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Topological charges of three-dimensional Dirac semimetals with rotation symmetry
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In general, the stability of a band crossing point indicates the presence of a quantized topological number
associated with it. In particular, the recent discovery of three-dimensional Dirac semimetals in Na3Bi and Cd3As2

demonstrates that a Dirac point with fourfold degeneracy can be stable as long as certain crystalline symmetries
are supplemented in addition to the time-reversal and inversion symmetries. However, the topological charges
associated with Na3Bi and Cd3As2 are not clarified yet. In this work, we identify the topological charge of
three-dimensional Dirac points. It is found that although the simultaneous presence of the time-reversal and
inversion symmetries forces the net chiral charge to vanish, a Dirac point can carry another quantized topological
charge when an additional rotation symmetry is considered. Two different classes of Dirac semimetals are
identified depending on the nature of the rotation symmetries. First, the conventional symmorphic rotational
symmetry which commutes with the inversion gives rise to the class I Dirac semimetals having a pair of Dirac
points on the rotation axes. Since the topological charges of each pair of Dirac points have the opposite sign, a
pair creation or a pair annihilation is required to change the number of Dirac points in the momentum space. On
the other hand, the class II Dirac semimetals possess a single isolated Dirac point at a time-reversal invariant
momentum, which is protected by a screw rotation. The nonsymmorphic nature of screw rotations allows
the anticommutation relation between the rotation and inversion symmetries, which enables to circumvent the
doubling of the number of Dirac points and create a single Dirac point at the Brillouin zone boundary.
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I. INTRODUCTION

After the discovery of graphene, a class of materials,
dubbed Dirac semimetals, have come to the fore of condensed
matter research. In general, a Dirac semimetal has several
Fermi points around which pseudorelativistic linear dispersion
relation is realized. This pseudorelativistic energy dispersion
forces the density of states on the Fermi level to vanish without
opening of an energy gap, which is the unique property of
Dirac semimetals distinct from ordinary metals or insulators
[1]. In particular, the recent theoretical prediction [2,3] and
the experimental confirmation [4–10] of three-dimensional
(3D) Dirac semimetals in Na3Bi and Cd3As2 demonstrate that
there are a variety of materials realizing Dirac semimetals in
both two dimensions and three dimensions. Such a diversity
of Dirac materials requires us to find a systematic way to
characterize and classify them.

In general, the stability of nodal points in a Dirac semimetal
has topological origin. This is because there is no characteristic
energy scale, such as the Fermi energy or the energy gap,
characterizing the perturbative stability of the system. For
instance, a nodal point in graphene carries a quantized
pseudospin winding number that is defined on a loop encircling
the Dirac point [1]. On the other hand, a nodal point in 3D
Weyl semimetals is endowed with a Chern number defined
on a two-dimensional (2D) closed surface surrounding the
Weyl point [11]. The presence of such a quantized topological
charge carried by a nodal point guarantees its stability, hence a
nodal point can be annihilated only by colliding with another
nodal point with the opposite topological charge as long as
the symmetry of the system is preserved. Recently, there
have been several theoretical studies which attempt to classify
the topological invariants of nodal points, and to extend the

concept of topological band theory to gapless systems such as
semimetals and nodal superconductors [12–28]. However, in
our opinion, a proper definition of the topological charge of
Dirac points in Na3Bi or Cd3As2 has not been given so far.

Dirac points in Na3Bi or Cd3As2 are protected by the time-
reversal (T ), the inversion (P ), and the rotation symmetries
[2,3,22]. The experimental observation of Dirac points in
these systems demonstrates their stability, hence the presence
of topological invariants associated with them. Moreover, the
theoretical observation of pair annihilation and pair creation of
Dirac points [22,29] indicates that the topological charges of
the two Dirac points should have the opposite sign. Then,
the question is what the nature of the topological charge
is associated with the Dirac points. Considering the two
dimensionality of the sphere surrounding a Dirac point, the
natural candidate is either a Chern number similar to the
case of Weyl semimetals, or a Z2 invariant associated with
T symmetry satisfying T 2 = −1. However, the simultaneous
presence of the time-reversal and the inversion symmetries
forces the Berry curvature to be zero at each momentum,
hence the Chern number of the Dirac point, which is basically
the integral of the Berry curvature, also vanishes. Moreover,
a Dirac point can carry a Z2-topological charge only in
the presence of SU(2) spin rotation symmetry together with
time-reversal and inversion symmetries satisfying (T P )2 = 1
as shown in Ref. [23]. These indicate that a special care is
required to find the topological charge of a Dirac point in
Na3Bi or Cd3As2, which should obviously be distinct from the
monopole charge of Weyl semimetals.

In this work, we will show that the Dirac points in Na3Bi
or Cd3As2 are characterized by topological invariants of
zero-dimensional subsystems defined on the rotation axis.
Since the rotation eigenvalue is a good quantum number on the
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rotation axis, a zero-dimensional topological invariant can be
defined by comparing the rotation eigenvalues of the valence
and conduction bands at two points enclosing a Dirac point.
We find that the nature of 3D Dirac semimetals strongly
depends on the nature of the rotation symmetry. Namely,
the ordinary symmorphic rotation symmetry commuting with
the inversion symmetry always creates a pair of Dirac points
having the opposite topological charges, and generates class I
Dirac semimetals. Both Na3Bi and Cd3As2 belong to this class.

On the other hand, we find a different class of Dirac
semimetals when the system has a screw rotation symmetry.
In general, the presence of nonsymmorphic symmetries, such
as screw rotations and glide mirror symmetries, guarantees
a nontrivial band connection at the Brillouin zone boundary
[30–33]. Also, it is proposed that when the double space
group of nonsymmorphic crystals satisfies certain conditions,
a Dirac point can be realized at the Brillouin zone boundary
[25]. Consistent with these results, our theoretical study shows
that when the band degeneracy at the zone boundary is
compatible with the time-reversal and inversion symmetries,
a single isolated Dirac point can be created on the rotation
axis. Based on this observation, we define a class II Dirac
semimetal which is protected by a screw rotation symmetry
and the inversion, which are mutually anticommuting, in
addition to the time-reversal symmetry. The partial translation
associated with a screw rotation adds a U(1) phase to the
rotation eigenvalue, which varies on the rotation axis. This
projective nature of a screw rotation enables to circumvent the
doubling of Dirac points, and create a single isolated Dirac
point at a time-reversal invariant momentum at the Brillouin
zone boundary.

The rest of the paper is organized in the following way. We
describe the general idea to define a topological charge in sys-
tems with rotation symmetry in Sec. II. Based on this general
idea, class I Dirac semimetals are defined and systematically
classified in Sec. III. In particular, we show that the doubling
of Dirac points is unavoidable in class I Dirac semimetals.
Section IV is about the nontrivial band connection generated
by nonsymmorphic screw rotation symmetries. Here, we show
that the partial translation associated with a screw rotation in-
duces a momentum-dependent U(1) phase factor to the rotation
eigenvalue, which enables to circumvent the fermion number
doubling and protects a single Dirac point at the Brillouin
zone boundary. Based on the discussion in Sec. IV, class II
Dirac semimetals are defined and systematically classified in
Sec. V. We present the conclusion and discussion in Sec. VI.
In the Appendix, we prove that there is no stable Dirac
semimetal in systems only with the time-reversal and inversion
symmetries based on K-theory approach. The classification of
Dirac semimetals in C2-invariant systems shown in the main
text is also confirmed by using the K-theory approach. Finally,
we present a short discussion about the stability of 2D Dirac
semimetals protected by twofold screw rotations.

II. GENERAL IDEA: ROLE OF ROTATIONAL SYMMETRY
IN SYMMORPHIC CRYSTALS

In general, electronic systems having only the time-reversal
(T ) and inversion (P ) symmetries cannot support a stable
Dirac point with a quantized topological charge [11,34,35]. In

kN
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FIG. 1. (Color online) Local geometry around a Dirac point at
k = k0 sitting on the rotation axis. The sphere surrounds a Dirac
point at the center. kN and kS mark the points on the sphere crossing
the rotation axis.

Appendix A, we have revisited this known fact in a different
perspective and proved it by using K-theory approach. Thus,
additional crystalline symmetries play a crucial role to stabilize
Dirac semimetals realized in Na3Bi and Cd3As2. Here, we
consider the role of the additional rotation symmetry (CN )
in addition to P and T . For convenience, we first focus
on 3D crystals with a symmorphic space group symmetry
in which the point group can be completely separable from
pure translation operations. Also, we choose the z axis as the
axis for CN rotation with N indicating the discrete rotation
angle of 2π/N (N = 2,3,4,6). Under the operation of the CN

symmetry, the Hamiltonian satisfies

CNH (kx,ky,kz)(CN )−1 = H (k̃x,k̃y,kz), (1)

where (k̃x,k̃y) is obtained from 2π/N rotation of (kx,ky),
i.e., (k̃x + ik̃y) = (kx + iky)e2πi/N . The symmetry operators
satisfy

T 2 = −1, (CN )N = −1, P 2 = 1, (2)

and

[T ,P ] = 0, [T ,CN ] = 0, [P,CN ] = 0, (3)

where we have considered the fact that an electron is a spin- 1
2

particle.
Now, let us explain the general idea of how to determine

the topological charge of a Dirac point locating at a generic
point k0 = (0,0,k0

z ) on the rotation axis. To determine the
topological charge, we first consider a sphere in the momentum
space surrounding the Dirac point at k = k0 in a CN symmetric
way as shown in Fig. 1. Namely, the center of the sphere sits on
the rotation axis. At every point on the sphere, the Hamiltonian
is invariant under the compound antiunitary symmetry PT

satisfying (PT )2 = −1. Moreover, the intersection of the kz

axis and the sphere consists of a north pole at kN = (0,0,kN
z )

and a south pole at kS = (0,0,kS
z ), which are invariant under

the rotation. We define the topological charge of the Dirac point
from the topological numbers associated with these two points.
Since the Hamiltonian commutes with the rotation operator CN
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at these points,

[H (kN/S),CN ] = 0, (4)

hence H (kN/S) can be block-diagonalized in the eigenspace
of CN with the eigenvalues Jm given by

Jm = exp

(
i
2m + 1

N
π

)
, m = 0, . . . ,N − 1. (5)

Since the PT symmetry is not satisfied in each CN eigenspace
with a given Jm in general (one exceptional case is shown
in Sec. III B), each diagonal block of H (kN,S) belongs to the
symmetry class A in terms of the Altland-Zirnbauer classifica-
tion scheme [36], hence carries an integer topological number
nN,S

m . Here, nN
m or nS

m indicates the topological invariant of a
zero-dimensional system belonging to the symmetry class A,
which is defined as

nN
m ≡ 1

2 [Nc(Jm,kN ) − Nv(Jm,kN )], (6a)

nS
m ≡ 1

2 [Nc(Jm,kS) − Nv(Jm,kS)], (6b)

where Nc/v(Jm,k) denotes the number of conduction bands (c)
or valence bands (v) with the eigenvalue Jm at the momentum
k. It is worth to note that a trivial conduction or valence band
with a constant energy can always be added to each Jm sector,
so that the sum nN

m + nS
m can be changed freely. Therefore, the

nontrivial topological number in the Jm sector is determined
by the difference

νm ≡ nN
m − nS

m. (7)

Next, let us consider possible constraints to the allowed νm

values. For a gapped system defined on the sphere, the number
of conduction bands and that of valence bands are constants
independent of the momentum on the sphere, which leads to
the following constraint:∑

m

νm =
∑
m

(
nN

m − nS
m

)
=
∑
m

{[Nc(Jm,kN ) − Nc(Jm,kS)]

− [Nv(Jm,kN ) − Nv(Jm,kS)]}
= 0. (8)

Moreover, since PT symmetry imposes additional constraints
between different νm values, the number of independent
topological invariants depends on the details of the symmetry
as shown in Secs. III and V. However, as long as a Dirac point
possesses a nonzero νm value, it guarantees the stability of
the relevant Dirac point. Hence, the set of nonzero νm can be
considered as a topological invariant characterizing a stable
Dirac point.

III. CLASS I DIRAC SEMIMETALS

Class I Dirac semimetals are protected by the ordinary
rotation symmetry commuting with an inversion symmetry,
i.e.,

[P,CN ] = 0. (9)

Let us consider the eigenstate |ψm〉 of the CN operator with
the eigenvalue Jm. The PT symmetry requires

CNPT |ψm〉 = PT CN |ψm〉
= PT Jm|ψm〉
= J ∗

mPT |ψm〉
= JN−m−1PT |ψm〉, (10)

from which we find PT |ψm〉 is an eigenstate of CN with
the eigenvalue JN−m−1. Therefore, when a state with the
eigenvalue Jm is occupied (or unoccupied), there should be
another occupied (or unoccupied) state with the eigenvalue
JN−m−1, which leads to the constraint

νm = νN−m−1. (11)

For further analysis, we distinguish two cases based on the
parity of N as shown in the following.

A. CN -symmetric systems with even N

Due to the PT symmetry, the CN eigenspaces with the
eigenvalues Jm and JN−m−1 can be paired as {Jm,JN−m−1} with
m = 0, . . . ,N/2 − 1 [see Fig. 2(a)]. Since PT interchanges
eigenspaces within each pair, PT is not a symmetry in each
eigenspace separately, and each eigenspace belongs to the
symmetry class A. Therefore, an integer topological invariant
defined in Eq. (6a) can be computed in each eigenspace with
Jm. Considering the constraints shown in Eqs. (8) and (11),
we conclude that the topological charge of the Dirac point is
given by (

ν0, . . . ,ν N
2 −2

) ∈ Z
N
2 −1. (12)

Therefore, the topological charge of a Dirac point with C4 or
C6 symmetry is an element of Z or Z2, respectively. At the
same time, it implies that a C2-invariant system cannot support
a stable Dirac point (see Table I).

B. CN -symmetric systems with odd N

When N is odd, the PT symmetry pairs the eigenspaces of
CN in a slightly different way as compared to even N cases

J0

JN-1N-1

J1

JN-2N-2

JN-1N-1
2

JN-3
2

JN+1N+1
2

N = oddN = odd

J0

JN-1N-1

J1

JN-2N-2

JN
2

N = evenN = even

-1

JN
2 -2

JN
2

JN
2 +1

(a)(a) (b)(b)

FIG. 2. (Color online) Constraints on the rotation eigenvalues
(a) for even N , (b) for odd N . The (black) solid circle indicates a
unit circle in the complex plane, and each (red) dot on the circle
denotes Jm. Two dots connected by a dotted line are related by the
PT symmetry, hence, only one of them is independent.
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TABLE I. Summary of topological charges of class I Dirac
semimetals.

CN Topological charge

C2 Not allowed
C3 Z
C4 Z
C6 Z × Z

as shown in Fig. 2(b). At first, we find 1
2 (N − 1) pairs of

eigenspaces

{Jm,JN−m−1}, m = 0, . . . ,
N − 3

2
. (13)

On the other hand, the remaining eigenspace with the
eigenvalue J(N−1)/2 is invariant under the PT symmetry,
hence belongs to class AII. Thus, in a block-diagonalized
Hamiltonian H (kN/S), there are 1

2 (N − 1) blocks belonging
to class A and an extra block with the eigenvalue J(N−1)/2

belonging to class AII. In both symmetry classes, zero-
dimensional systems have an integer topological invariant,
which is defined as the difference in the number of conduction
bands and that of valence bands. Hence, as in the even N case,
the topological charge can be defined as

νm = nN
m − nS

m (14)

in each eigenspace with the eigenvalue Jm. The constraints to
the topological numbers νm are

(i) νm = νN−m−1, m = 0, . . . ,
N − 3

2
(15)

(ii)
∑
m

νm = 0. (16)

Thus, the independent topological charge for a Dirac point is
given by

(ν0, . . . ,ν(N−3)/2) ∈ Z
N−1

2 . (17)

Therefore, a Dirac point with C3 symmetry has an integer (Z)
topological charge (see Table I).

C. Applications: Classification of stable Dirac points
in four-band systems

Let us apply the general theory developed above to minimal
four-band models, and classify stable Dirac points. In a
four-band model, a pair of doubly degenerate bands cross at
a Dirac point which we assume to sit on the Fermi level.
On the rotation axis k = (0,0,kz), each band is assigned with
a quantum number Jm. Since the pair of degenerate bands
should have different rotation eigenvalues to generate a stable
Dirac point, each band with the rotation eigenvalue Jm satisfies
nN

m = −nS
m. Namely, a band which is below (above) the Fermi

level at the momentum kN should be above (below) the Fermi
level at the momentum kS to have a Dirac point in-between.
Table II summarizes allowed topological charges of class I
Dirac semimetals for four-band models.

TABLE II. Topological charges of class I Dirac semimetals for
four-band models and relevant materials.

CN Four-band model Materials

C2 Not allowed
C3 ν1 = ±1 Na3Bi [2], strained TlN [39]
C4 ν1 = ±1 Cd3As2 [3]
C6 (ν1,ν2) = (±1,∓1)
C6 (ν1,ν2) = (±1,0)
C6 (ν1,ν2) = (0,±1)

1. C2-symmetric systems

Jm=0 = exp(iπ/2) = i and Jm=1 = exp(3iπ/2) = −i =
Jm=−1 are the only allowed C2 eigenvalues. Due to the
PT symmetry, a pair of eigenstates {|ψm=0(k)〉,|ψm=1(k)〉}
are always degenerate locally at each momentum k, hence,
n

N,S
m=0 = n

N,S
m=1 and Nm=0 = Nm=1. Then, a four-band model

can be constructed by introducing two pairs of eigenstates
{|ψA

m=0(k)〉,|ψA
m=1(k)〉} and {|ψB

m=0(k)〉,|ψB
m=1(k)〉}, where

A,B indicates the valence band (v) or the conduction band
(c), respectively. It is straightforward to show that nN,S

m = 0
(m = 0, 1), because if one state is occupied, among {|ψA

m (k)〉,
|ψB

m (k)〉}, the other state is unoccupied. Therefore, νm=0,1 = 0
and there is no stable Dirac point with a nontrivial topological
invariant in systems with C2 symmetry.

2. C3-symmetric systems

Possible C3 eigenvalues are Jm=0 = exp(iπ/3), Jm=1 =
exp(iπ ), Jm=2 = exp(5iπ/3). Due to the PT symme-
try, {|ψm=0(k)〉,|ψm=2(k)〉} and {|ψm=1(k)〉,|ψ̃m=1(k)〉} form
degenerate pairs, where |ψ̃m=1(k)〉 = PT |ψm=1(k)〉. Thus,
νm=0 = νm=2. Since νm=0 + νm=1 + νm=2 = 0, we have

ν1 ≡ νm=0 = νm=2 = − 1
2νm=1. (18)

Hence, there is only one independent topological number, ν1 ∈
Z. Since the topological charge of a Dirac point can be nonzero
only when the valence and conduction bands have different
rotation eigenvalues, a four-band model can be constructed
by using a basis {|ψA

m=0(k)〉,|ψA
m=2(k)〉,|ψB

m=1(k)〉,|ψ̃B
m=1(k)〉}

where A = v (c) and B = c (v). Since n
N,S
m=0 = n

N,S
m=2 =

− 1
2n

N,S
m=1 = ± 1

2 and nN
m = −nS

m for four-band models, the
Dirac point has a nonzero topological invariant

ν1 = ±1. (19)

3. C4-symmetric systems

Possible C4 eigenvalues are Jm=0 = exp(iπ/4), Jm=1 =
exp(3iπ/4), Jm=2 = exp(5iπ/4), Jm=3 = exp(7iπ/4).
Due to the PT symmetry, {|ψm=0(k)〉,|ψm=3(k)〉} and
{|ψm=1(k)〉,|ψm=2(k)〉} form degenerate pairs at each
momentum, thus νm=0 = νm=3 and νm=1 = νm=2. Since∑

m νm = 0,

ν1 ≡ νm=0 = νm=3 = −νm=1 = −νm=2, (20)

hence there is only one independent topological num-
ber ν1. Since the topological charge of a Dirac point
can be nonzero only when the valence and conduction
bands have different rotation eigenvalues, a four-band
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model with Dirac points can be constructed by using
a basis {|ψA

m=0(k)〉,|ψA
m=3(k)〉,|ψB

m=1(k)〉,|ψB
m=2(k)〉} where

A = v (c) and B = c (v). Since n
N,S
m=0 = n

N,S
m=3 = −n

N,S
m=1 =

−n
N,S
m=2 = ± 1

2 and nN
m = −nS

m for four-band models, the Dirac
point has a nonzero topological invariant

ν1 = ±1. (21)

4. C6-symmetric systems

In the presence of a C6 rotation symmetry,
{|ψm=0(k)〉,|ψm=5(k)〉}, {|ψm=1(k)〉,|ψm=4(k)〉}, and
{|ψm=2(k)〉,|ψm=3(k)〉} form degenerate pairs. Thus,
νm=0 = νm=5, νm=1 = νm=4, νm=2 = νm=3. Considering∑

m νm = 0, we can find two independent topological
numbers (ν1,ν2) ∈ Z2, which, for instance, can be defined as

ν1 ≡ νm=0 = νm=5,
(22)

ν2 ≡ νm=1 = νm=4.

However, for convenience, we can also use (νm=0,νm=1,νm=2)
to indicate the topological charge in which νm=0 + νm=1 +
νm=2 = 0. A four-band model can be constructed by choosing
two different pairs of eigenstates such as

{|ψm=0〉,|ψm=5〉 |ψm=1〉,|ψm=4〉},
{|ψm=0〉,|ψm=5〉 |ψm=2〉,|ψm=3〉}, (23)

{|ψm=1〉,|ψm=4〉 |ψm=2〉,|ψm=3〉}.
For a given four-band model, a nonzero topological number
νm = ±1 can be assigned if Jm is the eigenvalue of one of
the four bands. Whereas νm = 0 if Jm is the eigenvalue of
the other two states which are not included in the four-band
model. Therefore, the topological charges of the system are in
the form of

(νm=0,νm=1,νm=2) = (±1,∓1,0),

(νm=0,νm=1,νm=2) = (±1,0,∓1), (24)

(νm=0,νm=1,νm=2) = (0,±1,∓1),

for each case shown in Eq. (23), respectively. Then, the
corresponding (ν1,ν2) are

(ν1,ν2) = (±1,∓1),

(ν1,ν2) = (±1,0), (25)

(ν1,ν2) = (0,±1),

respectively.

D. Fermion number doubling in class I Dirac semimetals

Up to now, we have described how to determine the
topological charge of a single Dirac point. Now, let us compare
the topological charges of two Dirac points at the momenta
k0 and −k0. Due to the inversion symmetry satisfying
[P,CN ] = 0, the eigenstates at k and −k satisfy the following
relationship:

CNP |ψm(k)〉 = PCN |ψm(k)〉
= PJm|ψm(k)〉
= JmP |ψm(k)〉, (26)

which means that if there is an eigenstate with the eigenvalue
Jm at k, there should be a degenerate eigenstate with the same
eigenvalue Jm at −k. This imposes the following condition of

nN,S
m (k0) = nS,N

m (−k0). (27)

It is to be noted that the north (south) pole at k0 and the
south (north) pole at −k0 are interchanged under the inversion
symmetry. Thus, we obtain

νm(k0) = −νm(−k0). (28)

Since the net topological charge of the two Dirac points related
by the inversion symmetry is zero, we obtain the following
conclusions.

(i) The total topological charge of two Dirac points within
the first Brillouin zone should be zero in each angular
momentum channel (Jm), i.e.,∑

iD

ν(iD )
m = 0, (29)

where iD labels Dirac points. It is worth to note that this is
nothing but the Nielsen-Ninomiya theorem [37,38] for three-
dimensional Dirac semimetals.

(ii) A stable Dirac point with a nontrivial topological
charge cannot exist at a time-reversal invariant momentum
(TRIM) where k0 = −k0 modulo a reciprocal lattice vector
due to the relationship

νm(k0) = −νm(−k0) = −νm(k0) = 0. (30)

IV. SCREW ROTATIONS AND A SINGLE DIRAC POINT

A. Projective symmetry and circumventing
fermion number doubling

It is worth to note that the doubling of the number of
Dirac points in class I Dirac semimetals results from the
commutation relation [P,CN ] = 0 as discussed in Sec. III D.
This means that it may be possible to avoid the doubling of the
Dirac points, once the commutation relation is violated, i.e.,
[P,CN ] �= 0. However, the presence of a single Dirac point
on the rotation axis brings about a more fundamental problem,
when the periodic structure of the system is considered. This is
because the band crossing (or a nonzero topological charge of a
Dirac point) requires that the valence band and the conduction
band should have distinct eigenvalues, whereas the lattice
periodicity requires the continuity of the eigenstate and its
relevant eigenvalues as described in Fig. 3. Therefore, the
presence of a single Dirac point or an odd number of Dirac
points on the rotation axis sounds unphysical, when the rotation
symmetry exists along a line satisfying the periodic boundary
condition.

One possible way to circumvent the contradiction is when
the rotation symmetry is realized projectively. Namely, if the
rotation eigenvalue is well defined only up to an additional
phase factor, it is possible to create a single Dirac point
compatible with the lattice periodicity by adjusting the phase
degrees of freedom on the rotation axis. In fact, a screw rotation
is such an example of projective symmetry, which can support
a single isolated Dirac point as discussed in detail below.

165120-5



BOHM-JUNG YANG, TAKAHIRO MORIMOTO, AND AKIRA FURUSAKI PHYSICAL REVIEW B 92, 165120 (2015)

kz0 π 2π

J J 1,21,2

J 3,43,4

kz0 π 2π

J 1,21,2

J 3,43,4

(a)(a)

(b)(b)

FIG. 3. (Color online) Band structure along the rotation axis
(z axis) of (a) a class I Dirac semimetal and (b) a class II Dirac
semimetal. J1,2 and J3,4 are the rotation eigenvalues of each doubly
degenerate band. A band crossing requires J1,2 �= J3,4. In class I (II)
Dirac semimetals, the band crossing condition and the periodicity
of the eigenstates are compatible (incompatible) when J1,2,3,4 are
constant on the rotation axis.

A screw rotation (C̃N,p) is a nonsymmorphic symmetry
operation composed of an ordinary rotation (CN ) followed by
a partial lattice translation τp = p

N
ẑ (p = 1,...,N − 1) parallel

to the rotation axis. Here, ẑ is the unit lattice translation
along the z axis assuming that the screw axis is parallel to it.
Schematic figures describing all possible screw rotations in 3D
crystals are shown in Fig. 4. Let us note that, in many crystals,
the screw rotation axis does not pass the reference point of the
point group symmetry, which is invariant under point group

1
2 t 1

3 t

2
3 t

1
4 t

2
4 t

3
4 t

1
6 t

5
6 t4

6 t
2
6 t

3
6 t

(a)(a) (b)

(c)

(d)(d)

FIG. 4. (Color online) Schematic figure describing all possible
screw rotations C̃N,p in 3D crystals. In each figure, the system is
periodic under the lattice translation t along the vertical direction.
C̃N,p indicates a 2π

N
counterclockwise rotation combined with a partial

translation p

N
t . (a) C̃2,1 symmetry. (b) C̃3,p symmetry (p = 1,2).

(c) C̃4,p symmetry (p = 1,2,3). (d) C̃6,p symmetry (p = 1,2,3,4,5).

operations of the lattice. In this case, the partial translation
τp associated with the screw rotation C̃N,p also includes
in-plane translation components perpendicular to the screw
axis direction. Generally, C̃N,p can be compactly represented
as

C̃N,p = {CN |τp}, (31)

where

τp =
(
τp,x,τp,y,τp,z = p

N

)
. (32)

In the real space, C̃N,p transforms the spatial coordinates in
the following way,

C̃N,p : (x,y,z) → (x ′ + τp,x,y
′ + τp,y,z + τp,z), (33)

where

x ′ = x cos
2π

N
− y sin

2π

N
,

(34)
y ′ = x sin

2π

N
+ y cos

2π

N
.

Now, we consider the combination of a screw rotation and
the inversion symmetry. At first, we see

P C̃N,p : (x,y,z) → (−x ′ − τp,x, − y ′ − τp,y, − z − τp,z),

thus

P C̃N,p = {PCN | − τp}. (35)

Similarly,

C̃N,pP : (x,y,z) → (−x ′ + τp,z, − y ′ + τp,z, − z + τp,z),

thus

C̃N,pP = {PCN |τp}. (36)

Let us note that [P,CN ] = 0 in general. Equations (35) and
(36) clearly show that generally [P,C̃N,p] �= 0 due to the
partial translation τp, thus there is a chance to avoid the
doubling of the Dirac points.

In the presence of the screw rotation symmetry C̃N,p, the
Bloch Hamiltonian H (kz) on the rotation axis (kx = ky = 0)
satisfies

C̃N,p(kz)H (kz)C̃
−1
N,p(kz) = H (kz), (37)

where

[C̃N,p(kz)]
N = − exp(−ipkz). (38)

Here, the minus sign stems from the spin- 1
2 nature of electrons.

Therefore, all bands on the kz axis can be labeled by the
eigenvalues of C̃N,p(kz) given by

J̃m(kz) = exp

[
iπ

(2m + 1)

N

]
exp

(
−i

p

N
kz

)
= Jm exp

(
− i

p

N
kz

)
, (39)

where Jm is an eigenvalue of CN defined in Eq. (5). It is
worth to note that the eigenvalue of the screw rotation C̃N,p

is not Jm but Jm exp(−i
p

N
kz) which varies along the rotation

axis. Therefore, through the variation of this additional phase
factor, it may be possible to satisfy the condition for the band
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kzπ 5π−π−π 3π

J  (J  (k )  ) m z
~ 

m-pm-p zJ    (J    (k - -2π) ~ 

7π7π

m-3pm-3p zJ     (J     (k - -6π) ~ 

m-2pm-2p zJ     (J     (k - -4π) ~ 

FIG. 5. (Color online) The band connection required by a screw
rotation C̃N,p when the system is 2π periodic along the kz direction.

crossing to create a Dirac point and the periodicity (or the
continuity) of the eigenvalues, simultaneously, even in the
presence of a single Dirac point. In fact, the assignment of
nonquantized quantum numbers to fermions, such as J̃m(kz)
varying in the momentum space, is one way to get around
the fermion doubling problem, as pointed out by Nielsen and
Ninomiya in their seminal work [37,38].

B. Screw rotations and band connections at the zone boundary

The momentum dependence of screw rotation eigenvalues
J̃m(kz) shown in Eq. (39) induces nontrivial band connections
between different eigenstates at the Brillouin zone boundary.
For instance, if the system has 2π periodicity along the kz axis,
we find that

J̃m(kz + 2π ) = exp

[
iπ

(2m − 2p + 1)

N

]
exp

(
− i

p

N
kz

)
= J̃m−p(kz), (40)

thus, the eigenstate with the eigenvalue J̃m(kz) should be
smoothly connected to the other eigenstate with the eigenvalue
J̃m−p(kz) (J̃m+p(kz)) at the Brillouin zone boundary kz = π

(kz = −π ) as shown in Fig. 5. This naturally gives rise
to a band crossing point at the Brillouin zone boundary.
If this band connection is compatible with the T and P

symmetries, a single Dirac point can be realized at the
Brillouin zone boundary. The PT symmetry requires that the
state with the eigenvalue J̃m(kz) = Jm exp(−i

p

N
kz) should be

locally degenerate with the other state with the eigenvalue
J̃N−m−1(kz) = J ∗

m exp(−i
p

N
kz) at each kz. Similarly, we can

expect the degeneracy between two states with the eigen-
values J̃m−p(kz) = Jm−p exp(−i

p

N
kz) and J̃N−m+p−1(kz) =

J ∗
m−p exp(−i

p

N
kz), respectively. Here, the important point is

that the screw rotation requires a nontrivial band connection
between J̃N−m−1(kz) and J̃N−m+p−1(kz), similar to the relation
shown in Eq. (40). Namely,

J̃N−m−1(kz + 2π ) = J̃N−m−1−p(kz)

= J̃N−m+p−1(kz), (41)

which gives

N − m − 1 − p = N − m + p − 1 (mod N ), (42)

thus

p = N

2
. (43)

Since p is an integer, this condition can be satisfied only in
systems with C̃2,1, C̃4,2, C̃6,3 symmetries.

Let us note that, in 3D crystals, the periodicity along the
kz direction can be longer than 2π/az although the system
is periodic under the translation by az along the z direction,
unless az is a primitive lattice vector. (For instance, it happens
in the face-centered-cubic lattice.) Generally, when the system
is 2nπ periodic along the kz axis with an integer 1 < n < N ,

J̃m(kz + 2nπ ) = exp

[
iπ

(2m − 2np + 1)

N

]
exp

(
−i

p

N
kz

)
= J̃m−np(kz), (44)

thus, the eigenstate with the eigenvalue J̃m(kz) should be
smoothly connected to the other eigenstate with the eigenvalue
J̃m−np(kz) (J̃m+np(kz)) at the Brillouin zone boundary kz = nπ

(kz = −nπ ). Considering the PT symmetry and following the
same procedure that we have used to derive Eq. (43), we obtain

2np = 0 (mod N ). (45)

For example, when the system is 4π periodic (n = 2),
Eq. (45) can also be satisfied in systems with C̃4,1, C̃4,2,
C̃4,3, C̃6,3 symmetries. However, in systems with C̃4,2 and
C̃6,3 symmetries, a 4π shift merely maps an eigenstate into
itself, hence nontrivial band connection at the Brillouin zone
boundary is not expected. On the other hand, when the system
is 6π periodic (n = 3), Eq. (45) can be satisfied in systems with
C̃6,p symmetry where p = 1,2,3,4,5. However, in the case of
C̃6,2 and C̃6,4 symmetries, a 6π shift connects an eigenstate
with itself. Also in the C̃6,3 symmetric case, a 6π shift is
simply equivalent to a 2π shift, which is already considered
before. Hence, only the systems with C̃6,1 and C̃6,5 can support
a nontrivial band connection at the Brillouin zone boundary
kz = ±3π .

To sum up, in a C̃N,p-symmetric system satisfying p/N =
p′/N ′ with two coprime numbers p′ (an odd integer) and
N ′ (an even integer), two distinct C̃N,p eigenstates should be
connected to each other at the Brillouin zone boundary kz =
±N ′π/2. Namely, the eigenstate with the eigenvalue J̃m(kz)
should be smoothly connected to the other eigenstate with the
eigenvalue J̃m−N/2(kz) at the Brillouin zone boundary kz =
±(N ′π )/2 in the following way:

J̃m(kz + N ′π ) = exp

[
iπ

(2m − Np′ + 1)

N

]
exp

(
− i

p′

N ′ kz

)
= J̃m−Np′/2(kz)

= J̃m−N/2(kz), (46)

where we have used the fact that p′ is an odd integer and
m is well-defined modulo N . It is interesting to note that
the eigenvalue J̃m(kz) at the zone boundary kz = ±N ′π/2
becomes

J̃m(kz = ±N ′π/2) = Jm exp

(
∓ i

p′

2
π

)
= ∓iJm(−1)(p′−1)/2. (47)

Namely, the eigenvalue J̃m(kz) is simply given by ±iJm at
the zone boundary. This additional factor ±i gives rise to the
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following relations between the screw rotation C̃N,p and the
inversion P at the zone boundary k± = (0,0, ± N ′π/2):

P C̃N,p|k±〉 = ∓i(−1)(p′−1)/2PCN |k±〉,
(48)

C̃N,pP |k±〉 = ±i(−1)(p′−1)/2PCN |k±〉,

which can be easily derived from Eqs. (35) and (36). Hence,
P and C̃N,p anticommute when the Bloch state |k± = (0,0, ±
N ′π/2)〉 is used as a basis for the representation. From this,
we obtain the following general principle to create a stable
Dirac semimetal with a single Dirac point. Namely, note the
following:
� The Dirac point should be located at a TRIM at the Brillouin

zone boundary (kz = ±N ′π/2) where the screw rotation
symmetry anticommutes with the inversion symmetry.

C. Applications

In the following, we examine the possible Dirac semimetals
with a single Dirac point by considering various screw rotation
symmetries explicitly.

1. Twofold screw rotation ˜C2,1

A twofold screw rotation symmetry C̃2,1 has the following
two eigenvalues:

J̃0(kz) = J0 exp
(−i 1

2kz

) = exp
[− i 1

2 (kz − π )
]
,

(49)
J̃1(kz) = J1 exp

(−i 1
2kz

) = exp
[− i 1

2 (kz − 3π )
]
,

where

J̃m(kz = −π ) �= J̃m(kz = π ) (50)

for m = 0,1 and

J̃0(kz) = J̃1(kz + 2π ),
(51)

J̃1(kz) = J̃0(kz + 2π ).

Now, we prepare two bands �0(kz) and �1(kz) with an
eigenvalue J̃0(kz) and J̃1(kz), respectively, and construct a band
structure with a Dirac point. Here, the crucial point is that the
band �0(kz) [�1(kz)] should be smoothly connected to the
other band �1(kz) [�0(kz)] at the Brillouin zone boundary
(kz = ±π ) to satisfy Eqs. (50) and (51) as shown in Fig. 6.
This naturally gives rise to a band structure with a single band
crossing point at a TRIM. Considering the P or T symmetry,
there are two possible band structures having a single band
crossing point as shown in Figs. 6(b) and 6(c). In each case,
the band crossing point locates at a TRIM either at kz = 0
[Fig. 6(b)] or at kz = π [Fig. 6(c)]. However, let us note that,
due to the T P symmetry, the state with the eigenvalue J̃0(kz)
[J̃1(kz)] should be locally degenerate with the other state with
the eigenvalue J̃1(kz) [J̃0(kz)] at each momentum kz. This
requires that both conduction band and valence band should
have the same eigenvalues of J̃0(kz) and J̃1(kz), hence, a stable
Dirac point cannot be created due to the finite hybridization
between the valence and conduction bands.

11 z

kz

0 π−π

(b)(b)
J (J (k ) 1 z
~ 

J (J (k ) 0 z
~ 

kz

0 π−π

J (J (k )  ) 0 z
~ ~ 

J (k ) ~ 

(c)(c)

(a)(a)

kz
0 π 2π−π−π 3π

J (J (k )  ) 0 z
~ 

1 zJ (J (k - -2π) ~ ~ 

FIG. 6. (Color online) (a) An example of the band connection
required by the screw rotation in Eq. (51). For each band, the
eigenvalue of the screw rotation C̃2,1 is marked in the figure. (b),
(c) Possible band structure protected by a twofold screw rotation C̃2,1

with a Dirac point at kz = 0 and at π , respectively.

2. Threefold screw rotation

In the case of a threefold screw rotation C̃3,1, there are three
possible eigenvalues given by

J̃0(kz) = J0 exp
(−i 1

3kz

) = exp
[− i 1

3 (kz − π )
]
,

J̃1(kz) = J1 exp
(−i 1

3kz

) = exp
[− i 1

3 (kz − 3π )
]
, (52)

J̃2(kz) = J1 exp
(−i 1

3kz

) = exp
[− i 1

3 (kz − 5π )
]
,

where
J̃m(kz = −π ) �= J̃m(kz = π ) (53)

for m = 0,1,2 and

J̃0(kz) = J̃1(kz + 2π ),

J̃1(kz) = J̃2(kz + 2π ), (54)

J̃2(kz) = J̃0(kz + 2π ).

Now, we prepare three bands �0,1,2(kz) with an eigenvalue
J̃0,1,2(kz), respectively, and construct a band structure with a
Dirac point. To satisfy Eqs. (53) and (54), each band with
a given C̃3,1 eigenvalue should be connected to the other
two bands with different C̃3,1 eigenvalues at each Brillouin
zone boundary. An example of the band connection satisfying
Eq. (54) is shown in Fig. 7. According to Fig. 7, when the
band structure is drawn for a reduced Brillouin zone with

kzπ 5π−π−π 3π

J (J (k )  ) 0 z
~ 

2 zJ (J (k -2π) ~ 

7π

1 zJ (k -4π) ~ ~ 

J (J (k -6π) ) 0 z
~ ~ 

FIG. 7. (Color online) An example of the band connection re-
quired by C̃3,1 symmetry shown in Eq. (54). Two bands with the
eigenvalues J̃0(kz) and J̃1(kz) [J̃0(kz) and J̃1(kz)] form a conduction
(valence) band. However, each degenerate pair violates the PT

symmetry.
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kz ∈ [−π,π ], two bands with the eigenvalues J̃0(kz) and J̃1(kz)
[or J̃0(kz) and J̃2(kz)] would form a degenerate band.

However, this band structure is generally incompatible with
the T and P symmetries. The PT symmetry requires the band
with an eigenvalue J̃0(kz) to be locally degenerate with the
other band with an eigenvalue J̃2(kz) whereas the band with an
eigenvalue J̃1(kz) to be locally degenerate with the other band
with the same eigenvalue J̃1(kz). Namely, the four bands

{�0(kz),�2(kz); �1(kz),�
′
1(kz)} (55)

would form a basis to create a Dirac point. In the parentheses,
the first two bands form a conduction (valence) band whereas
the last two bands form a valence (conduction) band. This basis
is obviously incompatible with the band connection described
in Fig. 7. It is straightforward to show that the same problem
happens for C̃3,2-symmetric systems. Therefore, a system with
a threefold screw rotation cannot satisfy the PT symmetry at
the same time, hence cannot have a stable Dirac point. In fact,
every screw symmetric system which does not satisfy Eq. (43)
or (45) has the same problem, thus a Dirac semimetal with a
single Dirac point cannot be created.

3. Fourfold screw rotation ˜C4,1

In the case of the fourfold screw rotation C̃4,1, there are
four possible eigenvalues given by

J̃0(kz) = J0 exp
(−i 1

4kz

) = exp
[−i 1

4 (kz − π )
]
,

J̃1(kz) = J1 exp
(−i 1

4kz

) = exp
[−i 1

4 (kz − 3π )
]
,

(56)
J̃2(kz) = J2 exp

(−i 1
4kz

) = exp
[−i 1

4 (kz − 5π )
]
,

J̃3(kz) = J3 exp
(−i 1

4kz

) = exp
[−i 1

4 (kz − 7π )
]
.

If the system is 2π periodic along the kz direction, we obtain

J̃m(kz = −π ) �= J̃m(kz = π ) (57)

for m = 0,1,2,3 and

J̃m(kz) = J̃m+1(kz + 2π ), (58)

hence, the state with the eigenvalue J̃m(kz) should be connected
to the state with the eigenvalue J̃m+1(kz) at the Brillouin
zone boundary (kz = ±π ). However, this band connection is
not compatible with the PT symmetry of the system, which
requires the state with J̃0(kz) [J̃1(kz)] to be degenerate with the
state with J̃3(kz) [J̃2(kz)].

On the other hand, if the system is 4π periodic along the kz

direction,

J̃m=0,1,2,3(kz = −2π ) �= J̃m=0,1,2,3(kz = 2π ) (59)

and

J̃m(kz) = J̃m+2(kz + 4π ). (60)

This band connection is compatible with the PT symmetry
(see Fig. 8). The basis for creation of a Dirac semimetal with
a single Dirac point at the Brillouin zone boundary is given by

{�0(kz),�3(kz); �1(kz),�2(kz)}. (61)

kz
0 2π 4π−2π−2π 6π

J   (J   (k )  ) 0,3 z
~ 

2,12,1 zJ   (J   (k -4π) ) ~ ~ 

FIG. 8. (Color online) An example of the band connection re-
quired by C̃4,1 symmetry shown in Eq. (60). It is assumed that the
system is 4π periodic. The band with the eigenvalue J̃0(kz) [J̃3(kz)]
should be connected with the other hand with the eigenvalue J̃2(kz)
[J̃1(kz)] at the zone boundary. Moreover, due to the PT symmetry,
two bands with the eigenvalues J̃0(kz) and J̃3(kz) [or J̃2(kz) and J̃1(kz)]
should be locally degenerate at each momentum. In this case, the band
connection required by the screw rotation is compatible with the PT

symmetry.

4. Fourfold screw rotation ˜C4,2

In the case of the fourfold screw rotation C̃4,2, there are
four possible eigenvalues given by

J̃0(kz) = J0 exp
(−i 1

2kz

) = exp
[−i 1

2

(
kz − 1

2π
)]

,

J̃1(kz) = J1 exp
(−i 1

2kz

) = exp
[−i 1

2

(
kz − 3

2π
)]

,
(62)

J̃2(kz) = J2 exp
(−i 1

2kz

) = exp
[−i 1

2

(
kz − 5

2π
)]

,

J̃3(kz) = J3 exp
(−i 1

2kz

) = exp
[−i 1

2

(
kz − 7

2π
)]

,

where

J̃m(kz = −π ) �= J̃m(kz = π ) (63)

for m = 0,1,2,3 and

J̃m(kz) = J̃m+2(kz + 2π ),

hence, the state with the eigenvalue J̃0(kz) [J̃1(kz)] should be
connected with the state with the eigenvalue J̃2(kz) [J̃3(kz)] at
the Brillouin zone boundary (kz = ±π ). This band connection
is compatible with the PT symmetry. The basis for creation
of a Dirac semimetal with a single Dirac point at the Brillouin
zone boundary is given by

{�0(kz),�3(kz); �1(kz),�2(kz)}. (64)

5. Fourfold screw rotation ˜C4,3

In the case of the fourfold screw rotation C̃4,3, there are
four possible eigenvalues given by

J̃0(kz) = J0 exp
(−i 3

4kz

) = exp
[−i 3

4

(
kz − 1

3π
)]

,

J̃1(kz) = J1 exp
(−i 3

4kz

) = exp
[−i 3

4

(
kz − 3

3π
)]

,
(65)

J̃2(kz) = J2 exp
(−i 3

4kz

) = exp
[−i 3

4

(
kz − 5

3π
)]

,

J̃3(kz) = J3 exp
(−i 3

4kz

) = exp
[−i 3

4

(
kz − 7

3π
)]

.

Similar to the case of C̃4,1-symmetric systems, a Dirac
semimetal with a single Dirac point can be created only if
the system is 4π periodic along the kz direction. Then,

J̃m(kz = −2π ) �= J̃m(kz = 2π ) (66)
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for m = 0,1,2,3 and

J̃m(kz) = J̃m−2(kz + 4π ). (67)

The basis for creation of a Dirac semimetal with a single Dirac
point at the Brillouin zone boundary is again

{�0(kz),�3(kz); �1(kz),�2(kz)}. (68)

6. Sixfold screw rotation ˜C6,3

In the case of the sixfold screw rotation C̃6,3, there are six
possible eigenvalues given by

J̃m(kz) = Jm exp

(
− i

1

2
kz

)
= exp

[
− i

1

2

(
kz − 2m + 1

3
π

)]
, (69)

where m = 1,2, . . . ,6. When the system is 2π periodic along
the kz direction, these eigenvalues satisfy

J̃m(kz = −π ) �= J̃m(kz = π ) (70)

and

J̃m(kz) = J̃m+3(kz + 2π ), (71)

hence, the state with the eigenvalue J̃0,1,2(kz) should be
connected to the state with the eigenvalue J̃3,4,5(kz) at the
Brillouin zone boundary (kz = ±π ), respectively. Due to the
T and the P symmetries, the pair of states with the eigenvalues
{J̃0(kz),J̃5(kz)}, {J̃1(kz),J̃4(kz)}, {J̃2(kz),J̃3(kz)} should be lo-
cally degenerate at each momentum kz. Considering the band
connection described in Eq. (71), we find the basis

{�0(kz),�5(kz); �3(kz),�2(kz)}, (72)

which can create a Dirac semimetal with a single Dirac point
at the Brillouin zone boundary.

7. Sixfold screw rotation ˜C6, p �=3

In the case of the sixfold screw rotation C̃6,p �=3, a single
Dirac point can be created only if the system is 6π periodic
along the kz direction.

In C̃6,1-symmetric systems, there are six possible eigenval-
ues given by

J̃m(kz) = Jm exp
(−i 1

6kz

)
= exp

{− i 1
6 [kz − (2m + 1)π ]

}
, (73)

where m = 1,2, . . . ,6. These eigenvalues satisfy

J̃m(kz = −3π ) �= J̃m(kz = 3π ) (74)

and

J̃m(kz) = J̃m+3(kz + 6π ), (75)

In C̃6,5-symmetric systems, there are six possible eigenval-
ues given by

J̃m(kz) = Jm exp

(
− i

5

6
kz

)
= exp

[
− i

5

6

(
kz − 2m + 1

5
π

)]
, (76)

where m = 1,2, . . . ,6. These eigenvalues satisfy

J̃m(kz = −3π ) �= J̃m(kz = 3π ) (77)

and

J̃m(kz) = J̃m+3(kz + 6π ). (78)

In both C̃6,1- and C̃6,5-symmetric cases, we find the basis

{�0(kz),�5(kz); �3(kz),�2(kz)}, (79)

which can create a Dirac semimetal with a single Dirac point
at the Brillouin zone boundary.

Finally, it is straightforward to show that C̃6,2- and C̃6,4-
symmetric cases, which are similar to the system with a
threefold screw symmetry, cannot support a Dirac semimetal
with a single Dirac point.

V. CLASS II DIRAC SEMIMETALS

Based on the discussion in Sec. IV, we define class II Dirac
semimetals in the following way. Class II Dirac semimetals
are associated with a special type of rotation symmetry C̃N

which anticommutes with the inversion symmetry, i.e.,

{P,C̃N } = 0. (80)

Considering that (i) a rotation operator C generally has a
form of C = exp(iθJ ) with the angular momentum operator
J and the rotation angle θ , and (ii) J is a pseudovector
which is even under the inversion symmetry P , i.e., PJP −1 =
J , the anticommutation relation between P and C̃N looks
quite unusual. However, as discussed in the previous section,
nonsymmorphic screw rotation symmetries can generally
satisfy such anticommutation relations at the Brillouin zone
boundary [27,28], when Bloch states are used as a basis
for the representation of P and C̃N . We first describe the
physical consequence resulting from the relation {P,C̃N } = 0
and the topological charge of the associated Dirac point.
After that, we describe how the Dirac point protected by a
screw rotation symmetry leads to a class II Dirac semimetal,
and its associated topological charge can be determined as
summarized in Table III.

A. Symmetry constraint and band connection

Let us consider the constraints to the rotation eigenvalues
J̃m due to the symmetries P , T , C̃N satisfying

[T ,C̃N ] = 0, {P,C̃N } = 0, [T ,P ] = 0, (81)

T 2 = −1, P 2 = 1. (82)

TABLE III. Summary of topological charges of class II Dirac
semimetals.

C̃N Topological charge

C̃2 Not allowed
C̃3 Not allowed
C̃4 Z
C̃6 Z
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Moreover, considering Eq. (47), we assume the C̃N eigenvalue
J̃m to have the following form:

J̃m = iJm, (83)

where Jm = exp[iπ (2m + 1)/N ]. The action of the PT on an
eigenvector |ψm(k)〉 of C̃N with an eigenvalue J̃m gives

C̃NPT |ψm(k)〉 = −PT C̃N |ψm(k)〉
= −PT J̃m|ψm(k)〉
= −J̃ ∗

mPT |ψm(k)〉
= J̃N−m−1PT |ψm(k)〉
≡ J̃N−m−1|ψN−m−1(k)〉, (84)

from which we find PT |ψm〉 is a degenerate eigenvector with
the eigenvalue J̃N−m−1. On the other hand, P and T transform
the eigenvector |ψm〉 at k to another eigenvector at −k as

C̃NT |ψm(k)〉 = T C̃N |ψm(k)〉
= T J̃m|ψm(k)〉
= J̃ ∗

mT |ψm(k)〉
= J̃ N

2 −m−1T |ψm(k)〉
≡ J̃ N

2 −m−1|ψN
2 −m−1(−k)〉 (85)

and

C̃NP |ψm(k)〉 = −P C̃N |ψm(k)〉
= −P J̃m|ψm(k)〉
= −J̃mP |ψm(k)〉
= J̃ N

2 +mP |ψm(k)〉
≡ J̃ N

2 +m|ψN
2 +m(−k)〉. (86)

Since N
2 − m − 1 and N

2 + m should be an integer, we find
that N should be an even number. Hence, the class II Dirac
semimetal cannot exist in systems with C̃3 symmetry. From
Eqs. (84)–(86), we find that if |ψm(k)〉 is an eigenstate at
k, |ψN−m−1(k)〉 is also a degenerate eigenstate at the same
momentum k, whereas |ψN

2 −m−1(−k)〉 and |ψN
2 +m(−k)〉 are

degenerate at −k with the same energy as |ψm(k)〉. From
this, we can infer the band connection near a TRIM (kTRIM)
where k and −k are equivalent. The question is whether two
doubly degenerate states at k and −k are crossing or smoothly
connected at kTRIM. A smooth connection of degenerate bands
requires the rotation eigenvalues of the states at k and −k
to be identical, which is obviously not satisfied in this case.
Therefore, there should be a band crossing at kTRIM where the
Dirac point locates.

B. Topological charge

From Eqs. (84)–(86), we can easily find the constraints
to the topological charge νm of the Dirac point locating at a
TRIM. At first, the PT symmetry requires that

νm = νN−m−1,
(87)

νN
2 −m−1 = νN

2 +m.

N = 4n+2N = 4n+2

J

J

N-1N-1J

J

N-2N-2J

N
2

N = 4nN = 4n

-1-1

J

N
2

-2J

N
2J

(a)(a) (b)(b)

~
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~

~

~

~

~

N
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+1

1

0
J0 JN-1N-1

J1 JN-2N-2

JN
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JN
2 -2-2

JN
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JN
2 +1+1

JN-2N-2
4
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~ J3N-23N-2
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~

FIG. 9. (Color online) Constraints on the rotation eigenvalues (a)
for N = 4n, (b) for N = 4n + 2 with an integer n. The (black) solid
circle indicates a unit circle in the complex plane, and each (red) dot
on the circle denotes J̃m. Four dots connected by a dotted line are
related by the P , T , and PT symmetries, hence, only one of them
is independent. In the case of (b), the topological charge associated
with J̃(N−2)/4 and J̃(3N−2)/4 is zero.

Moreover, since P or T symmetry interchanges the north and
south pole surrounding a Dirac point at a TRIM, we find

νm = νN−m−1 = −νN
2 −m−1 = −νN

2 +m. (88)

This constraint reduces the number of independent topological
numbers νm. Considering that N is an even integer, we
distinguish two cases, i.e., when N = 4n and when N =
4n + 2 with an integer n. In each case, the relation between
different eigenstates is described in Fig. 9, from which we find
the topological invariant

(ν0, . . . ,ν N
4 −1) ∈ Z

N
4 if N = 4n,

(89)
(ν0, . . . ,ν N−6

4
) ∈ Z

N−2
4 if N = 4n + 2.

Hence, the topological charge of the system with C̃4 or C̃6

symmetry is an element of Z whereas C̃2- or C̃3-symmetric
system cannot support a Dirac point with a nonzero topological
charge. Table III summarizes topological charges of class II
Dirac semimetals.

C. Applications: Classification of stable Dirac points
in four-band systems

Due to the PT symmetry, {|ψm(k)〉,|ψN−m−1(k)〉} and
{|ψN/2−m−1(k)〉,|ψN/2+m(k)〉} form degenerate pairs at each
momentum k, and these four states cross at a TRIM, and create
a Dirac point. A four-band model can be constructed by using
these four states. Table IV summarizes allowed topological
charges of class II Dirac semimetals for four-band models.

TABLE IV. Topological charges of class II Dirac semimetals for
four-band models.

C̃N Four-band model Materials

C̃2 Not allowed
C̃3 Not allowed
C̃4 ν1 = ±1 β-BiO2 [25]
C̃6 ν1 = ±1
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1. ˜C2-symmetric systems

Possible J̃m values are J̃m=0 = i exp(i 1
2π ) and J̃m=1 =

i exp(i 3
2π ). Due to the PT symmetry, {|ψm=0(k)〉,|ψm=1(k)〉}

and {|ψ ′
m=0(k)〉,|ψ ′

m=1(k)〉} form degenerate pairs. The sym-
metry constraint in Eq. (88) requires

νm=0 = νm=1 = 0. (90)

Hence, a C̃2-invariant system cannot support a stable Dirac
point at a TRIM.

2. ˜C3-symmetric systems

Possible J̃m values are J̃m=0 = i exp(i 1
3π ), J̃m=1 =

i exp(iπ ) = −i, and J̃m=2 = i exp(i 5
3π ). In the case of |ψm=1〉,

the P symmetry requires that C̃3P |ψm=1〉 = −P C̃3|ψm=1〉 =
iP |ψm=1〉. Thus, P |ψm=1〉 should be an eigenstate of C̃3 with
the eigenvalue +i, which is not allowed. Hence, a C̃3-invariant
system cannot support a stable Dirac point at a TRIM.

3. ˜C4-symmetric systems

Due to the PT symmetry, {|ψm=0〉,|ψm=3〉} and
{|ψm=1〉,|ψm=2〉} form degenerate pairs. The constraint in
Eq. (88) requires that

ν1 ≡ νm=0 = νm=3 = −νm=1 = −νm=2, (91)

thus there is only one independent topological invariant
ν1 = ±1.

4. ˜C6-symmetric systems

Due to the P and T symmetries, we find a basis
{|ψm=0〉,|ψm=5〉; |ψm=2〉,|ψm=3〉}. The constraint in Eq. (88)
requires

ν1 ≡ νm=0 = νm=5 = −νm=2 = −νm=3, (92)

thus there is only one independent topological invariant ν1 =
±1.

D. Topological charge of Dirac points protected
by screw rotations

Here, we show that the Dirac semimetals protected by
screw rotations belong to the class II, thus, the topological
charge of the relevant Dirac point can be determined by
following the prescription described in Sec. V B. In particular,
we resolve a subtle issue associated with the multivalued
nature of the screw rotation eigenvalues, which we encounter
when we define the topological charge of the Dirac point
at the Brillouin zone boundary. To understand this, let us
again introduce a sphere in the momentum space surrounding
the Dirac point, and consider the two points kN and kS

on the sphere passing the rotation axis. To compare the
zero-dimensional topological numbers at these two points, we
need a single-valued wave function which varies smoothly
around the Dirac point. However, since the eigenvalue of a
screw rotation J̃m(kz) is multivalued, the relevant eigenstates
also change discontinuously at the Brillouin zone boundary.
To remedy this problem, we propose a way to construct a
smooth function which is single valued around the Dirac point
by modifying eigenvectors of C̃N,p. Moreover, we show that

such a smooth single-valued function satisfies the algebraic
relations shown in Eqs. (84)–(86), thus, we prove that a
Dirac semimetal protected by a screw rotation belongs to the
class II.

First, we suppose that p/N = p′/N ′ holds with an even
integer N ′ and an odd integer p′ that are coprime, and the
Brillouin zone boundary is located at kz = N ′π/2. To construct
a smooth single-valued wave function around the Brillouin
zone boundary at kz = N ′π/2, we prepare two eigenstates
|�m(kz)〉 and |�

m− N ′
2 p

(kz)〉 with C̃N,p eigenvalues J̃m(kz)

and J̃
m− N ′

2 p
(kz), respectively. Then, we define a hybrid wave

function around the zone boundary as

|ψ̃m(δkz)〉 =
{|�m(N ′π/2 + δkz)〉 (δkz � 0),

|�
m− N ′

2 p
(−N ′π/2 + δkz)〉 (δkz > 0),

(93)

which is smooth and single valued around the zone boundary
at δkz = 0; see Eq. (46). It is straightforward to show that
|ψ̃m(δkz)〉 is also an eigenvector of C̃N,p satisfying

C̃N,p|ψ̃m(δkz)〉 = J ′
m(δkz)|ψ̃m(δkz)〉, (94)

where

J ′
m(δkz) = exp

[
i

(
2m + 1

N
− p′

2

)
π

]
exp

(
−i

p′

N ′ δkz

)
.

(95)

Now, we determine the C̃N,p eigenvalue of T |ψ̃m(δkz)〉. At
first, if δkz � 0, we obtain

T |ψ̃m(δkz)〉 = T |�m(N ′π/2 + δkz)〉
∝ |�N−m−1(−N ′π/2 − δkz)〉
= |ψ̃

N−m−1+ N ′
2 p

(−δkz)〉, (96)

where we have used the following relation:

J ∗
m = JN−m−1. (97)

On the other hand, if δkz > 0,

T |ψ̃m(δkz)〉 = T |�
m− N ′

2 p
(−N ′π/2 + δkz)〉

∝ |�
N−m−1+ N ′

2 p
(N ′π/2 − δkz)〉

= |ψ̃
N−m−1+ N ′

2 p
(−δkz)〉. (98)

From Eqs. (96) and (98), we obtain

C̃N,pT |ψ̃m(δkz)〉 = J ′
N−m−1+ N ′

2 p
(−δkz)T |ψ̃m(δkz)〉

= J ′
N−m−1+ N

2
(−δkz)T |ψ̃m(δkz)〉

= J ′
N
2 −m−1(−δkz)T |ψ̃m(δkz)〉, (99)

where we have used

N ′

2
p = N

2
p′ = N

2
(mod N ), (100)

in which p′ is an odd integer.
The C̃N,p eigenvalue of P |ψ̃m(δkz)〉 can also be obtained

similarly from the following two relations:

P |ψ̃m(δkz � 0)〉 = P |�m(N ′π/2 + δkz)〉
∝ |�m(−N ′π/2 − δkz)〉

165120-12



TOPOLOGICAL CHARGES OF THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 92, 165120 (2015)

= |ψ̃
m+ N ′

2 p
(−δkz)〉

= |ψ̃m+ N
2

(−δkz)〉 (101)

and

P |ψ̃m(δkz > 0)〉 = P |�
m− N ′

2 p
(−N ′π/2 + δkz)〉

∝ |�
m− N ′

2 p
(N ′π/2 − δkz)〉

= |ψ̃
m− N ′

2 p
(−δkz)〉

= |ψ̃m+ N
2

(−δkz)〉, (102)

where we have used the fact that m is well-defined modulo N .
From Eqs. (101) and (102), we obtain

C̃N,pP |ψ̃m(δkz)〉 = J ′
m+ N

2
(−δkz)P |ψ̃m(δkz)〉. (103)

Finally, the C̃N,p eigenvalue of PT |ψ̃m(δkz)〉 can also be
obtained by following similar steps, which give

C̃N,pPT |ψ̃m(δkz)〉 = J ′
N−m−1(δkz)PT |ψ̃m(δkz)〉. (104)

These transformation laws should be compared with Eqs. (84),
(85), and (86), which differ from Eqs. (99), (103), and (104)
merely due to the momentum-dependent phase factor in
J ′

m(δkz). However, since the wave function |ψ̃m(δkz)〉 and its
associated the eigenvalue J ′

m(δkz) are smooth and single valued
around δkz = 0, i.e., near the Brillouin zone boundary, the
topological charge of the Dirac point can be defined by using
J ′

m(δkz = 0) at the two momenta kN and kS near the Dirac
point. Once δkz is fixed to be δkz = 0, Eqs. (84), (85), and (86)
are identical to Eqs. (99), (103), and (104), which shows that
the Dirac point at the Brillouin zone boundary protected by a
screw rotation belongs to the class II.

E. Example 1: A class II Dirac semimetal on a hcp lattice

To illustrate the role of screw rotations on the protection
of a Dirac point, let us consider a tight-binding Hamiltonian
on a hexagonal-close-packed (hcp) lattice, which corresponds
to the space group P 63/mmc (No. 194). The hcp lattice
is generated by the primitive lattice vectors a1 = ax̂, a2 =
a( 1

2 x̂ +
√

3
2 ŷ), a3 = cẑ, and two sites in a unit cell located at

r1 = 0 and r2 = 1
3 a1 + 1

3 a2 + 1
2 a3, respectively. The crystal

has a sixfold screw rotation symmetry C̃6,3 about the z axis
centered at 2

3 a1 + 2
3 a2 accompanied by a partial translation

1
2 a3 as shown in Fig. 10. To confirm the presence of a single
Dirac point at the zone boundary, corresponding to the A point
in Fig. 11(b), we construct the following tight-binding model:

H = − t1
∑
〈ij〉

c
†
i cj − t2

∑
〈ij〉

c
†
i τxcj

+ iλ
(1)
SO

∑
〈ij〉

ν
(1)
ij c

†
i σzτzcj + iλ

(2)
SO

∑
〈〈ij〉〉

ν
(2)
ij c

†
i σzτzcj ,

(105)

where t1 (t2) indicates the nearest-neighbor hopping between
the same (different) sublattice sites and λ

(1)
SO (λ(2)

SO) denotes
the spin-orbit interaction between the nearest-neighbor (next-
nearest-neighbor) sites. ν(1,2)

ij = −ν
(1,2)
ji is +1 (−1) if the bond

ij is parallel (antiparallel) to the arrow direction on the bond as

(a)(a)

(b)

1/21/2

0

1/21/2

1/2

0

0

1

11 0
1/21/21/21/2

1/21/2
00

x

y

x

z

y

(c)(c)

FIG. 10. (Color online) (a) Hexagonal-close-packed (hcp) lattice
structure and sixfold screw rotation. Two sublattice sites are marked
with different colors. The arrows indicate a sixfold screw rotation
about the z axis (C̃6,3). The number on a lattice site symbol
indicates its z coordinate in the unit of the vertical lattice spacing c.
(b) Projection of the lattice to the xy plane. (c) Spin-dependent com-
plex hopping process between the nearest-neighbor sites (λ(1)

SO) and the
next-nearest-neighbor sites (λ(2)

SO). When a spin-up electron on the A

sublattice hops parallel (antiparallel) to the arrow direction, the
corresponding νij = +1 (νij = −1).

shown in Fig. 10(c). σx,y,z (τx,y,z) are Pauli matrices indicating
the spin (sublattice) degrees of freedom.

In the momentum space, the Hamiltonian becomes

H (k) = F0 +
[(

F
(1)
SO + F

(2)
SO

)
σz F112

F ∗
1 12 −(F (1)

SO + F
(2)
SO

)
σz

]
,

where 12 indicates a 2 × 2 identity matrix and F0,1 and F
(1,2)
SO

are given by

F0 = −2t1{cos(k · a1) + cos(k · a2) + cos[k · (a1 − a2)]},

F1 = −2t2 cos

(
ckz

2

)
(eik·b1 + eik·b2 + eik·b3 ),

F
(1)
SO = 2λ

(1)
SO{sin(k · a1) − sin(k · a2) − sin[k · (a1 − a2)]},

F
(2)
SO = −2λ

(2)
SO[sin(3k · b1) + sin(3k · b2) + sin(3k · b3)],

(106)

Γ Γ LK

E(k)

0

(a)(a) (b)(b)

kx

ky

kz

Γ

K

L

M

A
H

AM H A L M K H

30

-30-30

FIG. 11. (Color online) (a) Band structure of the tight-binding
model on a hcp lattice. There are two Dirac points at the A and L

points. (b) First Brillouin zone of the hcp lattice.

165120-13



BOHM-JUNG YANG, TAKAHIRO MORIMOTO, AND AKIRA FURUSAKI PHYSICAL REVIEW B 92, 165120 (2015)

where b1 = a
2 x̂ + a

2
√

3
ŷ, b2 = − a

2 x̂ + a

2
√

3
ŷ, and b3 = − a√

3
ŷ.

We choose t1 = 1, t2 = 5, and λ
(1)
SO = λ

(2)
SO = 5. The resulting

band structure is shown in Fig. 11. We can clearly see two Dirac
points at A and L, respectively. Between these two points, the
Dirac point at A is the one protected by the sixfold screw
rotation, hence is located at the boundary of the rotation axis
(z axis).

To confirm the symmetry protection of the Dirac point at A

and its characteristic dispersion, let us examine the symmetry
of the Hamiltonian. The symmetries, which are important for
the protection of Dirac points, are the time reversal T , the
inversion P , the sixfold screw rotation C̃6,3 = {C6| c

2 ẑ}, and
the glide symmetry M̃y = {My | c

2 ẑ} where My transforms the
spatial coordinate (x,y,z) to (x, − y,z). To find the matrix
representation of each symmetry operator, we can use the
following information. At first, for k → −k, we find

F0(−k) = F0(k),

ReF1(−k) = ReF1(k),
(107)

ImF1(−k) = −ImF1(k),

F
(1,2)
SO (−k) = −F

(1,2)
SO (k),

which gives

P = τx, T = iσyK, (108)

where K is a complex conjugation operator. Moreover, under
π/3 rotation about the z axis, we obtain

(kx + iky) → (k′
x + ik′

y) = (kx + iky) exp
(
i
π

3

)
,

(109)
kz → k′

z = kz

and

F0(k′) = F0(k),

ReF1(k′) = ReF1(k),
(110)

ImF1(k′) = −ImF1(k),

F
(1,2)
SO (k′) = −F

(1,2)
SO (k),

thus,

C̃6,3(kz) = τx exp
(
i
π

6
σz

)
exp

(
−i

ckz

2

)
, (111)

where C̃6,3(kz) means the representation of C̃6,3 in a Bloch
basis, in which the momentum-dependent phase factor results
from the partial lattice translation along the z direction. Finally,
for ky → −ky , we find

F0(kx, − ky,kz) = F0(kx,ky,kz),

ReF1(kx, − ky,kz) = ReF1(kx,ky,kz),

ImF1(kx, − ky,kz) = −ImF1(kx,ky,kz),
(112)

F
(1)
SO (kx, − ky,kz) = F

(1)
SO (kx,ky,kz),

F
(2)
SO (kx, − ky,kz) = −F

(2)
SO (kx,ky,kz),

thus,

M̃y(kz) = iτxσy exp

(
−i

ckz

2

)
. (113)

Let us note that F
(2)
SO term breaks the glide mirror M̃y .

On the kz axis with kx = ky = 0, the Hamiltonian becomes

H (kz) = F0 + F1(kz)τx, (114)

from which we find two degenerate eigenstates

|ψ+1〉 = 1√
2

⎛⎜⎝1
0
1
0

⎞⎟⎠, |ψ+2〉 = 1√
2

⎛⎜⎝0
1
0
1

⎞⎟⎠,

with the eigenvalue E+(kz) = F0 + F1(kz), and the other two
degenerate eigenstates

|ψ−1〉 = 1√
2

⎛⎜⎝ 1
0

−1
0

⎞⎟⎠, |ψ−2〉 = 1√
2

⎛⎜⎝ 0
1
0

−1

⎞⎟⎠,

with the eigenvalue E−(kz) = F0 − F1(kz). Let us note that
|ψ+1〉, |ψ+2〉, |ψ−1〉, |ψ−2〉 are also the eigenstates of
C̃6,3 with the corresponding eigenvalues exp(−i

ckz

2 + i π
6 ),

exp(−i
ckz

2 + i 11π
6 ), exp(−i

ckz

2 + i 7π
6 ), exp(−i

ckz

2 + i 5π
6 ), re-

spectively. They are exactly the C̃6,3 eigenstates [see Eq. (72)],
which can support a single Dirac point at the zone boundary
on the rotation axis, i.e., at the A point with the momentum
k = (0,0, π

c
). The low-energy Hamiltonian near the A point is

given by

HA(q) ≈ 3t2qz

(
1 − q2

x + q2
y

12

)
τx + t2

24
√

3

(
3q2

xqy − q3
y

)
qzτy

+
[

1

4
λ

(1)
SO

(
3qxq

2
y−q3

x

)+3
√

3

4
λ

(2)
SO

(
3q2

xqy−q3
y

)]
τzσz,

(115)

where the momentum q are measured relative to the A point
assuming a = c = 1 and the constant term F0 is dropped. It is
interesting to note that the dispersion on the (qx,qy) plane is
cubic whereas it is linear along the qz direction. The cubic
dispersion arises due to the angular momentum difference
between the conduction and valence bands, as indicated in
Eq. (72). Thus, we obtain a cubic Dirac point at the A point,
which is protected by the sixfold screw rotation C̃6,3.

Finally, let us briefly explain the physical origin of the Dirac
point at the L point with the momentum k = (0, 2π√

3a
, π

c
). At

the L point, the system is invariant under a set of point group
symmetry operations, which is so-called the little cogroup at

L, G
L

. The little cogroup G
L

is generated by three symmetry
operations, a glide mirror M̃y , the inversion P , and the twofold
rotation about the y axis C2y . Due to the partial lattice
translation t = c

2 ẑ involved in M̃y , M̃y and P do not commute.
Namely, we find that

PM̃y : (x,y,z) →
(
−x,y, − z − c

2

)
, (116)

thus,

PM̃y =
{
PMy | − c

2
ẑ
}
. (117)
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On the other hand,

M̃yP : (x,y,z) →
(
−x,y, − z + c

2

)
, (118)

thus,

M̃yP =
{
PMy

∣∣∣∣ c2 ẑ

}
. (119)

Therefore, M̃y and P anticommute at the zone boundary with
kz = π/c, which guarantees the fourfold degeneracy. Since
twofold rotation symmetry cannot support a stable Dirac point,
C2y symmetry cannot play an important role here. Moreover,
the F

(2)
SO term breaking the M̃y vanishes at the L point. To

establish a general theory about the protection of a Dirac point
by a glide mirror symmetry and its associated topological
charge is an interesting research topic, which we leave for
future study.

F. Example 2: A class II Dirac semimetal on a diamond lattice

As a second example of class II Dirac semimetal, let us
consider the Fu-Kane-Mele Hamiltonian on a diamond lattice
[40]

H = t
∑
〈ij〉

c
†
i cj + 8i

λSO

a2

∑
〈〈ij〉〉

c
†
i σ · (d1

ij × d2
ij

)
cj , (120)

where the first term indicates the nearest-neighbor hopping
and the second term connects the second-nearest neighbors
with a spin-dependent amplitude. d

1,2
ij are the two nearest-

neighbor bond vectors traversed between sites i and j , and
σx,y,z are Pauli matrices indicating the spin degrees of freedom.
a denotes the cubic lattice constant. In the momentum space,
the Hamiltonian becomes

H (k) =
(∑3

i=1 Fiσi F ∗
0 12

F012 −∑3
i=1 Fiσi

)
,

where 12 indicates a 2 × 2 identity matrix and F0,1,2,3 are given
by

F0 = t[e
ia
4 (kx+ky+kz) + e

ia
4 (kx−ky−kz)

+ e
ia
4 (−kx+ky−kz) + e

ia
4 (−kx−ky+kz)],

F1 = 4λSO sin

(
akx

2

)[
cos

(
aky

2

)
− cos

(
akz

2

)]
,

F2 = 4λSO sin

(
aky

2

)[
cos

(
akz

2

)
− cos

(
akx

2

)]
,

F3 = 4λSO sin

(
akz

2

)[
cos

(
akx

2

)
− cos

(
aky

2

)]
.

(121)

This Hamiltonian exhibits 3D bulk Dirac points at three
inequivalent X points Xr = 2πr̂/a where r = x,y,z (see
Fig. 12). Each Dirac point at Xr is protected by the fourfold
screw rotation about r̂ axis.

To understand the role of the screw rotation, let us
describe the symmetry of the system. The space group of
the diamond lattice is Fd3m(O7

h), which contains the 24
symmorphic elements of tetrahedral point group 4̄3m(Td ) and

ΓΓ ΓX LKW

E(k)E(k)

0

- 4

4
(a)(a) (b)(b)

kx

ky

kz

Γ

X W
K

L

FIG. 12. (Color online) (a) Band structure of the Fu-Kane-Mele
model on a diamond lattice. There is a Dirac point at the X point. (b)
First Brillouin zone of a diamond lattice.

24 nonsymmorphic elements. The nonsymmorphic elements
are obtained by compounding each symmorphic symmetry
operation of Td with a translation along td = ( a

4 , a
4 , a

4 ), which
takes one sublattice site to another inequivalent sublattice site
(see Fig. 13). On the other hand, the symmorphic symmetry
operation connects sites belonging to the same sublattice.

At a generic point � = (0,0,kz) on the kz axis, the system
has C4v symmetry that is composed of five different symmetry
classes with elements {E|0}, {C2

4 |0}, 2{C4|td}, 2{iC2
4 |td},

2{iC ′
2|0}, respectively. It is worth to note that some symmetry

elements contain a partial lattice translation td = ( a
4 , a

4 , a
4 )

which is the characteristic property of the nonsymmorphic
nature of the diamond lattice space group. This contrasts with
the case of conventional symmorphic cubic lattices such as
simple cubic (sc), face-centered-cubic (fcc), body-centered-
cubic (bcc) lattices where the system on the kz axis has the
ordinary C4v group containing only symmorphic point group
operations [41].

By considering the symmetry of the Hamiltonian, one
can easily find the matrix representation of the screw
rotation C̃4,1 ≡ {C4z|td} = exp(−ik · td )τx exp(i π

4 σz) where
exp(−ik · td ) represents the translation td of the Bloch state
with the momentum k, τx indicates the sublattice change due
to partial translation, and exp(i π

4 σz) represents the fourfold
rotation. Then, it is straightforward to confirm that

C̃4,1H (kx,ky,kz)C̃
−1
4,1 = H (−ky,kx,kz). (122)

x

z

y

y

x

1/41/4
1/21/2

3/43/4

1/41/4

1/21/2 0

3/43/4

1

1

0

(a)(a) (b)(b)

FIG. 13. (Color online) Structure of a diamond lattice. Two
sublattice sites are marked by using different colors. The arrows
indicate a fourfold screw rotation about the z axis.
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Since F1,2,3 = ImF0 = 0 on the kz axis, the Hamiltonian
on the kz axis becomes

H (kz) = 4t cos

(
akz

4

)
τx, (123)

from which we obtain one eigenvalue E+(k) = 4t cos( 1
4akz)

with the corresponding eigenvectors

|ψ+1〉 = 1√
2

⎛⎜⎝1
0
1
0

⎞⎟⎠, |ψ+2〉 = 1√
2

⎛⎜⎝0
1
0
1

⎞⎟⎠,

and the other eigenvalue E−(k) = −4t cos( 1
4akz) with the

eigenvectors

|ψ−1〉 = 1√
2

⎛⎜⎝ 1
0

−1
0

⎞⎟⎠, |ψ−2〉 = 1√
2

⎛⎜⎝ 0
1
0

−1

⎞⎟⎠.

Let us note that |ψ+1〉, |ψ+2〉, |ψ−1〉, |ψ−2〉 are also the
eigenstates of C̃4,1 with the eigenvalues exp(−i

akz

4 + i π
4 ),

exp(−i
akz

4 − i π
4 ), exp(−i

akz

4 + i 5π
4 ), exp(−i

akz

4 − i 5π
4 ), re-

spectively. Since the system is 4π
a

periodic along the kz

direction, a single Dirac point protected by C̃4,1 can be created
at the Brillouin zone boundary. It is straightforward to see that
these four eigenvalues have the same form as Eq. (61), hence
satisfy the condition for the band crossing at the Brillouin
zone boundary with kz = ±2π/a. Also, the band structure of
the system along the kz axis is consistent with Fig. 8.

Before we close this section, let us briefly perform a
group theoretical analysis at the X point. The little cogroup

G
X

at the X point with the momentum k = (0,0, 2π
a

) is
generated by three symmetry operators, i.e., the fourfold screw
rotation C̃4,1 about the z axis, the inversion P , the twofold
rotation about the x axis C2x [27,42]. One interesting property
of the diamond lattice is that the inversion symmetry P

also accompanies a partial translation td . Thus, it is more
suitable to use the notation P̃ = {P |td} to indicate the partial
translation associated with the inversion. Here, we describe
two interesting physical consequences resulting from the
nonsymmorphic nature of P̃ .

First, the partial translation involved in P̃ does not affect the
commutation relation between P̃ and a screw rotation C̃N,q on
the rotation axis. This fact can be easily understood by consid-
ering the coordinate transformation under the combination of
C̃N,q = {CN |τ q} and P̃ = {P |tP }. Assuming the z axis is the
screw rotation axis, P̃ C̃N,q transforms the coordinate (x,y,z)
to

(−x ′ − τq,x + tP,x, − y ′ − τq,y + tP,y, − z − τq,z + tP,z),
(124)

where x ′ and y ′ are rotated coordinates satisfying x ′ + iy ′ =
(x + iy) exp(i2π/N ). Thus, we obtain

P̃ C̃N,q = {PCN | − τ q + tP }. (125)

On the other hand, C̃N,q P̃ transforms (x,y,z) to

(−x ′ + τq,x + t ′P,x, − y ′ + τq,y + t ′P,y, − z + τq,z + tP,z),
(126)

where t ′P,x + it ′P,y = (tP,x + itP,y) exp(i2π/N ). Thus, we ob-
tain

C̃N,q P̃ = {PCN |τ q + t ′
P }. (127)

Now, let us consider a Bloch state |kz〉 on the rotation axis with
the momentum k = (0,0,kz). We find

P̃ C̃N,q |kz〉 = exp[ikz(−τq,z + tP,z)]PCN |kz〉,
(128)

C̃N,q P̃ |kz〉 = exp[ikz(τq,z + tP,z)]PCN |kz〉,
which shows that the partial translation tP,z associated with the
inversion only provides an overall phase factor, and does not
affect the commutation relation whereas τq,z does. Therefore,
our theory can also be applied to systems with the inversion P̃

accompanying a partial translation, as long as the Dirac point
is located on the rotation axis.

However, when the Dirac point is located away from the
rotation axis, the translation tP can cause nontrivial physical
consequence as well. For instance, in the kz = 0 plane,
perpendicular to the rotation axis, a Bloch state |kx,ky〉 satisfies

P̃ C̃N,q |kx,ky〉
= exp[−ik′

x(τq,x − tP,x) − ik′
y(τq,y − tP,y)]PCN |kx,ky〉

(129)

and

C̃N,q P̃ |kx,ky〉
= exp[ik′

x(τq,x + t ′P,x) + ik′
y(τq,y + t ′P,y)]PCN |kx,ky〉,

(130)

where k′
x + ik′

y = (kx + iky) exp(i2π/N ) and we have used
the relation k′

xt
′
P,x + k′

yt
′
P,y = kxtP,x + kytP,y . The point is that

since (tP,x,tP,y) �= (t ′P,x,t
′
P,y) due to the rotation, the partial

translation tP associated with the inversion can also modify the
commutation relation between the inversion and the rotation
symmetries. Because of this, even a symmorphic rotation
symmetry, which is not accompanied by a translation, can
create a Dirac point away from the rotation axis when it is
combined with the nonsymmorphic inversion symmetry.

For illustration, let us consider the commutation relation
between C2z and P̃ = {P |tP } where tP = td = ( a

4 , a
4 , a

4 ). The
Bloch state |kx,ky〉 satisfies

P̃C2z|kx,ky〉 = exp[ikx(−tP,x) + iky(−tP,y)]PC2z|kx,ky〉
(131)

and

C2zP̃ |kx,ky〉 = exp[ikx(tP,x) + iky(tP,y)]PC2z|kx,ky〉.
(132)

Hence, at the high-symmetry momentum such as k1 =
( 2π

a
,0,0) or k2 = (0, 2π

a
,0) where exp (ikxtP,x + ikytP,y) = i,

we obtain {P̃ ,C2z} = 0. This anticommutation relation can
create a stable Dirac point at k1 and k2, which is again
confirmed by K-theory analysis in Appendix B 3. Therefore,
although the symmorphic C2 symmetry cannot support a stable
Dirac point on the rotation axis, it can create a stable Dirac
point at the zone boundary in the plane perpendicular to the
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rotation axis, when the C2 is combined with a nonsymmorphic
inversion symmetry P̃ .

In fact, as noted before, there are three symmetry generators
P̃ , C̃4,1, C2x at the X point with k = (0,0, 2π

a
) in the

diamond lattice. According to the previous discussion, the
Dirac point at X can be protected not only by P̃ and C̃4,1

satisfying {P̃ ,C̃4,1} = 0, but also by P̃ and C2x , which are also
anticommuting {P̃ ,C2x} = 0. Because of the high crystalline
symmetry, the Dirac point in the diamond lattice is protected
by multiple pairs of symmetry operators [27].

VI. DISCUSSION

To sum up, we have studied the topological charge of 3D
Dirac semimetals protected by the time reversal, the inversion,
and the rotation symmetries. Consideration of topological
charges naturally leads to two different classes of Dirac
semimetals, which is consistent with the previous observation
based on the symmetry constrained minimal Hamiltonian
analysis [22]. Class I Dirac semimetals are protected by an
ordinary symmorphic rotation symmetry which commutes
with the inversion. Since each eigenstate carries a quantized
rotation eigenvalue on the rotation axis, Dirac points should
form a pair having the opposite topological charges when the
system is periodic along the rotation axis. On the other hand,
class II Dirac semimetals are associated with nonsymmorphic
screw rotation symmetries. The eigenvalue of a screw rotation
is not quantized on the rotation axis due to the phase factor
induced by a partial lattice translation, which enables to create
a single isolated Dirac point at the Brillouin zone boundary.

The nonzero topological charge of a Dirac point not only
guarantees the stability of the gap-closing point, but can trigger
new types of Lifshitz transitions. For instance, when two
Dirac points merge at the same momentum, the topological
charge of the merging point is given by the summation of
their topological charges. Since the energy dispersion around
the gap-closing point strongly depends on its topological
charge, such a merging transition can generate intriguing
nodal quasiparticles with novel physical properties [43–46].
Moreover, the presence of a quantized topological charge can
be a source of new topological responses. For instance, it is
well known that the nonzero monopole charge of Weyl points
induces novel topological responses in Weyl semimetals [11].
Recent theoretical studies of interesting topological responses
in Dirac semimetals [47,48] may imply nontrivial role of
topological charges in these systems.

Up to now, two materials (Na3Bi and Cd3As2) belonging to
the class I are discovered and extensively studied whereas class
II Dirac semimetals are not uncovered yet. Although there are
some hypothetical candidate materials proposed theoretically
[25,26], all of them are chemically unstable because the
metallic ion in each candidate compound is required to have
a lone-pair valence electron to locate the Fermi level at the
Dirac point [49]. In this respect, synthesizing class II Dirac
semimetals is a challenging problem in material science which
should be properly addressed in the near future.

We believe that class II Dirac semimetals are as important as
class I Dirac semimetals in the following sense. In the case of
class I Dirac semimetals, the Dirac points are created by a band
inversion, hence, the intrinsic properties of 3D Dirac particles

can be observed only within the narrow energy scale associated
with the band inversion [9]. Because of this, if the competing
energy scales, such as the Fermi energy due to doped carriers
or the disorder-induced broadening, are comparable to the
band inversion energy, the intrinsic properties of 3D Dirac
particles can be easily washed out. However, in the case
of class II Dirac semimetals, the energy scale of the Dirac
dispersion is simply given by the bandwidth of the system
(roughly in the order of a few eV), which obviously provides a
better playground to study the intrinsic properties of 3D Dirac
particles.

Second, we would like to draw attention to class II Dirac
semimetals as potential novel topological states. The fact that
the Fu-Kane-Mele model is a canonical model to construct a
3D Z2-topological insulator implies the intrinsic topological
nature of the associated Dirac semimetal state. In particular,
in this paper, we have demonstrated that the presence of
a single Dirac point on the rotation axis is unnatural in
consideration of the Nielsen-Ninomiya theorem, and, in fact,
the projective nature of the screw rotation symmetry plays
an essential role to circumvent the doubling of Dirac points.
Although the discrete nature of the rotation symmetry should
be distinct from the continuous U(1) symmetry associated
with the original Nielsen-Ninomiya theorem, the mechanism
leading to circumventing the fermion number doubling shares
the common origin, i.e., assigning a nonquantized quantum
number to fermions. To reveal the topological properties of
class II Dirac semimetals would definitely be an exciting
theoretical problem which we leave for future studies.

Finally, we would like to point out that there are a class
of Dirac semimetals which are not completely treated in our
classification scheme. Let us note that, in both class I and
II Dirac semimetals considered in this work, Dirac points are
located on the rotation axis. However, rotation symmetries can
also protect a Dirac point which is away from the rotation axis.
For instance, we have shown in Sec. V F that the symmorphic
C2 rotation can protect a Dirac point which is not on the
rotation axis, when it is combined with a nonsymmorphic
inversion symmetry. Moreover, the tight-binding model on a
hcp lattice considered in Sec. V E indicates that glide mirror
symmetries can also give rise to symmetry-protected Dirac
points. To find a systematic way to classify these different
types of Dirac semimetals would also be an important problem
for future research.

Note added in proof. Recently, we came to know a related
work where the topological charge of a class I Dirac semimetal
with four-fold rotation symmetry is discussed [54].
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APPENDIX A: ABSENCE OF A STABLE DIRAC POINT IN
SYSTEMS WITH TIME-REVERSAL AND INVERSION

SYMMETRIES ONLY

Here, we prove that stable Dirac points do not exist in
systems having only the time-reversal (T ) and inversion (P )
symmetries. For this, we distinguish two cases: one is when
the Dirac point is located at a generic momentum point, and
the other is when the Dirac point is located at a time-reversal
invariant momentum (TRIM). This distinction is necessary
because the symmetry associated with the Dirac point differs
depending on the position of the Dirac point in the momentum
space. In each case, the stability of a Dirac point is determined
by using K-theory [50,51].

1. A Dirac point located at a generic momentum

When the Dirac point locates at a generic momentum, the
combination of T and P is the only symmetry satisfied around
the Dirac point. In general, a PT -symmetric system satisfies

(PT )H (k)(PT )−1 = H (k), (A1)

where the antiunitary PT symmetry satisfies (PT )2 = −1,
which is coming from

P 2 = 1, T 2 = −1, [P,T ] = 0 (A2)

in electronic systems.
The stability of the Dirac point can be understood by using

K-theory approach. We consider a Dirac point locating at a
generic momentum k0 = (k0

x,k
0
y,k

0
z ). The effective Hamilto-

nian describing the low-energy excitation around the Dirac
point is given by

HD = (
kx − k0

x

)
γx + (

ky − k0
y

)
γy + (

kz − k0
z

)
γz + mγ0,

where γ0,x,y,z are gamma matrices satisfying the anticom-
mutation relations {γi,γj } = 2δi,j , and m indicates a pos-
sible symmetry-preserving Dirac mass term. The presence
(absence) of the symmetry-preserving Dirac mass term m

indicates the instability (stability) of the Dirac point. From
Eq. (A1), we obtain

[γx,PT ] = [γy,PT ] = [γz,PT ] = [γ0,PT ] = 0. (A3)

To confirm the existence or absence of the Dirac mass term
m, let us define a real Clifford algebra generated by PT and
γ0,x,y,z, which is given by

Cl0,4 ⊗ Cl2,0 = {; γx,γy,γz,γ0} ⊗ {PT,JPT ; }, (A4)

where Clp,q indicates a real Clifford algebra with p + q

generators {e1,e2, . . . ,ep; ep+1,ep+2, . . . ,ep+q} satisfying

{ei,ej } = 0, i �= j

e2
i =

{
−1, 1 � i � p

+1, p + 1 � i � p + q.

The algebra in Eq. (A4) can be easily obtained by considering
the following relations:

(i) [γx,PT ] = [γy,PT ] = [γz,PT ] = [γ0,PT ] = 0,

(ii) [γx,J ] = [γy,J ] = [γz,J ] = [γ0,J ] = 0,

(iii) {γi,γj } = 2δi,j ,

(iv) {PT,JPT } = 0, (PT )2 = (JPT )2 = −1, (A5)

where the symbol J indicating the pure imaginary number i is
introduced to construct a real Clifford algebra.

The existence or absence of the Dirac mass mγ0 can be
judged by considering the following extension problem:

{; γx,γy} ⊗ {PT,JPT ; }
→ {; γx,γy,γz} ⊗ {PT,JPT ; }, (A6)

i.e.,

Cl0,2 ⊗ Cl2,0 → Cl0,3 ⊗ Cl2,0. (A7)

Namely, the topological classification of γz determines the
topological nature of the Dirac point. This is because the
topologically trivial classification of γz implies the existence
of another gamma matrix such as γ0 which anticommutes with
the three generators γx,y,z (i.e., a mass term exists) whereas the
topologically nontrivial classification of γz implies the absence
of γ0, thus the topologically nontrivial nature of the Dirac point.
Generally, in the classification scheme with Clifford algebra,
the existence condition of a particular generator ei (Dirac mass
term) is equivalent to the classification of another generator of
the same type as ei in the Clifford algebra in which ei is
removed [23].

The extension problem

Cl0,2 ⊗ Cl2,0 → Cl0,3 ⊗ Cl2,0 (A8)

is equivalent to

Cl4,0 → Cl5,0 (A9)

due to the relation

Clp,q ⊗ Cl2,0 � Clq+2,p. (A10)

Since the classifying space for the extension Clp,q → Clp+1,q

is given by Rp+2−q , the classifying space for the extension
Cl4,0 → Cl5,0 is R6 = Sp(n)/U (n) with a sufficiently large
integer n. Since π0(R6) = 0, the space of possible represen-
tation for γz is singly connected. Namely, a Dirac mass term
always exists, hence the Dirac point is unstable.

2. A Dirac point locating at a TRIM

On the other hand, when the Dirac point locates at a
TRIM, both P and T are the symmetry of the Dirac point.
To understand the stability of the Dirac point, we consider the
following Dirac Hamiltonian:

HD = kxγx + kyγy + kzγz + mγ0, (A11)

where the matrices γ0,x,y,z satisfy {γi,γj } = 2δi,j . T and P

symmetries require

{γx,T } = {γy,T } = {γz,T } = [γ0,T ] = 0,
(A12){γx,P } = {γy,P } = {γz,P } = [γ0,P ] = 0,

where

P 2 = 1, T 2 = −1, [T ,P ] = 0. (A13)

The Clifford algebra generated by γ0,x,y,z, T , P , J is given by

{T ,JT ,Jγ0; γx,γy,γz,P γxγyγz}. (A14)
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The existence or absence of the Dirac mass mγ0 can be judged
by considering the following extension problem:

{JT ; γx,γy,γz,P γxγyγz}
→ {T ,JT ; γx,γy,γz,P γxγyγz}, (A15)

i.e.,

Cl1,4 → Cl2,4, (A16)

the corresponding classifying space is Rp+2−q = R−1 � R7.
Since π0(R7) = 0, a Dirac mass term always exists, hence the
Dirac point is unstable. Therefore, independent of the location
of the Dirac point in the momentum space, the system with
only T and P symmetries cannot support a stable Dirac point.

APPENDIX B: THE STABILITY OF DIRAC POINTS
IN C2-SYMMETRIC SYSTEMS

In C2-invariant systems, since all the symmetry operators
squared become ±1, the classification scheme based on
Clifford algebras can be applied.

1. When [C2,P] = 0

In systems with the symmorphic C2 rotation satisfying
(C2)2 = −1, the Dirac point can be located at a generic
momentum k0 = (0,0,k0

z ) on the rotation axis (z axis). We
consider the massive Dirac Hamiltonian

H (k) = kxγx + kyγy + (kz − k0
z )γz + mγ0, (B1)

which satisfies the following relations:

(PT )H (k)(PT )−1 = H (k), (B2)

C2H (kx,ky,kz)(C2)−1 = H (−kx, − ky,kz). (B3)

From this, we obtain

[γx,PT ] = [γy,PT ] = [γz,PT ] = [γ0,PT ] = 0, (B4)

{γx,C2} = {γy,C2} = [γz,C2] = [γ0,C2] = 0. (B5)

Then, we can determine the Clifford algebra generated by the
gamma matrices in the Dirac Hamiltonian and the relevant
symmetry operators. The resulting Clifford algebra is

Cl6,0⊗Cl0,1 = {PT,JPT ,Jγx,Jγy,Jγz,Jγ0; }⊗{; γxγyC2}.
(B6)

The relevant extension problem is

Cl4,0 ⊗ Cl0,1 → Cl5,0 ⊗ Cl0,1, (B7)

for which the classifying space is given by R6 × R6. From
its zeroth homotopy group, we find the topological charge
as π0(R6 × R6) = 0. Therefore, a Dirac point cannot carry
a nontrivial topological charge, which is consistent with the
absence of a topological invariant found before (see Table I).

2. When { ˜C2,P} = 0

Now, we consider a twofold screw rotation C̃2 satisfying
(C̃2)2 = 1. Since the Dirac point locates at a TRIM, both

the P and the T are the symmetry of the Dirac point. The
commutation relations relevant to this problem are as follows:

{γx,T } = {γy,T } = {γz,T } = [γ0,T ] = 0,

{γx,P } = {γy,P } = {γz,P } = [γ0,P ] = 0, (B8)

{γx,C̃2} = {γy,C̃2} = [γz,C̃2] = [γ0,C̃2] = 0,

and

[T ,P ] = 0, [C̃2,T ] = 0, {C̃2,P } = 0, (B9)

in which

P 2 = 1, T 2 = −1, (C̃2)2 = 1. (B10)

The relevant Clifford algebra of gamma matrices and symme-
try operators is given by

Cl3,5 = {T ,JT ,Jγ0; γx,γy,γz,P γxγyγz,C̃2Pγz}. (B11)

The existence condition of the Dirac mass term is determined
by the extension problem

Cl1,5 → Cl2,5, (B12)

for which the classifying space is R6. From π0(R6) = 0, we see
that the C̃2 symmetry cannot protect a Dirac point consistent
with Table III.

3. When {C2, ˜P} = 0

This is relevant to the case when the Dirac point is located
at a TRIM in the plane perpendicular to the rotation axis. The
commutation relations relevant to this problem are as follows:

{γx,T } = {γy,T } = {γz,T } = [γ0,T ] = 0,

{γx,P̃ } = {γy,P̃ } = {γz,P̃ } = [γ0,P̃ ] = 0, (B13)

{γx,C2} = {γy,C2} = [γz,C2] = [γ0,C2] = 0,

and

[T ,P̃ ] = 0, [C2,T ] = 0, {C2,P̃ } = 0, (B14)

in which

P̃ 2 = −1, T 2 = −1, (C2)2 = −1. (B15)

Then, the relevant Clifford algebra of gamma matrices and
symmetry operators is given by

Cl3,5 = {T ,JT ,Jγ0,P̃ γxγyγz; γx,γy,γz,C2P̃ γz}. (B16)

The existence condition of the Dirac mass term is determined
by the extension problem

Cl2,4 → Cl3,4, (B17)

for which the classifying space is R0. From π0(R0) = Z, we
see that the symmorphic C2 symmetry can protect a Dirac
point when it is combined with the nonsymmorphic inversion
symmetry P̃ . Here, the location of the Dirac point is not on the
rotation axis but at a TRIM on the plane perpendicular to the
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rotation axis because the anticommutation relation {C2,P̃ } =
0 can be satisfied only away from the rotation axis.

APPENDIX C: STABILITY OF 2D DIRAC POINTS IN
SYSTEMS WITH TWOFOLD SCREW ROTATIONS

Recently, Young and Kane proposed a theory [52] about 2D
Dirac points located at a TRIM on the Brillouin zone boundary.
One interesting finding in their work is that a twofold screw
rotation can protect a Dirac point at a TRIM on the rotation
axis, which is forbidden in the case of 3D systems. To confirm
their claim, let us check the stability of the Dirac point by
using K-theory.

Let us consider a Dirac Hamiltonian at the zone boundary

H (k) = kxγx + kyγy + mγ0, (C1)

where γ0,x,y are mutually anticommuting. Under P , T , C̃2y

symmetry satisfying

[P,T ] = [C̃2y,T ] = 0, {C̃2y,P } = 0,
(C2)

P 2 = 1, T 2 = −1, C̃2
2y = 1,

the gamma matrices satisfy

{γx,T } = {γy,T } = [γ0,T ] = 0,

{γx,P } = {γy,P } = [γ0,P ] = 0, (C3)

{γx,C̃2y} = [γy,C̃2y] = [γ0,C̃2y] = 0.

The relevant Clifford algebra of gamma matrices and symme-
try operators is given by

Cl4,2 ⊗ Cl1,0 = {T ,T J,Jγ0,C̃2yγx ; γx,γy} ⊗ {Pγxγy ; }.
(C4)

The existence of the Dirac mass term mγ0 is determined by
the extension problem

Cl2,2 ⊗ Cl1,0 → Cl3,2 ⊗ Cl1,0. (C5)

Since the extra generator Pγxγy commutes with all the other
generators, and satisfies (Pγxγy)2 = −1, the above extension
problem is rearranged in the following way:

Cl4 → Cl5, (C6)

for which the classifying space is C4
∼= C0. Namely, the extra

generator Pγxγy deforms the original real Clifford algebra
extension problem to a complex Clifford algebra extension
problem [53]. From π0(C0) = Z, we see that C̃2 can protect
a 2D Dirac point with topological charge Z on the rotation
axis.

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[2] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X.
Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

[3] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B
88, 125427 (2013).

[4] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D.
Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain,
and Y. L. Chen, Science 343, 864 (2014).

[5] S.-Y. Xu, C. Liu, S. K. Kushwaha, T.-R. Chang, J. W. Krizan,
R. Sankar, C. M. Polley, J. Adell, T. Balasubramanian, K.
Miyamoto, N. Alidoust, G. Bian, M. Neupane, I. Belopolski,
H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, F. C. Chou, T.
Okuda, A. Bansil, R. J. Cava, and M. Z. Hasan, arXiv:1312.7624.

[6] S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan,
I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang,
H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F.-C.
Chou, R. J. Cava, and M. Z. Hasan, Science 347, 294 (2014).

[7] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy,
B. Buchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603
(2014).

[8] M. Neupane, Su-Yang Xu, R. Sankar, N. Alidoust, G. Bian, C.
Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil,
F. Chou, and M. Zahid Hasan, Nat. Commun. 5, 3786 (2014).

[9] S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C.
Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani,
Nat. Mater. 13, 851 (2014).

[10] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M.
Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim,

M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain,
and Y. L. Chen, Nat. Mater. 13, 677 (2014).

[11] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.
Rev. B 83, 205101 (2011).
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