian in Eq. (21)
gives rise to the equation of motion,

8x:(Q) = — (K 1v3)(Q).

) q (28)
0yi(Q) = +(K 1x5)(Q).

which leads to
87 y;(0) = —[(KPKD); .v5](0). (29)

It follows that the energy of the collective mode is given
by the square root of the lowest eigenvalues of the matrix
product KK, which is plotted in Figs. 5(c) and 5(d).
The lowest energy collective mode is the gapless Goldstone
mode of the exciton condensate. For low exciton density
n [Fig.q 5(c)], the Goldstone mode hzis linear dispersion at
small Q, becoming quadratic at large Q. This agrees with the
Goldstone mode behavior predicted by the weakly interacting
boson model [Eq. (5)]. For large n [Fig. 5(d)], the Goldstone
mode deviates from quadratic behavior at large é The failure
of the weakly interacting boson model in the high density limit
originates from the internal structure of the excitons. When
the typical distance between excitons is comparable to exciton
size, excitations must be described in terms of the underlying
conduction and valence band fermion states [18,41,42].

V. SUMMARY AND DISCUSSION

By combining Hartree-Fock theory and an interacting
boson model, we have shown that spatially indirect exciton
condensates in group-VI TMD bilayers have two distinct
phases. We have also studied the dynamics of exciton
condensate density and phase fluctuations and calculated the
associated collective mode spectra.

The topic of exciton condensation in semiconductors has a
long history and our work is related to some earlier studies.
For example, Berman et al. [43] studied exciton condensation
in bilayers formed from gapped graphene, although the pos-
sibility of two distinct condensate phases was not considered.
The phase transition between the two condensate phases as a
function of layer separation was studied previously [44,45] for
the case of quantum well bilayer excitons, and further explored
in a very recent publication [46]. The TMD layers considered
in this paper are distinguished from semiconductor quantum
well systems by exciton binding energies that are an order of
magnitude larger, and by spin-valley coupling which leads to
twofold degenerate valence bands and approximately fourfold
degenerate conduction bands. Compared to Refs. [45,46], we
used a completely different approach to derive an interacting
boson model. Our approach is physically transparent, and is
based on a variational wave function defined by parameters
whose quantum fluctuations are characterized by using a
Lagrangian formalism. The bosonic nature of excitons is
automatically taken into account in the Lagrangian, and there
is no need to calculate combinatorial factors arising from the
indistinguishability of bosonic particles. Our approach pro-
vides a simple yet systematic way to model the exciton-exciton
interaction. We have also discussed a fermionic Hartree-Fock
approach from which the exciton-exciton interaction strengths
can be extracted with similar results, and proposed that the
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interaction strengths can be experimentally determined by
performing capacitance measurement.

Because the hBN dielectric barrier in the systems of interest
must be thick enough to make interlayer tunneling weak,
Fig. 1 implies that phase I with a single condensate flavor
is more likely to be realized in experiment than phase II.
Phase I breaks the invariance of the system Hamiltonian under
separate valley rotations in conduction and valence bands,
and is ferromagnetic in the sense that infinitesimal Zeeman
coupling leads to a spin polarization that is proportional to the
exciton density.

In spit of their large gaps, band edge states in TMDs
have relatively large Berry curvatures [28]. In monolayer
TMDs momentum space Berry curvatures lead [8] to unusual
excitonic spectra in which hydrogenic degeneracies are lifted.
Band Berry curvatures should be less important in spatially
indirect exciton systems because weaker binding implies that
the exciton states are formed within a smaller region of
momentum space. In terms of its influence on quasiparticle
bands, exciton condensation has the effect of preventing gaps
between conduction and valence band states from closing.
Since the host semiconductor materials are topologically
trivial, and since transitions between trivial and nontrivial
states can occur continuously only when the quasiparticle
charged excitation energy vanishes, we argue that exciton
condensation will not result in interaction-driven topologically
nontrivial states in our system.

The critical temperature of spatially indirect exciton
condensate is the Berezinskii-Kosterlitz-Thouless transition
temperature, given at low exciton densities by the weakly
interacting boson expression

kpTi T 13— =2 6(na*2)—R * (30)
~ ]. . )
BIBK M B M y

where M is the electron-hole pair total mass and m is the re-
duced mass. In the low exciton density limit k3 Tgxr scales lin-
early with exciton density [37,47]. For the MoS, /hBN/MoTe,
heterostructure and exciton densities 7 in the 10'2 cm—2 range,
na§2 ~ 0.01 and Tgkr is about 10 K. The maximum possible
transition temperature is closely related to the critical density at
which the Mott transition to an electron-hole plasma occurs,
and this increases as d/aj decreases. Using the variational
Monte Carlo estimate of DePalo ef al. [34] the critical value of
naz2 ~ 0.3 asd/ay — 0. From this we conclude that k3 Tgkr
cannot exceed around 300 K. Adjustment of exciton density
by external bias voltage can be employed to search for the
highest transition temperature and to study the Mott transition
to an ungapped electron-hole plasma that is expected at high
exciton densities. The most interesting regime is likely to be the
case of very small layer separations of which current leakage
driven through the tunnel barrier by an interlayer bias potential
might be appreciable, requiring the bilayer to be treated as a
nonequilibrium system.

The exciton condensate should be experimentally realizable
in TMD bilayers provided that samples with sufficiently weak
disorder can be achieved. The photoluminescence linewidth
W of an individual monolayer TMD is a particularly useful
characterization of sample quality for this purpose. W is
currently dominated [48] by the position dependence of
exciton energies. Therefore, the narrower the linewidth W,
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the weaker the disorder, and the better the sample quality. We
expect bilayer exciton condensation to occur only in samples in
which W < kpTgkr, since the excitons will otherwise simply
localize near positions where they have minimum energy.
Note that the inhomogeneous broadening W of spatially
indirect excitons will not be experimentally accessible since
the corresponding transitions are optically inactive when the
interlayer tunneling is negligible, but that it should be similar
to the broadening of the readily measurable direct exciton
energies. It should therefore be possible to judge on the
basis of optical characterization when samples have achieved
sufficient quality to study spatially indirect exciton condensate
physics.
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APPENDIX A: INTERACTING BOSON MODEL FOR
EXCITONS IN THE LOW DENSITY LIMIT

In the low density limit, excitons can be approximated
as interacting bosons. We take a BCS-like variational wave
function to describe excitons,

W) = J%,exp(sz*nvac),

. (A1)
QJ[ = Zkvcaéav,
v.C

where C and V, respectively, denote a conduction and valence
band state, and include internal indices such as spin and valley
and ;}lso momentum label. |vac) is the vacuum state defined
by aI,|vac) = ac|vac) = 0. QF operator creates particle-hole
excitations on top of the vacuum. N is a normalization
factor so that (W|W) = 1. Ly is a set of complex variational
parameters, which are small when the exciton density is
low.

The density matrix with respect to |W) iS pug =
(\IJ|a§,a5|\I/), where @ and S can be conduction or valence
states. We expand the density matrix to fourth order in Ay,

pyy ~ (SVV/ + (_)L)\«T + )\')\T}")\'T)VV"
pce ~ OFn = At ee, (A2)
pve ~ (v = A )ye,

where A is understood to be a matrix and Al is its Hermitian
conjugate.

We introduce another matrix A so that pcc has a quadratic
form without fourth-order correction,

A=A+ LAATA. (A3)
Expanding p up to fourth order of A, we have that
pvv ~ Syyr — (AA vy,
pec = (AT A)ce, (A4)

pve ~ (A — SAATA), .
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The number of excitons is (Nex) = > ¢ pcc ~ TrATA. There-
fore we verify that A acts as the small parameter in the limit
of low (Ngy).
An important property of the density matrix is that
pP—p =0, (AS5)
which indicates that |W) can be approximated as a Slater
determinant up to fourth order in A [40].
|W) parametrizes a family of states with electron-hole
coherence, and also represents low-energy states in the low-
exciton density limit. We choose to construct an effective
interacting boson model using this variational wave function
approach rather than a commonly used auxiliary field approach
because of the necessity of consistently accounting for both
exchange and Hartree mean fields in spatially indirect exciton

systems. (See additional discussion below.) To study low-
energy dynamics, we construct a Lagrangian based on |WV),

L= (V]io, — HW) = B—™H, (A6)

and again expand everything to A*. This Lagrangian provides
an effective field theory for excitons. The Berry phase has the
following form:

B = (V|ij|V) ~ %{Tr[ATalA] —Tr[(3,AHAY}, (A7)

which does not have fourth order corrections.

To calculate the energy functional H, we take advantage of
the Slater determinant approximation [40] to |V) [Eq. (AS)]
and obtain

H = (UH|W) ~ H? + HD + H, (A8)

where H® is quadratic in A, and M}y is quartic in A
with subscript H and X representing Hartree and exchange
contributions. The explicit forms are below:

HP = (ec — SV)ATCVAVC
- WV]C]CszALlVZAvl(jz?

Hy = $Wecee (AT M) e (AT Aeye,
+ Wy, Vv (AADy v, (AA Dy,
— Wycen(AADy v (ATA) e c, .

H()?)= %WV.CICZVZAEIVZ(AATA)VICZ
+ IWvcien(ATAAY e v, Ay,
—IWe e, (AT A o, (AT A)eye,
— Wy (AAD Y v (AA D,y

(A9)

Here ¢c and ey are conduction and valence state energy
including self-energy effects. The interaction kernel W has
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the form

W(ﬂ 1kD 2k (n3k3) (k)

1

= 28”1”48”2”36%-‘!-122,123-"4:4 Wnlnz(kl - k4), (AIO)

where the momentum dependence is now explicit, and n
denotes internal indices. A is the area of the system. W, ,,(q)
is the intralayer interaction V(g) if both n; and n, represent
conduction or valence bands, and the interlayer interaction
U (q) otherwise.

We now write H® in a more concrete form

Rk + QY K2
HP = A [( k+0 =)o

. 5)(c.k+0) 2m, 2my,

— %U(k - k’)]A(UJ;,)(C’,;,JrQ). (A1)
Here v and ¢ denote different valence and conduction bands.
We approximate ¢ and ey by parabolic bands, and assume
different valence (conduction) bands have the same hole
(electron) mass my; (m,). In the case of TMDs, these are
reasonable approximations, and v and c, respectively, take
two and four different values.

H® can be reduced into a diagonal from by doing the
following decomposition:

1
WK k+0) = JA

where B, 5 is a complex field that depends on momentum Q

A F&+x10)B 05 (A12)

but not on k. xp = my, /M, where the total mass M = m, + my,.
For notation convenience, we also introduce x, = m,/M =
1 — x;. f(k) is the 1s wave function for a single exciton,

hzkzsﬂ Yol sy = —E, 1 Al3
[gw—z(— )i|f()—_bf()a (A13)

where the reduced mass m = m,mj;, /M, and E}, is the binding
energy for ls state. The normalization condition is

1 N
T2 f®P=1.
k

Here we have chosen f (12) to be real. In Eq. (A12), f (12 +
x; Q) is the wave function for an exciton with center-of-mass
momentum Q.

By substituting Eq. (A12) into Egs. (A7) and (A9) we obtain

(A14)

~ L(p*
B~ 2(B(U0)Q

h2 Q2 . )
H=3. o B 1) B Buoo
I

1 A * *
+ ﬂ Z {gH(Q14)B(vc)Q1 B(v/c/)Qz B(U/C/)Q% B(UL')sz

s A * *
+ gX(Q137 Q14)B(UL')Q1 B(U/L")Qz

O Byerg — B(UC)QB,B(*UC) Q), (A15)

B B

(ve) 04 }
(A16)

(v'e)03

The Berry phase B has the same form as that in the field-theory
functional integral representation of a standard interacting
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boson model, which suggests that the Lagrangian £L = B — H
is a functional field integral representation of a boson model
[38]. By replacing the complex numbers (B*, B) with bosonic
creation and annihilation operators (Bf,B) in the energy
functional H, we arrive at the boson model (5) in the main
text.

gn(q) is derived from H'Y, and has the following analytic
expression:

g8(@) = V@IF(x.9)* + F(xxq)*] — 2U(@) F (xeq) F (x1q),
(A17)

where

I o
F@ = R fk+9). (A18)
k

For zero-momentum transfer, gy(0) =2[V(0) — U(0)] =
dme’de.
gx(Q13,014) is derived from H(;(D, and can be further
decom, d i =gl 0@ o 4y
posed into two parts gx = gy’ — &y . & arises from
the loss of interlayer exchange energy as more excitons
condense, while —gﬁ?) comes from the gain of intralayer
exchange energy as electron or hole density increases. The

explicit forms of g§}’2> are below:

£¢(013,010)
1 L
= 5 2 UG =R)f@) £+ Gl f (k + On)

ki

x fk+ Qe+ On) + fk— O fk+ O — O]
1 h?k? 5 s o - S
=<2 (Eb + 5 )f(k)f(k + 0ol f (k+ On)
Z m

X fk+ Qe+ On) + fk — O fk+ O — O,
(A19)

89013, 01)
= 5 DV k=K + 00 f 0 f &) fk+ On)

ik
X f(K'+ On) + Vk —K + 0n) fk) f(K)
X flk+ Q) f(K + 0},

where ée = xeélg and éh = Xp é14. According to Eq. (A19),
ggfl) can also be interpreted as the increase of kinetic energy
due to the increase of the exciton density. The diagrammatic
representation of different processes for the exciton-exciton in-
teraction is shown in Figs. 6 and 7. The momentum dependence
of the interaction strength gy x is illustrated in Fig. 8. Both gy
and gy have a strong momentum dependence, which indicates
that exciton-exciton interaction are long ranged instead of short
ranged.

The problem of exciton-exciton interaction has been studied
using many different methods in the literature [22,45,46,49—
51]. Here we used an alternative approach based on a

(A20)
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_..<._.
(a

FIG. 6. Feynman diagrams for the Hartree exciton-exciton in-
teraction processes. A double line with arrow represents an exciton
state, and a single solid (dashed) line with arrow depicts an electron
(hole) in the exciton. Wavy lines are interaction V (g) or U(g). (a) and
(b) Intralayer contributions, while (c) is the interlayer contribution.
The three terms in H(ﬁ) [Eq. (A9)] and also the three terms in g5 (g)
[Eq. (A17)] correspond to (a), (b) and (c).

variational wave function combined with the Lagrangian
formalism. The functional field integral representation of the
boson model in Eq. (5) is exactly given by the Lagrangian
L with Berry phase B in Eq. (A15) and energy function H
in Eq. (A16) [38]. This property establishes the equivalence
between the Lagrangian and the boson model. In fact, all
results obtained using the boson model can be equivalently
derived from the Lagrangian. The phase transition between
phase I and II can be determined by the minimization of the
energy functional (A16) with the ansatz that (B*, B) is spatially
uniform and time independent. The collective mode studied
in Appendix C can be obtained using the Euler-Lagrange
equation of the Lagrangian.

There are other approaches in constructing an effective the-
ory of bosonic excitation in an interacting fermion system. One
example is the standard Hubbard-Stratonovich transformation.
There is however a certain arbitrariness in decomposing
electron-electron interactions into Hartree or Fock channels
in the Hubbard-Stratonovich scheme [38]. The HS approach
is not appropriate here because a proper description of the
spatially indirect exciton condensate requires that Hartree and
Fock interactions to be treated on the same footing.

T T

U@y, b U@

:):O_é_ .,(a).__é_oi ﬂzg_é__./(b). T

_ <l . '<-§-—--<_.__
iov(f?) e O:; iq/@gx O:’E

-’

:}:O.é._. ;c;.__é.oi ¢=O<Z

FIG. 7. Feynman diagrams for the exchange exciton-exciton
interaction processes. The convention is the same as in Fig. 6. (a) and
(b) The interlayer contributions, which correspond to the first two
terms in ’HS?) [Eq. (A9)] and the two terms in gg(l) [Eq. (A19)]. (c) and
(d) The intralayer contributions, which correspond to the lase two
terms in H(}?) [Eq. (A9)] and the two terms in gf) [Eq. (A20)].
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3 (a) d/ag=0.1
S
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> 0 —
&, 9x(4,9)
S~
S
9x(4,0)
-3
0o 1 2 3 4, 5 6 7 8
qap
(b) d/a}=0.5
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ﬁé‘“ . 9@
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FIG. 8. (Color online) gx(q), gx(g,0), and gx(g,qG) as a function
of momentum. d/aj; is 0.1 in (a) and 0.5 in (b). m, = m,, is assumed.

APPENDIX B: INTERACTING BOSON MODEL FOR
EXCITONS WITH ZERO CENTER-OF-MASS MOMENTUM

We consider another variational wave function with all
excitons condense into zero center-of-mass momentum state:

W) =[ | [sl(/_é)all,; + f k) Zb@lc)aj,;}

k
x [x(/bajl (Fa®al 4 f®Y b@zc)aj,;} 10,

(B

where v; = 1 and v, = 2, representing two valence bands, and
c represents different conduction bands. f (ié) is the exciton
wave function in Eq. (A13). b are complex parameters,
which are independent of momentum k. In |0), both valence
and conduction bands are empty, a ;|0) = a,;|0) = 0. Factors
s Lz(l_c}) and x(l_é) are determined by normalization and orthog-
onality conditions. By normalization conditions we have

S](/_é) = \/1 - f(]_é)2 Z ’b(vlc)‘z’

(B2)

s2(k) = \/1 — I ®R = FER2 Y |buo”

c

To ensure that at each momentum & the two occupied states
are orthogonal to each other, we require that

1B x (k) + FR DB by = 0. (B3)
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Similar to the procedure in Appendix A, we expand
the energy functional (Wo|H|W,) to fourth order in b,
and then replace complex numbers (b{,.bwc)) by operators

(B(Tvc)()’B(vc)ﬁ) /~/A, which gives rise to the same boson model
in Eq. (A16) except that all momenta are restricted to be

ZEro0.

APPENDIX C: COLLECTIVE MODES IN THE
INTERACTING BOSON MODEL

The collective modes can be calculated analytically using
the interacting boson model. The strategy is to shift a bosonic
operator by its mean-field value,

Bios = (Bu)95.0 T Loy (C1)

where b, is also a bosonic operator that describes fluctu-
ations around the mean-field state. The bosonic Hamiltonian
in Eq. (5) is then expanded to second order in (b,b). The
first order terms vanish as the energy functional in Eq. (8) is
minimized in the mean-field state. The quadratic terms can
be diagonalized using the Bogoliubov transformation, giving
rise to the collective mode spectra. We present the dispersion
and degeneracy of collective modes in phase I and II without
giving the details of the derivation.

In phase I there are five gapless modes, and three gapped
modes. Given the mean-field value in Eq. (10), (bT,b)(w.) with
different composite index (vc) are decoupled. The (vc) = (11)
mode is gapless, which is the Goldstone mode due to the
spontaneously broken U (1) symmetry, i.e., the separate charge
conservation within each layer. Its dispersion is

1202 - 02 -
wu]):\/[ 2AQ4 +(2gH+g+><Q>nl][ 2AQ4 +g-(Q)nr],

£+(0) = gx(0,0) + gx(0,0) — gx(0,0) £ gx(0,0), (C2)

where g,(é) has a Q% dependence at small Q Therefore, the
(11) mode has a linear dispersion in Q — 0 limit.

The (vc) = (12), (13), and (14) modes are degenerate, with
a gapless dispersion:

22

o + [£:(0,0) — £.(0,0)]n, (C3)

w(12) =

which has a quadratic Q dependence in Q — 0 limit.
Similarly, the (vc) = (21) mode is also gapless and quadratic
at small Q:

202

2M

w1 = +[8:(0.0) — g:(0,0)]ny. (C4)

The (vc) = (22), (23), and (24) modes are degenerate and
gapped:
22

2M

w22 = — gx(0,0)ny, (C5)

which shows that phase I is stable against small fluctuations
provided that g,(0,0) is negative.
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TABLE II. Classification of collective modes in phase I and II.
Ngappea 18 the number of gapped collective modes. Ny and N, are,
respectively, the number of gapless collective modes with linear and
quadratic dispersion. Npsg is the number of the broken symmetry
generators.

Napped N N, Ngsa
Phase 1 3 1 4 9
Phase 11 0 4 4 12

In phase II the mean-field values are given in Eq. (12) and all
eight collective modes are gapless. The (vc) = (11) and (22)
fluctuations are coupled, and give rise to two nondegenerate
gapless modes:

n?Q? ~n
w(11),(22) = \/[W + (4gn + g+)(Q)§}

hZQZ =~ N
X \/[ i +g—(Q)7},

202 B 202 §

(Co)

both of which have a linear dispersion at small Q.

The (vc) = (12) and (21) fluctuations are also coupled, and
lead to two modes that are degenerate with @} o).

The (vc) = (13), (14), (23), and (24) fluctuations are
decoupled, and have degenerate collective modes:

2?2

2M

w13) = +[8:(0.0) — g.x(O,O)]%, €N

which has a quadratic dispersion at small Q.

In Table II we list N| and N,, respectively, the number of
gapless collective modes with linear and quadratic dispersion,
and Npsg, the number of the broken symmetry generators for
each phase. There is a relationship among these three numbers
in both phase I and I,

Ni + 2N> = Nisg. (C8)

This relationship is typical for broken symmetry states in
system without Lorentz invariance [52].

APPENDIX D: EXPLICIT EXPRESSIONS
FOR £; ;(0) AND T; ;(Q)

Below are explicit expressions for E,;,,;(Q) and
Iy, ﬁ(é), which appear in the energy variation §E® in
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Eq. (22):

PHYSICAL REVIEW B 92, 165121 (2015)

- 1 - -
(D=6 ;6 — G+ Er+Epp)+ X[V(Q) = Vik = pIugupvi, 5V5.06 + ViVilliioUpeo)

— U@ pug, 5V G + UV U4 5) —

1o
F Uk = P)ugupup, gl o + ViVivesgVprg):

(D1)

- ] - - - N ] -
F,;’,;(Q) = X[V(Q) —Vk+ Q- p)](u;uﬁv;+évﬁ_é + v,;vﬁu,g+éuﬁ_é) — XU(Q)(UEuﬁu,;+QUﬁ_Q + u,;v,;v,;+éuﬁ_é)

1 - -
+ ZU(k + Q- p)(v,;uﬁv,;JrQu#Q + u,;vﬁu,-@révﬁfé),

where u; and v are defined in Eq. (19), and V(é) and U (Q) are, respectively, intralayer and interlayer Coulomb interactions.
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