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Robustness of edge states and non-Abelian excitations of topological states of matter promises quantum
memory and quantum processing, which are naturally immune to microscopic imperfections such as static
disorder. However, topological properties will not in general protect quantum systems from time-dependent
disorder or noise. Here we take the example of a network of Kitaev wires with Majorana edge modes storing
qubits to investigate the effects of classical noise in the crossover from the quasistatic to the fast fluctuation
regime. We present detailed results for the Majorana edge correlations, and fidelity of braiding operations for
both global and local noise sources preserving parity symmetry, such as random chemical potentials and phase
fluctuations. While in general noise will induce heating and dephasing, we identify examples of long-lived
quantum correlations in the presence of fast noise due to motional narrowing, where external noise drives the
system rapidly between the topological and nontopological phases.
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I. INTRODUCTION

At present there is significant interest and ongoing effort
in realizing and detecting topological phases of quantum
matter in the laboratory [1–9]. These efforts are driven by
both foundational aspects of our understanding of quantum
ordered phases in many-body systems beyond the Landau
paradigm of local order parameters (see, e.g., Refs. [10–12]),
and in particular by the promises to use the intrinsic
robustness of topological properties against imperfections
in quantum information processing [13–17]. An example
is provided by Kitaev’s quantum wire [18] supporting a
pair of Majorana edge modes—Majorana fermions—which
show non-Abelian exchange statistics under braiding [19,20]
and represent a topologically protected nonlocal zero-energy
fermion. In a wire network, these properties can be used
to create topologically protected qubits and gate operations
[20]. The quest to demonstrate Majorana fermions and their
non-Abelian properties is presently an outstanding chal-
lenge in quantum physics [21–24], and is the focus of a
significant effort involving systems from hybrid nanowires
[20,25–37] to cold-atom setups [38–46]. The first evidence
for Majorana edge modes has been reported in recent
experiments [31–37].

However, while the promise of topological protection of
quantum states from microscopic imperfections may hold for
static disorder (see, e.g., Refs. [15,16]), recent theoretical
studies have concluded that Majorana qubits and braiding can
be seriously affected by coupling to an environment [47–57],
as will be the case in any realistic experimental scenario. The
protection of Majorana modes in the Kitaev wire is related
to protection of fermion parity, and quantum correlations
between Majorana states will be rapidly destroyed by injection
or removal of quasiparticles [49]. Even the coupling to a finite
temperature bosonic bath, which preserves particle parity, is
predicted to result in unavoidable losses of coherence and
errors [56,57]. Nevertheless, as we will show in this paper,
it is possible to identify examples with long-lived quantum
correlations between Majorana states in the presence of noise.

In particular, we will be interested in the effects of local
and global noise representing a parity-preserving coupling
to an environment, which we model as a classical stochastic
process. The case of local noise is representative of a two-level
fluctuator in a solid-state realization of a Kitaev wire [58],
while global fluctuations can result, for example, from laser
light fluctuations in cold-atom experiments.

Our goal is thus to study the effects of noise on Majorana
correlations and braiding operations, in a regime ranging from
quasistatic disorder, all the way to the limit of fast fluctuations,
i.e., where the noise correlation time is much shorter than the
relevant system time scales. Although coupling to classical
noise will eventually always lead to dephasing and heating,
dephasing can be suppressed in the fast fluctuation limit,
even when the system is driven by the noise, e.g., between
topological and nontopological phases. This effect of noise
suppression with decreasing correlation time is familiar from
atomic physics as motional narrowing. There, increasing the
collision rate between atoms can result in a narrowing of the
spectral lines [62], and in our context in an increased coherence
time of Majorana correlations. In such cases, we will also
determine the optimal conditions for braiding time scales—as
a trade-off between the requirement of adiabaticity of braiding,
and decoherence time scales.

The emphasis and value of the present work is on exactly
solvable model quantum many-body dynamics of Majorana
correlations and braiding operations in the presence of colored
Markovian noise sources, as exemplified by telegraph noise,
n-state jump models, or colored Gaussian noise. While in a
solid-state context this should be understood as phenomeno-
logical models of noise describing imperfections such as local
fluctuators, we note that noise in cold-atom experiments can be
engineered, as in recent studies of Anderson localization with
(static) random optical potentials [63,64]. Atomic realizations
of Majorana fermions may thus serve as an ideal platform to
study the effect of time-dependent disorder in a controlled
setting by appropriate modulation of the laser beams to
mimic various noise sources, and can thus provide a direct
experimental counterpart to the present theoretical study.
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The paper is organized as follows. In Sec. II, we briefly
describe the model Hamiltonian of a noisy Kitaev wire. Then,
in Sec. III, we develop techniques which allow nonperturbative
solutions of the many-body quantum dynamics for colored
Markovian noise with arbitrary correlation time. Based on
these techniques, Sec. IV presents a study on the Majo-
rana edge correlations and heating dynamics for a global
noise, which stochastically drives the system, e.g., across
the boundary between the topological and nontopological
phases. The case of local noise is investigated in Sec. V.
Thereafter, in Sec. VI, we study the effect of colored noise
on Majorana transport, and discuss optimal conditions for
Majorana manipulations to obtain the best fidelity at a given
noise. The braiding dynamics on a noisy wire network is
analyzed in Sec. VII, based on the noisy T-junction architecture
and cold-atom setup, respectively. The paper closes with a
summary and outlook in Sec. VIII.

II. NOISY KITAEV WIRE

Our goal is to study the dynamics of Majorana edge modes
of the Kitaev wire in the presence of noise (see Fig. 1). The
relevant Hamiltonian is

H [X(t)] =
N−1∑
j=1

[−Jj (t)a†
j aj+1 + �j (t)ajaj+1 + H.c.]

−
N∑

j=1

μj (t)a†
j aj , (1)

where aj and a
†
j are the operators of spinless fermions

on a finite chain of N sites. Here Jj (t) is the hopping

(c)

(a) (b)

FIG. 1. (Color online) Schematic of Majorana edge modes in
noisy Kitaev wires and braiding operations in the presence of colored
Markovian noise. (a) A Kitaev wire in the topological phase supports
two Majorana edge modes γL/R . In realistic implementations, a
noisy Kitaev Hamiltonian (1) containing stochastic parameters
X(t) ≡ {Jj (t),�j (t),μj (t)} arises, due to a coupling to a classical
environment (blue background). The fluctuations can be either global
[e.g., μ(t)] or local [e.g., μj (t)], depending on the physical sources
of noise in specific implementations. (b) Two typical examples of
colored Markovian noise X(t): the colored Gaussian noise (upper
panel) and the two-state telegraph noise (lower panel). (c) Braiding
Majoranas (say, γ1 and γ2) on a noisy T junction in solid-state setting
(left panel), and in a noisy atomic wire network in the optical lattice
setup (right panel).

amplitude on the lattice, �j (t) is the pairing parameter, and
μj (t) is the local chemical potential. We assume that these
parameters fluctuate in time according to a given noise model
X(t) ≡ {Jj (t),�j (t),μj (t)}, which is motivated by a particular
physical noise source related to a specific implementation. In
hybrid nanowires the above Hamiltonian (or its continuous
version) arises from a combination of spin-orbit coupling of
electrons in the presence of a magnetic field, and the coupling
to an s-wave superconductor [25–28,31–37]. Thus the effect
of a two-level fluctuator, for example, can be represented
by a fluctuating local chemical potential μj (t) on a given
lattice site. On the other hand, a realization of the Kitaev
wire with cold fermionic atoms in a 1D optical lattice results
from a laser-induced coupling to a molecular Bose-Einstein
condensate, where a molecule is dissociated into a pair of
fermions in the wire, thus realizing the pairing term �j

[38,39,56]. Frequency fluctuations of the laser light can be
understood as fluctuations of the laser detuning, or as a global
fluctuating chemical potential μj (t) ≡ μ(t).

Before investigating the dynamics of the noisy wire (1), let
us briefly describe as a reference the properties of a noise-free
Kitaev’s quantum wire [18], where Jj (t) = J , �j (t) = �, and
μj (t) = μ. When |μ| < 2J and � �= 0, the wire is in the topo-
logical phase characterized by a gapped energy spectrum in
the bulk and by a pair of robust Majorana edge modes γL = γ

†
L

and γR = γ
†
R of the form γL/R = ∑

j fL/R,j cj [here we use the

Majorana representation c2j−1 = aj + a
†
j and c2j = −i(aj −

a
†
j ) of the operators] with fL/R,j being exponentially localized

near the left (L) and right (R) edges with the localization length
lM . The pair of Majorana edge modes represents a nonlocal
fermionic zero-energy mode αM = (γL + iγR)/2, and the
long-range correlations −i〈γLγR〉 between the Majorana edge
states, which are of interest for us, are directly related to
the occupation of this mode, −i〈γLγR〉 = 1 − 2〈α†

MαM〉. The
robustness of the correlations is therefore related to the conser-
vation of fermionic parity which distinguishes the two degen-
erate ground states with empty and occupied mode αM . For
|μ| > 2J , when the wire is in the nontopological phase, there
are no Majorana edge states and all excitations are gapped.

The presence of noisy components in the parameters of
the Hamiltonian (1) results in random “shaking” of the
system giving rise to changes in population of the αM mode
(accompanied by creation of bulk excitations) and, therefore,
to the decay of the Majorana correlations. Large-amplitude
global noise, say, in the chemical potential, can also drive the
system across the quantum phase transition between different
phases—topological and nontopological ones—i.e., between
the cases with two Majorana edge modes and with none of
them. Understanding the fate of Majorana edge modes, the
correlations between them, and their braiding in the noisy Ki-
taev wire (1) involves the study of many-body nonequilibrium
dynamics induced by the noise, and we describe the developed
techniques for treating such problems in Sec. III.

III. QUANTUM DYNAMICS IN COLORED
MARKOVIAN NOISE

In dynamics of quantum systems external noise appears
as stochastic parameters in the Hamiltonian, as in Eq. (1),
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and the time-dependent density matrix equation becomes a
multiplicative stochastic differential equation [65,66]. Solving
for the averaged density matrix in the presence of noise
with arbitrary correlation times requires the development
of nonperturbative techniques. For fast fluctuations, when
the noise correlation time is much shorter than the system
response time (white noise limit), a perturbative treatment,
in the form of a lowest order cumulant expansion, results
in a master equation for the stochastically averaged density
matrix [65,66]. However, with increasing correlation time, the
system response will be sensitive to all higher order correlation
functions, and in the limit of infinite correlation time the
static disorder problem is recovered (as in Anderson [67],
and many-body localization [68]). In solving for quantum
correlations and braiding dynamics in the noisy Kitaev wire
we will rely on Markovian models of colored noise, which
allow an exact solution of many-body dynamics for arbitrary
correlation time of the noise.

At the heart of our solution of quantum dynamics for
colored Markovian noise is the generalized master equation
for the marginal system density operator. In brief, we
assume a Markov process X(t) ≡ {Xα(t)}, and we denote
by H [X(t)] the associated system Hamiltonian. Our goal
is to solve the stochastic density matrix equation (� ≡ 1),
∂tρ(t) = −i[H [X(t)],ρ(t)], with ρ(t) the density operator, for
the stochastic average 〈ρ(t)〉s with angular brackets denoting
the noise average. Defining a marginal density matrix

ρ(X,t) = 〈ρ(t)δ(X(t) − X)〉s , (2)

we can derive the generalized master equation for the marginal
density matrix (see Ref. [69] and Appendix A):

∂tρ(X,t) = L(X)ρ(X,t) − i[H (X),ρ(X,t)], (3)

with X now a time-independent variable. Here L(X) is
the generator of our Markovian noise model, as appears
in the differential Chapman-Kolmogorov equation for the
conditional density P (X,t |X′,t ′) [65]:

∂tP (X,t |X′,t ′) = L(X)P (X,t |X′,t ′). (4)

Thus the operator L(X) provides a complete specification of
our noise model, and appears as a damping operator in the
generalized master equation (3). Solving (3) for 〈ρ(t)〉s =∫

dXρ(X,t) provides us with the desired average. We refer
to Appendix B for a discussion of various limits of solving the
above equation: this includes the regime of quasistatic disorder,
and the fast fluctuation limit (master equation limit). We
emphasize, however, that by solving (3) we obtain solutions
valid for arbitrary correlation time.

The most general models for classical Markovian noises
[65] are described by diffusion processes with continuous
noise trajectory and by jump processes with X(t) taking a
set of discrete values {Xm} (m = 0, . . . ,Nr ). In the former
case, L(X) corresponds to the Fokker-Planck operator, and
a primary example is the colored Gaussian noise (Ornstein-
Uhlenbeck process); see upper panel of Fig. 1(b). In the
latter L(X) reduces to a matrix Lmn describing the jump rates
between different Xm, as in the case of multistate telegraph
noise; see lower panel of Fig. 1(b) for the two-state telegraph
noise. While the solution for a diffusion process can in
principle be obtained in terms of the eigenfunctions of the

Fokker-Planck operator L(X) [65,69], we pursue here a much
more convenient strategy by discretizing it to an Nr -state jump
model with large Nr and properly chosen Lmn—“putting the
noise on a lattice.” In this case the generalized master equation
(3) takes on the form of a set of coupled equations for marginal
density matrices ρ(Xm,t)

∂tρ(Xm,t) =
Nr∑

n=0

Lmnρ(Xn,t) − i[H (Xm),ρ(Xm,t)], (5)

which—at least for low-dimensional processes X(t)—is not
significantly of more effort to solve than the original non-
stochastic version.

Below we will illustrate the above techniques for the Marko-
vian two-state jump model [see lower panel of Fig. 1(b)],
which represents the simplest but relevant example capturing
all essential features of noise dynamics. It also allows a
straightforward extension to multistate jump models, or to
noise from several fluctuators, which for a large number in the
sense of the central limit theorem approaches colored Gaussian
noise (see Appendix C). In addition, we will specialize
the above equations to the case of a quadratic many-body
Hamiltonian, as relevant for the Kitaev wire.

In two-state telegraph noise, the stochastic parameter X(t)
switches randomly between two discrete values a and b with
rate κ . Equation (4) is now a rate equation for the probabilities
P (a,t) and P (b,t) to be in state a or b, respectively:

d

dt

[
P (a,t)
P (b,t)

]
=

[−κ κ

κ −κ

][
P (a,t)
P (b,t)

]
:= L

[
P (a,t)
P (b,t)

]
. (6)

We have 〈X〉s = (a + b)/2 and 〈X(t + τ ),X(t)〉s =
σ 2 exp (−|τ |/τc) for the mean value and first-order correlation
function, respectively, with τc = 1/2κ the correlation time
and the variance σ 2 = (a − b)2/4 (using the notation
〈X,Y 〉s ≡ 〈XY 〉s − 〈X〉s〈Y 〉s).

The dynamics of a Kitaev wire driven by a single telegraph
noise can be readily derived in the Majorana representa-
tion, where the quadratic Hamiltonian (1) can be recast as
H [X(t)] = (1/4)

∑
il hil[X(t)]cicl , with hil = −hli being an

asymmetric Hamiltonian matrix [18]. In the Majorana basis,
the key quantity capturing the system dynamics is the covari-
ance matrix 〈�(t)〉s = Tr[〈ρ(t)〉s �̂], with �̂il = (i/2)[ci,cl].
Thus from Eq. (5), we find for the marginal densities

d

dt
�(a,t) = −i[h(a),�(a,t)] − κ�(a,t) + κ�(b,t),

(7)
d

dt
�(b,t) = −i[h(b),�(b,t)] − κ�(b,t) + κ�(a,t).

The desired stochastic average is 〈�(t)〉s = �(a,t) + �(b,t).
Before proceeding with the general solution, we find it
worthwhile to briefly comment on the fast and slow (quasistatic
disorder) limit.

In the fast noise limit, when 1/κ is the shortest time scale,
an adiabatic elimination of the fast dynamics in lowest order
perturbation theory reduces the above equations to a master
equation in Lindblad form,

d

dt
〈�〉s = −i[h+,〈�〉s] − 1

2κ
[h−,[h−,〈�〉s]], (8)
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with h± = [h(a) ± h(b)]/2. The first term describes a coherent
evolution with the average Hamiltonian h+ ≡ 〈h〉s , while
the second term is the noise-induced damping, which scales
as 1/κ . Suppression of the dissipation by fast noises is
called motional narrowing in an atomic physics context
[62], and corresponds to a Zeno effect [70]. If the average
Hamiltonian is in the topological phase and thus supports
Majorana edge modes, the initial Majorana correlation will
show slow dephasing due to the Zeno effect—irrelevant if a

or b per se lies in the topological or nontopological regime.
On the other hand, in the limit of slow noise, i.e., when
the jump rate κ → 0, we can ignore L in Eqs. (3) and (7),
L → 0, during long times t � κ−1, so that for such times we
simply have to perform the (quasi)static average of the system
dynamics.

Below we will solve the full marginal density equa-
tions (7) for Majorana edge correlation −i〈γLγR〉s =
−∑

il fL,ifR,l〈�̂il〉s , with fL/R,l the Majorana wave function
of the initial Hamiltonian in the Majorana basis. Our discussion
will focus on the special case of local and global telegraph
fluctuations of the chemical potential. As mentioned above,
such telegraph noise can represent a local two-level fluctuator
in a solid-state setup, and global laser frequency noise in
an atomic realization of the Kitaev wires. We would like to
stress, however, that even though we consider here the simplest
jumplike noise process and only the chemical potential as
a fluctuating parameter, our conclusions remain valid for a
more general scenario with colored noise and with several
fluctuating parameters.

We conclude this section with the remark that the con-
sidered Markovian noise models give rise to first-order noise
correlation functions, which are exponentials, or superposition
of exponentials. We note however that non-Markovian noise
models can often be represented as projections of higher
dimensional Markov processes, which can also be solved
by our techniques. Another point to mention is that for
nonquadratic Hamiltonians in one dimension, the generalized
master equation (3) can be solved using the density matrix
renormalization method [71,72], and the developed techniques
therefore are interesting in a much broader context for many-
body systems driven by colored noise.

IV. EDGE AND BULK DYNAMICS IN THE PRESENCE
OF GLOBAL NOISE

We begin with discussing the time evolution of the Majo-
rana edge correlation −i〈γLγR〉s under the global fluctuations
in the chemical potential μ(t), when it flips between two values
μa and μb (the corresponding Hamiltonians are Ha and Hb,
respectively) with the jump rate κ . The statistic property of
μ(t) is described by the mean value μave = (μa + μb)/2,
the variance σ 2 = (μa − μb)2/4, and the correlation time
τc = 1/2κ . We denote by Have = 〈H [μ(t)]〉s the average
Hamiltonian over the noise realization, which in the considered
case is of the form of a noise-free Kitaev Hamiltonian with
μ = μave. For the initial condition, we take μ(0) = μa with
|μa| < 2J such that Hamiltonian Ha is in the topological
phase, and assume the system is in the ground state with the
Majorana edge-mode correlation −i〈γLγR〉 = 1. For the value
μb, we consider three possible scenarios [see Fig. 2(a)]: (1)
|μb| < 2J , when the Hamiltonian Hb is in the topological
phase (fluctuations within the topological phase); (2) |μb| >

2J but |μave| < 2J , when Hb is in the nontopological phase
but the average Hamiltonian Have remains in the topological
phase (fluctuations between topological and nontopological
phases but on average staying in the topological one); and
(3) |μb| > 2J and |μave| > 2J , when both Hamiltonians Hb

and Have are nontopological (large-amplitude fluctuation when
staying on average in the nontopological phase). The evolution
of −i〈γLγR〉s calculated on the basis of Eq. (7) for these
three scenarios is shown in Figs. 2(b)–2(d), respectively, in
the regimes of fast, intermediate, and slow jump rate κ .

We see that noise always leads to decay of Majorana
correlations, but the decay dynamics significantly depends on
the amplitude and rate of the noise. Not surprisingly, we find
the slowest decay of the Majorana correlations in the scenario
(1) when the fluctuating Hamiltonian always remains in the
topological phase. Strikingly, the dynamics in the scenario
(2) shows the same features, even though here we have
jumps between topological and nontopological phases: In both
scenarios, we observe the fastest decay in the regime with an
intermediate jump rate [κ = 0.7J ; black curves in Figs. 2(b)
and 2(c)], when κ is comparable with the energy gap and
the bandwidth (∼ J ∼ �) of the Hamiltonian Ha , whereas

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

0 2 4 6 8 10 0 2 4 6 8 10

(a) (b) (c) (d)

FIG. 2. (Color online) Evolution of Majorana edge correlations in the presence of a globally fluctuating chemical potential. (a) For a
chemical potential μ(t) flipping between μa and μb, there exist three jump scenarios (1)–(3) in the phase diagram corresponding to the value
of μb. (b)–(d) Time evolution of the Majorana edge correlation function −i〈γLγR〉s for μa = 0.2J and (b) μb = J , (c) μb = 2.1J , and (d)
μb = 4J . In each scenario, we take three typical jump rates: κ = 0.1J , κ = 0.7J , and κ = 10J , and consider a Kitaev wire of N = 60 sites
with the pairing parameter � = 0.8J . We have considered two types of initial conditions, which correspond to the ground state of Hamiltonian
Ha (solid curves) and of average Hamiltonian Have in the case of fast noises [blue dashed curves in (b) and (c)]. In the inset of (c), the dynamics
for the noise with κ = 10J (blue curve) for μb = 2.1J is compared with the quench dynamics (red curve), for a quench in the chemical
potential from μ = 0.2J to μ = μave.
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in both the slow (κ = 0.1J ; yellow curves) and fast noise
(κ = 10J ; blue curves) regimes, the decay is much slower,
and the system exhibits substantial Majorana correlations for
much larger times (>10J−1). In contrast to this nonmonotonic
dependence on the noise rate, the decay rate in the scenario
(3) grows with κ [see Fig. 2(d)]: for both intermediate and
fast fluctuations there are no visible Majorana correlations for
times t � 10J−1, although for slow noise they survive for a
much longer time.

We now detail the analysis on the dynamical behavior
of −i〈γLγR〉s in scenarios (1)–(3) in the slow, fast, and
intermediate regimes of the noise, respectively. We start with
slow fluctuations when κ � J ∼ �, μa(b). In this case, the
quenches between Ha and Hb—occuring at random instants—
on average take place after a typical time κ−1, which is much
larger than all characteristic time scales of the system. As
is explained in Appendix D, on the time scale of several
inverse bandwidths of the system (∼J−1) after a quench, the
Majorana correlations relax to asymptotic values which are
determined by the overlap of the Majorana edge-mode wave
functions for the Hamiltonians Ha and Hb. Such asymptotic
values then remain constant till the next quench occurs.
For the scenarios (2) and (3), when Hb is nontopological
and has no edge modes, the overlap is zero, and already
the first quench completely destroys the correlations. We
therefore have −i〈γLγR〉s ∼ exp(−κt) for these scenarios
[yellow curves in Figs. 2(c) and 2(d)]. On the other hand,
for the scenario (1) when Hb has the zero mode, the overlap is
nonzero. In this case, each quench reduces the correlations by a
factor of G∞ < 1 related to the overlap [see Eqs. (D1) and (D3)
in Appendix D], resulting in a slower decay of the correlation
−i〈γLγR〉s ∼ exp[−κ(1 − G∞)t] [yellow curve in Fig. 2(b)].

In the opposite regime of fast fluctuations (κ � |μb − μa|,
J ∼ �), the dynamic behavior is remarkably related to the
Zeno effect and to the quench problem. In this case, the
evolution of −i〈γLγR〉s can be explained based on Eq. (8)
for the correlation matrix, which in the considered case takes
the form

d

dt
〈�〉s = −i[h+,〈�〉s] − σ 2

2κ
[N,[N,〈�〉s]]. (9)

Here σ = |μb − μa|/2 as mentioned earlier, and the matrices
h+ and N correspond to the Hamiltonian Have and the total
particle number operator in the Majorana basis. Following
from Eq. (9), we see the following:

(i) In the limit κ → ∞, when the second “decay” term can
be neglected, Eq. (9) describes the dynamics of correlations
after the quench from the initial Hamiltonian Ha to the
averaged one Have. As a result, the asymptotic (t → ∞) value
of the Majorana correlation function −i〈γLγR〉s is determined
again by the overlap of the wave functions of the Majorana
edge modes (see Appendix D), but now for the Hamiltonians
Ha and Have. For Hamiltonian Have in the nontopological phase
[scenario (3)], there are no such modes, and after the quench
−i〈γLγR〉s decays to zero on the time scale of the order of
the inverse bandwidth of Have. For Have in the topological
phase [scenario (1) with topological Hb and scenario (2) with
nontopological Hb], this mode exists giving rise to a nonzero
overlap and to a finite asymptotic value of the correlations after
the quench.

(ii) For a large but finite κ , the second term in Eq. (9)
adds a slow decay on top of the quench dynamics, providing
the asymptotic behavior of −i〈γLγR〉s shown in Figs. 2(b)
and 2(c). The short-time (t � J−1) behavior of the correla-
tions, seen in the form of damped oscillations on these figures,
is sensitive to the details of the band structures of Ha and
Have. In general, the “closer” these Hamiltonians are, the more
pronounced are the oscillations, and the less destructive effect
has the quench on −i〈γLγR〉s .

(iii) Note that Eq. (9) suggests the preparation of the
initial Majorana correlations with respect to the edge states
of the Hamiltonian Have, not Ha , which is practically also
more natural for fast fluctuations. In this case, the first term
in Eq. (9) has no destructive effects, and −i〈γLγR〉s shows
slow decay due to the second term [dashed blue lines in
Figs. 2(b) and 2(c)]. This slow decay of Majorana correlations
in the presence of fast noises—even for a sufficiently large
fluctuation amplitude outside the topological phase—is a
direct consequence of the Zeno effect, which reduces the
dynamics with fast fluctuating parameters to a weakly damped
dynamics with the averaged Hamiltonian.

Finally, in the intermediate regime when the fluctuation
rate is of the order of typical energy scales in the system,
κ ∼ J ∼�, μa(b), one has optimal conditions for pumping
excitations into the system (heating), leading to the fastest
decay of the Majorana correlations. This can be seen by
looking at the growth in the system energy under the action
of noises. To illustrate this heating dynamics, we consider
the case when μ(t) jumps between μa = μ − δμ and μb =
μ + δμ (such that μave = μ) with a rate κ , focusing on the

(a) (b)

FIG. 3. (Color online) Heating dynamics in the bulk. (a) The absorbed energy �E(t) in units of J as a function of time for μave = 0
and different κ . (b) Heating rate Ds in units of J 2 as a function of κ for different μave. Numerical results (dotted curves) are compared
to the predictions from Eq. (11) (solid curves). For (a) and (b), we have fixed the noise variance σ = |μb − μa|/2 = 0.1J , and have
chosen � = J .
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weak noise limit δμ � J and choosing � = J . We assume
that initially the system is in the ground state of the average
Hamiltonian Have [but still μ(t = 0) = μa], with energy E0

calculated with the corresponding initial density matrix ρs(0),
and calculate the system energy gain �E(t) = Tr[ρs(t)Have] −
E0 for different μ and κ . A typical time evolution of �E(t)
for different noise jump rates is shown in Fig. 3(a). There,
the energy is seen to grow linearly, �E(t) = Dst , after a
short transition time (t � J−1). Then after a relatively long
time (not shown) due to the small noise amplitude δμ � J , it
saturates to the asymptotic value which depends on μ but not
on κ (infinite-temperature state). The heating rate Ds depends
on both κ and μ. Figure 3(b) shows Ds as a function of
the jump rate κ for the values of chemical potential μ = 0,
2J , and 4J , which correspond to the topological, critical,
and nontopological phases, respectively. We see that Ds is
a nonmonotonic function of κ , which is small when noise is
slow or fast (Zeno effect), and has a pronounced maximum for
κ ≈ (2–4)J . The maximum corresponds to the situation when
the inverse noise correlation time τ−1

c = 2κ , which determines
the frequency width of the noise correlation function, lies
inside the band of bulk excitations (the exact position depends
on the band structure).

The linear growth of the energy for the considered times can
be understood by calculating the energy gain in the second-
order perturbation theory (� ≡ 1):

�E(t) =
∑

ν

εv|Mν |2
〈∣∣∣∣

∫ t

0
dτ exp(iεντ )μ(τ )

∣∣∣∣
2〉

, (10)

where Mν is the matrix element of the number operator
between the ground state and the excited state |ν〉 with
the energy E0 + εν . For the considered global perturbation,
|ν〉 simply corresponds to the state with two single-particle
excitations with momenta k and −k, and the energy εν =
2Ep = 2

√
(2J cos pa + μ)2 + 4�2 sin2 pa with a being the

lattice spacing. Performing the time derivative and assuming
the time t being larger than the noise correlation time τc =
(2κ)−1, we obtain the following expression for Ds :

Ds =
∑

p

2Ep|Mp|2
∫ ∞

−∞
dτ 〈μ(τ )μ(0)〉 exp(2iEpτ ),

where the summation is over the Brillouin zone p ∈
(−π/a,π/a]. With the expression |Mp|2 = |upvp|2 =
(�2 sin2 pa)/E2

p for the matrix element and 〈μ(τ )μ(0)〉 =
μ2 + σ 2 exp(−2κ|τ |) for the noise correlation function, we
finally obtain (k = pa)

Ds = 4σ 2
∫ π

−π

dk

2π

κ

κ2 + E2
k

�2 sin2 k

Ek

, (11)

for the energy-growth coefficient. The above expression is
plotted as solid lines in Fig. 3(b) and is in very good agreement
with numerical data.

V. LOCAL NOISE

We next discuss the effects of the local noise on the
Majorana correlations −i〈γLγR〉s , which we model by adding
a fluctuating part to the chemical potential on the site d,

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15

(a) (b)

FIG. 4. (Color online) The effect of local noise at different
locations in a Kitaev wire on Majorana edge correlations. (a) and
(b) Time evolution of −i〈γLγR〉s when a noise ξ (t) arises in the local
chemical potential at three different sites (d = 1,3,6), with a jump
rate (a) κ = 0.7J and (b) κ = 10J . We take ξa = 0 and ξb = 0.8J ,
N = 60, � = 0.4J , and μ = 0.4J . For this parameter choice, the
localization length of the Majorana modes is lM ≈ 2.5a, with a being
the lattice constant.

such that μj (t) = μ + δj,dξ (t) with the amplitude ξ (t) being
described by the telegraph noise: ξ (t) randomly flips between
ξa and ξb > 0 with the rate κ , and ξ (0) = ξa . In this case,
an exponential localization of the Majorana modes near the
edges with the localization length lM leads to a very strong
dependence of the effects of the noise on d. This is because
the decay of the Majorana correlations is caused by noise-
induced changes in the population of the associated nonlocal
fermionic zero-energy mode, with the corresponding matrix
element being proportional to the value of the edge-mode wave
function on the noisy site d. The results of our calculations for
intermediate and fast noises, Figs. 4(a) and 4(b), respectively,
clearly show this dependence: the decay is the fastest for
d < lM , for d ∼ lM it is already substantially less, and is
exponentially small for d > lM .

Similar to the case of a global noise, the reduction of the
decay in the fast-noise regime (κ � J , �, μ) is due to the
Zeno effect, as follows from Eq. (8) which now takes the form

d

dt
〈�〉s = −i[h+,〈�〉s] − σ 2

2κ
[nd,[nd,〈�〉s]],

where σ = |ξb − ξa|/2, the matrix nd corresponds to the local
density operator a

†
dad at site d in the Majorana basis, and the

second term adds a slow decay on top of the result of the
quench described by the first term. The average Hamiltonian
in this case contains the static impurity potential Vd = (ξa +
ξb)/2 on the site d, which results in just modification of the
Majorana edge modes, and hence in a finite asymptotic value
of −i〈γLγR〉s after the quench. The small (∼κ−1) decay rate
is extra reduced, as compared to the global noise, for d � lM
due to the smallness of the edge-mode wave functions on the
site d. For d > lM , this gives an exponentially small decay rate
such that the Majorana correlations are practically immune to
the noise (Fig. 4).
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FIG. 5. (Color online) (a) and (b) The effect of a large-amplitude
noise ξ (t) in the local chemical potential on the dynamics of Majorana
edge correlation −i〈γLγR〉s , when the local noise ξ (t) arises at site
d = 3 (blue curves) and d = 6 (black curves), flipping between
ξa = 0 and ξb = 4.4J . (c) and (d) Evolution of the edge correlation
−i〈γLγR〉s when noise induces at random instants a splitting in the
wire, between sites 3 and 4 (green curves) and between sites 6 and
7 (blue curves). In (a)–(d), we take two different noise jump rates,
κ = 0.7J (left panels) and κ = 10J (right panels). Other parameters
are the same as Fig. 4.

If we increase the amplitude of the noise to larger values,
see Figs. 5(a) and 5(b) for ξb = 4.4J , the oscillating behavior
for fast noise becomes much more pronounced. In this case,
the strong static impurity potential in the average Hamiltonian
splits the wire into two pieces which are weakly coupled
through the impurity site (Josephson junction). If the coupling
were zero, one would have an extra pair of Majorana modes
at the edges adjacent to the impurity, and the corresponding
fermionic zero mode. For a small but finite coupling, the energy
of this mode is finite, and the oscillations seen in this case
correspond to the energy of this mode. Similar oscillatory
behavior is observed when the fast noise randomly splits the
wire into two parts, for example, when the local hopping Jd

and the pairing �d amplitudes (between site d and d + 1) jump
simultaneously between the finite values and zero, as shown
in Figs. 5(c) and 5(d). In this case of fast noise, the average
Hamiltonian has a “weak link,” and the oscillation frequency
seen in Fig. 5(d) corresponds to the energy of the fermionic
mode localized at this link. Note that the amplitude of the
oscillations is related to the overlap between the Majorana
edge mode and the wave function of the low-energy fermionic
mode localized on the “defected” site or link, and rapidly
decreases with increasing distance between the modes.

Note that for the ideal Kitaev chain (J = � and μ = 0),
the two Majorana modes γL = c1 (γR = c2N ) locate on the
leftmost (rightmost) sites, such that −i〈γLγR〉s = −(�s)1,2N .
In this case, the dynamics of the Majorana correlations is
completely uncoupled from that of the bulk—the Majorana
correlations in this ideal case are absolutely insensitive to what
happens in the bulk.

VI. COMPETITION BETWEEN NOISE AND
ADIABATICITY IN MAJORANA TRANSPORT

Equipped with above understanding of the nonequilibrium
dynamics of a noisy Kitaev wire, we now discuss the effect of a
local noise on the Majorana edge correlations during the adia-
batic transport [20,29,30]—an essential building block for the
braiding operations. As we will see, in the presence of a noise,
the adiabaticity of the transport—required for preserving the
information encoded in the Majorana correlations—confronts
the finite lifetime of the correlations, and the competition of
these two factors establishes an optimal operation time.

Following Ref. [20], we will move the left Majorana edge
mode by “pushing” it to the right via adiabatically switching
on local potentials on the corresponding sites. For example
[see Fig. 6(a)], the move of γL from site 1 to site 2 can be
achieved by applying the local potential λ(t)V at site 1 [an extra
term λ(t)V a

†
1a1 in the Hamiltonian], where V � 2J and λ(t)

increases monotonically from λ(t < 0) = 0 to λ(t > Tf ) = 1
during the time interval [0,Tf ] with Tf being much larger
than the inverse energy gap, Tf � J−1, �−1, μ−1. (In our
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(c) (d)

(e) (f)

FIG. 6. (Color online) Fate of a Majorana moving through a local
noise. (a) A move of the Majorana edge mode γL from site 1 to site
2 by adiabatically tuning the local potential V in a time interval Tf .
(b)–(e) Time evolution of the correlation between the edge Majorana
operators −i〈c2j−1c2N 〉s for j = 1,2,3,4, when γL is adiabatically
transported from site 1 to site 4 through a local noise ξ (t) at site d = 2
with (b) κ = 0, (c) κ = 0.5J , and (d) κ = 10J . (e) The time evolution
of the correlations between the Majorana edge modes −i〈γL(t)γR〉s

for different κ . [JTf = 25 for (b)–(e).] (f) The remaining Majorana
correlations −i〈γLγR〉f as a function of Tf for different κ , after γL is
moved to site 4 (in total times of 3Tf ). For (b)–(f), we have chosen
ξa = 0, ξb = 0.8J , N = 40, � = 0.8J , and μ = 0.2J .
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calculations we use λ(t) = sin2[(π/2Tf )t].) Further moves can
be achieved by applying the same protocol successively to sites
2, 3, . . . . In Fig. 6(b) we show the evolution of the correlations
−i〈c2j−1c2N 〉 with j = 1,2,3,4, during the adiabatic move of
γL from site 1 to site 4 for Tf = 25J−1 (in total time 3Tf )
and in the absence of the noise. [The correlation −i〈γL(t)γR〉
between the actual edge modes remains unchanged from its
initial value 1; see also the curve with κ = 0 in Fig. 6(e)].

The same correlations in the presence of the local noise
Vd [ξ (t)] = ξ (t)nd at site d [here ξ (t) flips again between ξa and
ξb at a rate κ] are shown in Figs. 6(c) (κ = 0.5J ) and 6(d) (κ =
10J ) for d = 2. The corresponding behavior of the correlation
−i〈γL(t)γR〉s between the edge modes [γL(t) is moving and
γR is fixed] is presented in Fig. 6(e). We clearly see deviations
from the noise-free case, which are significant for κ = 0.5J

and small for κ = 10J (Zeno effect), but these deviations take
place mostly when the Majorana mode moves to the noisy site
(for t from 0 till Tf in the considered example). After that,
the Majorana correlations do not exhibit any visible decay and
repeat the pattern of the noise-free case but with the reduced
amplitudes. This behavior follows from the localized character
of wave functions of the Majorana edge states: the correlations
between them are influenced by the local noise only when
the moving Majorana mode and the noisy site are within the
localization length lM . (Note that the extent of the edge-mode
wave function in the “nontopological” part of the wire—the
sites with nonzero local potential V —is also nonzero but very
small for V � 2J . As a result, a noisy site in this part of the
wire has no effect on the correlations.)

The above results also imply that, in order to minimize the
destructive effect of the noise on Majorana edge correlations,
the move through the noisy site has to be performed with
the fastest speed—the requirement which is opposite to the
adiabaticity condition for the transport. As a result, there exists
an optimum speed of transport (optimum Tf ) for each κ . This is
illustrated in Fig. 6(f) which shows the remaining correlations
(after the total move) as a function of Tf for different κ: the
decrease in the correlations for small Tf is due to nonadiabatic

effects, while for large Tf it is due to accumulated action of the
noise. The proper choice of Tf can substantially reduce the loss
of correlations, especially in the intermediate-noise regime.

Similar consideration is also applicable to the global noise.
However, in this case the destructive effect of the noise is
independent of the position of the Majorana modes, so that an
entire time of the operation should be within the lifetime of
correlations; see Fig. 2.

VII. FIDELITY OF BRAIDING IN A NOISY
WIRE NETWORK

Finally, we study the effects of the noise on the Ma-
jorana braiding (exchange)—the operation which for the
two modes γ1 and γ2 corresponds (up to a phase) to the
unitary operator U = exp [−(π/4)γ1γ2] and results in the
transformation γ1 → γ2, γ2 → −γ1, showing the non-Abelian
character of Majorana fermions [19,20]. We consider two
proposed braiding scenarios: (i) in the T junction for the
solid-state heterostructures, see Ref. [20], and (ii) in the wire
networks for cold-atom systems, see Refs. [44,45].

We first consider the T junction with two Majorana edge
modes γ1 = γL and γ2 = γR which we braid by moving them,
see Fig. 7, in accordance with the protocol from Ref. [20].
We choose initially −i〈γ1γ2〉 = 1 and follow the evolution of
this correlation during the protocol. Without noise, it remains
unchanged during the entire braiding, provided we move the
modes, say γ1, adiabatically (we choose Tf = 18J−1). In the
presence of local noise, from the previous results we expect
the decrease of −i〈γ1(t)γ2(t)〉s each time when the Majorana
mode passes the noise site. This is demonstrated in Fig. 7 for
the case when the noise source is located at the common point
of the three legs forming the T junction: here the Majorana
modes have to cross the noisy site three times, and each
crossing results in the decrease of −i〈γ1(t)γ2(t)〉s . For the
noisy site located in one of the legs, only two crossings occur
with the two corresponding drops in −i〈γ1(t)γ2(t)〉s , resulting
in a higher fidelity of the braiding operation.

FIG. 7. (Color online) Majorana braiding on a noisy T junction, where a local noise ξ (t) occurs in the common joint connecting three
wire segments. Upper panel: Schematics of an exchange of two Majoranas γ1 and γ2 following Ref. [20]: (i) Initially the horizontal wire is
topological supporting two Majorana edge modes γ1 and γ2 at the ends, while the vertical wire is nontopological. (ii) γ1 is moved through the
junction to the bottom of the vertical wire, while γ2 is fixed at the right end of the horizontal wire. (iii) γ2 is moved all the way to the left end of
the horizontal wire, while γ1 is fixed. (iv) γ1 is moved upward through the junction and then rightward. (v) At the end of the exchange, the wire
returns to its original configuration, with γ1 → γ2 and γ2 → −γ1. Lower panel: Evolution of the Majorana edge correlations −i〈γ1(t)γ2(t)〉s

in each step of the exchange processes, when a local noise ξ (t) in the junction jumps between 0 and 0.7J at a jump rate κ = 0.6J and
κ = 10J , respectively. For other parameters, the pairing parameters of the horizontal and vertical wires are chosen as �x = i�y = 0.7J . We
take μ = 0.1J in the topological segment and μ = −4J in the nontopological segment of the wires, and JTf = 18.
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FIG. 8. (Color online) Braiding dynamics of Majoranas in a
noisy atomic wire network. (a) Cold-atom implementation of braiding
based on Refs. [44,45], where the Majorana modes γ

(u)
L and γ

(l)
L on

the left ends of the two wires are exchanged. (b)–(e) Time evolution
of the Majorana correlation functions for (b) noise-free case, (c) a
local noise at site �s3 of the upper wire with κ = 0.5J , and [(d) and
(e)] a local noise at site �s1 of the upper wire with (d) κ = 0.5J and
(e) κ = 10J . For (c)–(e), we choose ξa = 0 and ξb = 0.6J . For other
parameters, �(u) = �(l) = 0.7J and μ(u) = μ(l) = 0, N (u) = N (l) =
32. Following Refs. [44,45], the braiding is realized in four steps,
where we choose the operation time tf for each step as J tf = 25 for
(b)–(e).

For the braiding in an atomic wire network, we consider
two wires [see Fig. 8(a)]: the upper one (u) and the lower
one (l), each having a pair of Majorana modes (γ (u)

L ,γ
(u)
R ) and

(γ (l)
L ,γ

(l)
R ). The braiding protocol from Refs. [44,45] involves

operations only on one side (say, left) of the network, and the
modes to be braided, γ1 = γ

(l)
L and γ2 = γ

(u)
L , are also located

on the same side. As a result, the protocol will be only sensitive
to noise located close to the left side of the network. Figure 8(b)
shows the evolution of correlations between various Majorana
modes during braiding in the absence of the noise. The evolu-
tion of the same correlations with the telegraphic-noise source
with κ = 0.5J on the third site (�s3) and on the first site (�s1) of
the upper wire is presented in Figs. 8(c) and 8(d), respectively.
The figures clearly show the above mentioned feature of the
protocol. Notably, for a fast noise, even when the noise source
is located on the first site �s1, one has much less noise-induced
decoherence whence higher fidelity; see Fig. 8(e).

VIII. CONCLUSIONS AND OUTLOOK

To summarize, we have studied the decoherence of Ma-
jorana edge correlations and braiding dynamics in colored
Markovian noises preserving parity symmetry. Our analysis
relies on a technique for solving quantum many-body dy-
namics when the system parameters undergo local or global
fluctuations modeled by classical stochastic processes with
arbitrary correlation time. Our studies on noisy Kitaev wires

show that, while the noise always gives rise to the decay of the
correlations between Majorana edge states, there are several
parameter regimes where the lifetime of the correlations
remains sufficient for quantum manipulations with Majorana
fermions, even without error corrections. This includes the
cases of slow global noise and generic local noise in the bulk,
and in particular, the case of fast noise where decoherence
can be suppressed due to motional narrowing, also known as
the Zeno effect. These results further allow us to optimize the
manipulation protocols of Majoranas in both the solid-state and
cold-atom settings. Our presentation is for two-level telegraph
noises in chemical potentials, but the essential features of noise
dynamics are also seen in the colored Gaussian noises (the
lattice model), and in other types of noises, e.g., the phase
fluctuation in the pairing parameters.

The present study and the development of techniques to
treat the effect of noise from static disorder to the rapid
fluctuation limit should also be seen in the broader context of
dynamics of correlations in an interacting many-body quantum
system in the presence of random fluctuations. The effect of
random fluctuations, either as spatial disorder or temporal
noise, on the properties of quantum many-body systems is
a long-standing and important problem. Spatial static disorder
underlies phenomena such as Anderson localization, and
quantum many-body localization-delocalization transition in
the presence of interaction, with typically short-range corre-
lations in the localized phase. The time-dependent random
fluctuations introduce temporal decoherence and possible
heating, resulting in finite temporal correlations. Whether the
combination of random fluctuations and interparticle interac-
tions could lead to some interesting long-range dynamics in
the space-time domain is an open and intriguing question.
The considered model, being formally quadratic, implicitly
contains the effects of interparticle interactions in the form
of a paring term which is responsible for the existence of
the nontrivial topological phase with non-Abelian Majorana
states. Due to topological protection, these states and the long-
range correlations between them survive the static disorder,
and, therefore, the considered model provides a simple and
tractable example from a very special class of topological
system, both interacting and noninteracting, with correlations
robust against static disorder. The results of our paper provide
therefore a possible scenario for behavior of such systems in
the presence of a temporal noise.
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APPENDIX A: DERIVATION OF THE GENERALIZED
MASTER EQUATION

Following Ref. [69], here we derive the generalized
master equation (3) for the marginal density matrix ρ(X,t)
in the main text. Denoting A[X(t)]ρ(t) ≡ −i[H [X(t)],ρ(t)],
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for each noise realization we can solve the multiplicative
stochastic equation ρ̇(t) = A[X(t)]ρ(t) for the density matrix
ρ(t) given an initial one ρ(t0) at t0 with X(t0) = X0. The formal
solution can be written as ρ(t) = ∑∞

n=0 ρn(t), with ρn(t) =∫ t

t0
dtn . . .

∫ t2
t0

dt1
∏n

i=1 A[X(ti)]ρ(t0) for t � tn � · · · � t0 and
ρ0(t) = ρ(t0). Thus from Eq. (2) we have ρ(X,t) =∑∞

n=0 ρn(X,t) with ρn(X,t) = 〈ρn(t)δ(X − X(t))〉s , where the
stochastic average can be straightforwardly performed using
joint probability densities P (X,t ; Xn,tn; . . . ; X0,t0). From
the defining property of a Markov process, which is the
factorization property of the conditional probability densities
[65], we can write

ρn(X,t) =
∫ t

t0

dtn . . .

∫ t2

t0

dt1

∫
dXn . . .

∫
dX0A(Xn)

. . . A(X1)ρ(t0)P (X,t |Xn,tn)P (Xn,tn; . . . ; X0,t0).

(A1)

Here P (X,t |Xn,tn) is the conditional probability for find-
ing X(t) = X given X(tn) = Xn at the earlier time tn < t .
The significance of Eq. (A1) is that the time dependence
in the stochastic parameter X(t) is now transferred into
P (X,t |Xn,tn). Then by using the Chapman-Kolmogorov equa-
tion (4) for the evolution of P (X,t |X′,t ′) (t ′ < t), together with
P (X,t |X′,t) = δ(X − X′), we obtain

ρ̇n(X,t) = A(X)ρn−1(X,t) + L(X)ρn(X,t), (A2)

and ρ̇(X,t) = ∑∞
n=0 ρ̇n(X,t) readily gives Eq. (3).

APPENDIX B: FAST FLUCTUATION
AND QUASISTATIC LIMITS

Below we solve the generalized master equation (3) for the
average density matrix ρs(t) = 〈ρ(t)〉s in two limiting cases of
a stationary colored Markovian noise: (1) the fast fluctuation
limit and (2) the quasistatic limit. (As above we will use the
notation A(X)ρ(X,t) = −i[H (X),ρ(X,t)].)

Fast fluctuation limit. In this case, a master equation
for ρs(t) can be derived using the eigenfunction expansion
method [65,69]. Denoting the left (right) eigenfunctions of
the noise operator L as Pλ(X) [Qλ(X)], with LPλ(X) =
−λPλ(X) [L†Qλ(X) = −λQλ(X)], we expand

ρ(X,t) =
∑

λ

Pλ(X)Cλ(t). (B1)

Note that P0(X) = Ps(X) represents a stationary distribution
with LPs(X) = 0, and Q0(X) = 1. Denoting (Qλ,APλ′ ) =∫

dXQλ(X)A(X)Pλ′(X) and using the orthogonal condition
(Qλ,Pλ′ ) = δλ,λ′ , the expansion coefficient Cλ(t) in Eq. (B1) is
derived as Cλ = ∫

dXQλ(X)ρ(X,t). Importantly, we identify

ρs(t) = C0(t) ≡
∫

dXρ(X,t), (B2)

which is just the desired average density matrix.
We thus want to derive ρ̇s = Ċ0(t). Substituting Eq. (B1)

into the generalized master equation (3), we find

ρ̇s = Aaveρs +
∑
λ �=0

(Q0,APλ)Cλ, (B3)

Ċλ = −λCλ + (Qλ,AP0)ρs +
∑
λ′ �=0

(Qλ,APλ′ )Cλ′ , (B4)

with Aave = ∫
dXA(X)Ps(X). For fast fluctuations when the

damping rate ∼λ is large, we can eliminate the fast dynamics
of Cλ(t) [see Eq. (B4)] on a time scale t � λ−1 using the
technique of adiabatic eliminations [65]. In doing so, Eq. (B3)
becomes (in linear order of 1/λ)

ρ̇s(t) = (Aave + D)ρs(t). (B5)

Here the operator D is defined by Dρs ≡ ∫ t

0 dτ 〈A(τ ),A(0)〉s
ρs , with 〈A(τ ),A(0)〉s = ∑

λ �=0[
∫

dXA(X)Pλ(X)]2e−λτ the
stationary variance [65] and t � λ−1. Equation (B5) is the
familiar master equation: the first term corresponds to a
coherent evolution with the average Hamiltonian Have; the
second term describes a damping dynamics with the operator
D determined only by the second-order noise correlations.
As an illustration, consider H [X(t)] = Have + X(t)H1 [thus
A[X(t)] = Aave + X(t)A1]. For the example of noises X(t)
with exponential correlations, 〈X〉s = 0 and 〈X(τ ),X(0)〉s =
σ 2 exp(−|τ |/τc), we have D = σ 2τcA1A1 for t � τc when
Eq. (B5) becomes

ρ̇s = −i[Have,ρs] − σ 2τc[H1,[H1,ρs]].

A similar equation arises in the main text in the concrete
example of a fast two-state telegraph noise [see Eq. (8)].

Quasistatic limit. We now turn to the quasistatic case, when
the relevant times (say, time for experimental observation) are
much shorter than the noise correlation time, t � τc. For this
time the noise distribution is effectively frozen to the initial
one, and hence we ignore L in Eq. (3) when it reduces to

ρ̇(X,t) = −i[H (X),ρ(X,t)] ≡ A(X)ρ(X,t). (B6)

Given an initial ρ(X,0), the solution of Eq. (B6) gives
the average density matrix for times t � τc as ρs(t) =∫

dX exp[A(X)t]ρ(X,0) (valid to lowest order of τ−1
c ).

APPENDIX C: A LATTICE MODEL FOR COLORED
GAUSSIAN NOISE

Here we present a lattice model for colored Gaussian
noise X(t) (Ornstein-Uhlenbeck process [65]), characterized
by a mean value 〈X(t)〉s and a variance 〈X(t + τ ),X(t)〉s =
σ 2 exp(−|τ |/τc). The basic idea is to form a multistate
noise with Nr independent two-state telegraph noises: X(t) =∑Nr

r=1 Xr (t). Each telegraph Xr (t) flips between a′ and b′ at
a rate κ , with 〈Xr〉s = (a′ + b′)/2 and 〈Xr (t + τ ),Xr ′ (t)〉s =
δr,r ′σ ′2 exp(−τ |/τc). Here σ ′2 = (a′ − b′)2/4 and τc = 1/2κ

as in the main text. Thus by construction we have 〈X(t)〉s =
Nr〈Xr〉s , and σ 2 = Nrσ

′2. The noise X(t) can be viewed
as resulting from many independent two-level fluctuators
with the same jump rate, so that the instantaneous value
of X(t) switches randomly among Nr + 1 discrete values
{Xm} (m = 0, . . . ,Nr ) with

Xm = ma′ + (Nr − m)b′. (C1)

We remark that, for given 〈X(t)〉s and σ of the noise X(t), the
values a′ and b′ of each telegraph are determined from scaling
relations: a′ = 〈X(t)〉s/Nr − σ/

√
Nr and b′ = 〈X(t)〉s/Nr +

σ/
√

Nr .
The stochastic property of the above noise X(t) is described

by a probability density P (Xm,t) for finding X(t) = Xm at time

165118-10
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t , i.e.,

P (Xm,t) = m!

(Nr − m)!Nr !
[P (a′,t)]m[P (b′,t)]Nr−m. (C2)

Here P (a′/b′,t) is the probability for a telegraph being in state
a′(b′) at time t with its evolution given by Eq. (7). Hence we
obtain

∂tP (Xm,t) =
Nr∑
n=0

LmnP (Xn,t), (C3)

with Lm,m = −κNr , Lm,m+1 = κ(m + 1), Lm,m−1 =
κ(Nr − m + 1), and Lm,n = 0 for n �= m,m ± 1.

For large Nr , the distribution (C2) approaches a Gaus-
sian distribution as ensured by the central limit theorem
[65], and Eq. (C3) represents the Fokker-Planck equation
for an Ornstein-Uhlenbeck process [65]. To see this, we
note that Xm+1 − Xm = b′ − a′ ∼ 1/

√
Nr (with fixed σ of

the noise), so that when Nr → ∞ we can replace Xm

with the continuous variable X and expand P (Xm±1) in
terms of �X = b′ − a′ as P (X ± �X) ≈ P (X,t) ± (b′ −
a′)∂XP (X,t) + (b′−a′)2

2 ∂2
XP (X,t). In view of m = (Nrb

′ −
X)/(b′ − a′) from Eq. (C1), we obtain from Eq. (C3) that

∂tP (X,t) =
[

2κ
∂

∂X
(X − 〈X〉s) + 1

2
D

∂2

∂X2

]
P (X,t).

This is the Fokker-Planck equation governing the Ornstein-
Uhlenbeck process [65], where we identify a drift velocity 2κ ,
and a diffusion constant D = 4κσ 2.

Thus the quantum dynamics of a system in (discretized)
colored Gaussian noise is governed by the generalized
master equation of a form (5) with Xm and Lmn given by
Eqs. (C1) and (C3), respectively; for large Nr , it conveniently
approximates Eq. (3) for a colored Gaussian noise when
L(X) is the Fokker-Planck operator corresponding to an
Ornstein-Uhlenbeck process.

APPENDIX D: ASYMPTOTIC LONG-TIME MAJORANA
EDGE CORRELATIONS IN A QUENCHED KITAEV CHAIN

Here we derive the asymptotic Majorana edge-mode corre-
lation at large times (t → +∞) after a global quench in the
chemical potential of a Kitaev Hamiltonian, with the quench
from μ0 to μf . Specifically, we assume the system is initially
in the ground state |0〉 of Hamiltonian H (μ0) with |μ0| < 2J

in the topological phase, supporting two Majorana edge modes
γL/R . Suppose at time t = 0, the Hamiltonian is globally
quenched from H (μ0) to H (μf ) with |μf | � 2J . Our goal is
to derive the asymptotic (t → +∞) Majorana edge correlation

G∞ = lim
t→+∞〈0|eiH (μf )t [−iγLγR]e−iH (μf )t |0〉. (D1)

In the Majorana basis, Eq. (D1) can be written as G∞ =∑2N
i,l=1 f

(0)
L,if

(0)
R,lG

∞
il , with G∞

il = limt→+∞ −i〈cicl〉, and f
(0)
L/R,l

describes left (right) Majorana modes of the initial Hamilto-
nian. As an illustration, we calculate G∞

il for i = 2j1 − 1 and
l = 2j2 with j1 ∼ 1 (near the left edge) and j2 ∼ N (near the

right edge) such that c2j1−1 = aj1 + a
†
j1

and c2j2 = −i(aj2 −
a
†
j2

). Using Bogoliubov transformation aj = ∑
μ ujμβμ +

ν∗
jμβ†

μ, we diagonalize the postquench Hamiltonian H (μf ) as
H (μf ) = ∑

μ εμβ†
μβμ (up to unimportant constant) with βν

being the quasiparticle operators for the Hamiltonian H (μf ).
With this we obtain eiH (μf )t aj e

−iH (μf )t = ∑
μ ujμβμe−iεμt +

ν∗
jμβ†

μeiεμt , and similarly for eiH (μf )t a
†
j e

−iH (μf )t . After sub-
stituting this into the expression for G∞

il , and neglecting
oscillating terms (the ones containing βμβν , β†

νβ
†
μ, and β†

μβν

with μ �= ν) which are averaged to zero after times larger than
inverse bandwidth, we obtain

G∞
2j1−1,2j2

≈ −
∑

μ

(
Aj1j2μ〈0|β†

μβμ|0〉 + Bj1j2μ〈0|βμβ†
μ|0〉),

with Aj1j2μ = (u∗
j1μ

+ υ∗
j1μ

)uj2μ + (υj1μ + uj1μ)u∗
j2μ

and
Bj1j2μ = (uj1μ + υj1μ)υ∗

j2μ
+ (υ∗

j1μ
+ u∗

j1μ
)υj2μ. To calculate

the correlations in the above expression, we use the second
Bogoliubov transformation aj = ∑

σ u
(0)
jσ ασ + ν

(0)∗
jσ α†

σ which
diagonalizes the initial Hamiltonian as H (μ0) = ∑

σ εσα†
σασ

(again up to an unimportant constant) in terms of quasiparticle
operators ασ (α†

σ ), such that ασ |0〉 = 0. Then, by virtue
of the relation βμ = ∑

σ Cμσασ + D∗
μσα†

σ , with Cμσ =∑
j u∗

jμu
(0)
jσ + υ∗

jμυ
(0)
jσ and Dμσ = ∑

j ujμυ
(0)
jσ + υjμu

(0)
jσ , we

arrive at

G∞
2j1−1,2j2

= −
∑

μ

(
Aj1j2μ

∑
σ

|Dμσ |2 + Bj1j2μ

∑
σ

|Cμσ |2
)

.

(D2)
Equation (D2) contains contributions from both the edge

(μ = M) and bulk modes (μ �= M) of H (μf ) (|μf | � 2J ).
Due to the gapped energy spectrum, the bulk contribution
(modes with μ �= M) to the correlations between the edges
are exponentially suppressed, and therefore can be ignored in
Eq. (D2) in the thermodynamic limit. On the other hand, for the
edge contribution (μ = M), we use Majorana wave functions
gL/R,j of Hamiltonian H (μf ) in the fermionic representation:
gL,j = ujM + υjM and gR,j = ujM − υjM . Keeping in mind
the localization character of the Majoranas at edges, we have
Aj1j2M ≈ gL,j1gR,j2 and Bj1j2M ≈ −gL,j1gR,j2 . Equation (D2)
is then simplified as G∞

2j1−1,2j2
≈ gL,j1gR,j2

∑
σ (|CMσ |2 −

|DMσ |2). This expression further involves contributions from
the edge σ = M and bulk modes σ �= M of initial Hamiltonian
H (μ0). For the same reasons discussed earlier, we ignore
the exponential small bulk contributions (σ �= M). For the
rest edge contribution (σ = M), we write u

(0)
jM = (1/2)(g(0)

L,j +
g

(0)
R,j ) and υ

(0)
jM = (1/2)(g(0)

L,j − g
(0)
R,j ) with g

(0)
L/R,j the initial Ma-

jorana wave functions of Hamiltonian H (μ0) in the fermionic
basis. Thus by using CMM = 1

2

∑
j (gL,jg

(0)
L,j + gR,jg

(0)
R,j ) and

DMM = 1
2

∑
j (gL,jg

(0)
L,j − gR,jg

(0)
R,j ), we find

G∞
2j1−1,2j2

≈ gL,j1gR,j2

⎡
⎣ N∑

j=1

gL,j1g
(0)
L,j1

⎤
⎦

⎡
⎣ N∑

j=1

gR,j2g
(0)
R,j2

⎤
⎦.
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FIG. 9. (Color online) Long-time asymptotic Majorana edge-
mode correlation G∞ (D1) as a function of the postquench chemical
potential μf , when a Kitaev Hamiltonian is globally quenched from
H (μ0) to H (μf ), with |μ0|,|μf | � 2J . Blue line, numerics; red line,
Eq. (D3). We take μ0 = 0.3J , N = 134, � = 0.72J .

Calculations of other components of G∞
il are similar, and we

finally get

G∞ =
⎡
⎣ N∑

j=1

gL,jg
(0)
L,j

⎤
⎦

2⎡
⎣ N∑

j=1

gR,jg
(0)
R,j

⎤
⎦

2

. (D3)

We see that, after the quench, the Majorana edge correlation
in the long time approaches an asymptotic value, which is
determined only by the overlap between the wave functions
of the Majorana edge modes of H (μ0) and H (μf ) (i.e.,
g

(0)
L/R,j and gL/R,j ). Figure 9 shows numerical results for G∞

(blue curve) as a function of μf , which are compared to
predictions from Eq. (D3) (red curve). A good agreement is
clearly found, with deviations only appearing near the critical
point when the energy gap becomes small. We thus conclude
that Majorana edge correlations relax to a finite value after a
quench within the topological phase, which decreases with μf

in the postquench Hamiltonian and eventually varnishes for
μf = 2J .
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L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318,
766 (2007).

[2] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, Nature (London) 452, 970 (2008).

[3] Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L.
Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R.
Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).

[4] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin,
T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795 (2013).

[5] N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M.
Lewenstein, P. Zoller, and I. B. Spielman, Proc. Natl. Acad.
Sci. U.S.A. 110, 6736 (2013).

[6] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).

[7] L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, and U.
Schneider, Science 347, 288 (2015).

[8] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L.
Fallani, Science 349, 1510 (2015).

[9] B. K. Stuhl, H. I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Science 349, 1514 (2015).

[10] X. G. Wen, Quantum Field Theory of Many-Body Systems: From
the Origin of Sound to an Origin of Light and Electrons (Oxford
University Press, New York, 2004).

[11] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[12] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[13] A. Kitaev, Ann. Phys. 303, 2 (2003).
[14] S. Das Sarma, M. Freedman, and C. Nayak, Phys. Rev. Lett. 94,

166802 (2005).
[15] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[16] J. K. Pachos, Introduction to Topological Quantum Computation

(Cambridge University Press, Cambridge, 2012).

[17] J. Alicea and A. Stern, Phys. Scr., T 164, 014006 (2015).
[18] A. Kitaev, Phys.-Usp. 44, 131 (2001).
[19] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[20] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher,

Nat. Phys. 7, 412 (2011).
[21] F. Wilczek, Nat. Phys. 5, 614 (2009).
[22] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[23] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113

(2013).
[24] S. Das Sarma, M. Freedman, and C. Nayak,

arXiv:1501.02813v2.
[25] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. Lett. 104, 040502 (2010).
[26] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[27] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[28] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[29] B. I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea, and F. von

Oppen, Phys. Rev. B 85, 144501 (2012).
[30] A. Romito, J. Alicea, G. Refael, and F. von Oppen, Phys. Rev.

B 85, 020502(R) (2012).
[31] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[32] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Nano Lett. 12, 6414 (2012).

[33] L. P. Rokhinson, X. Y. Liu, and J. K. Furdyna, Nat. Phys. 8, 795
(2012).

[34] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Nat. Phys. 8, 887 (2012).

[35] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B 87,
241401(R) (2013).

165118-12

http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1073/pnas.1300170110
http://dx.doi.org/10.1073/pnas.1300170110
http://dx.doi.org/10.1073/pnas.1300170110
http://dx.doi.org/10.1073/pnas.1300170110
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1126/science.1259052
http://dx.doi.org/10.1126/science.1259052
http://dx.doi.org/10.1126/science.1259052
http://dx.doi.org/10.1126/science.1259052
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevLett.94.166802
http://dx.doi.org/10.1103/PhysRevLett.94.166802
http://dx.doi.org/10.1103/PhysRevLett.94.166802
http://dx.doi.org/10.1103/PhysRevLett.94.166802
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1088/0031-8949/2015/T164/014006
http://dx.doi.org/10.1088/0031-8949/2015/T164/014006
http://dx.doi.org/10.1088/0031-8949/2015/T164/014006
http://dx.doi.org/10.1088/0031-8949/2015/T164/014006
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://arxiv.org/abs/arXiv:1501.02813v2
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.85.144501
http://dx.doi.org/10.1103/PhysRevB.85.144501
http://dx.doi.org/10.1103/PhysRevB.85.144501
http://dx.doi.org/10.1103/PhysRevB.85.144501
http://dx.doi.org/10.1103/PhysRevB.85.020502
http://dx.doi.org/10.1103/PhysRevB.85.020502
http://dx.doi.org/10.1103/PhysRevB.85.020502
http://dx.doi.org/10.1103/PhysRevB.85.020502
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1103/PhysRevB.87.241401
http://dx.doi.org/10.1103/PhysRevB.87.241401
http://dx.doi.org/10.1103/PhysRevB.87.241401
http://dx.doi.org/10.1103/PhysRevB.87.241401


MAJORANA FERMIONS IN NOISY KITAEV WIRES PHYSICAL REVIEW B 92, 165118 (2015)

[36] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Phys. Rev. Lett. 110, 126406 (2013).

[37] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346,
602 (2014).

[38] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G.
Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys.
Rev. Lett. 106, 220402 (2011).

[39] S. Nascimbène, J. Phys. B: At. Mol. Opt. Phys. 46, 134005
(2013).

[40] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103,
020401 (2009).

[41] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nat. Phys. 7,
971 (2011).

[42] C. V. Kraus, S. Diehl, P. Zoller, and M. A. Baranov, New J.
Phys. 14, 113036 (2012).

[43] C. V. Kraus, M. Dalmonte, M. A. Baranov, A. M. Läuchli, and
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