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Edge structure of graphene monolayers in the ν = 0 quantum Hall state
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Monolayer graphene at neutrality in the quantum Hall regime has many competing ground states with various
types of ordering. The outcome of this competition is modified by the presence of the sample boundaries. In this
paper we use a Hartree-Fock treatment of the electronic correlations allowing for space-dependent ordering. The
armchair edge influence is modeled by a simple perturbative effective magnetic field in valley space. We find
that all phases found in the bulk of the sample, ferromagnetic, canted antiferromagnetic, charge-density wave,
and Kekulé distortion, are smoothly connected to a Kekulé-distorted edge. The single-particle excitations are
computed taking into account the spatial variation of the order parameters. An eventual metal-insulator transition
as a function of the Zeeman energy is not simply related to the type of bulk order.
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I. INTRODUCTION

When subjected to a strong perpendicular magnetic field,
the electrons confined to the two-dimensional (2D) carbon
lattice of graphene form a unique quantum Hall (QH) sys-
tem. Notably graphene at neutrality is an example of QH
ferromagnetism with many competing ground states [1–9].
In such systems we expect generically complex physics at the
edge. Early work on graphene edge states [10] has shown
that when taking into account the electron spin degree of
freedom, the edge states should be of helical nature, i.e.,
exhibiting counterpropagating modes carrying opposite spin
polarizations. Graphene was thus proposed to be a model
candidate for a quantum spin Hall (QSH) system. Furthermore,
graphene has unique features so that it may be an ideal
probe material to study QH edge physics experimentally: in
semiconductor-based 2D electron gas systems the confining
potential is soft at the scale of the magnetic length so
that there may be edge reconstruction [11–13], spoiling the
ideal theoretical description. Therefore, the understanding of
edge phenomena in these 2D systems is difficult [14,15]
and still controversial. In contrast, the boundaries of the
graphene lattice are directly defined at the atomic level.
Therefore, they naturally represent atomically sharp QH edges.
This should allow observation of QH edge state physics
without complications from edge reconstruction [16,17]. The
fabrication, design, and control of graphene edge structures
with atomic level precision is a field of ongoing research; see,
e.g., Refs. [18–20]. Among the theoretical approaches, also
a mean-field treatment of a Hubbard-type model has been
applied to the edge physics [21]. The QSH nature of the
graphene edge has been the subject of recent experimental
investigations [22]. At Landau level filling factor ν = 0, upon
tilting the applied magnetic field with respect to the graphene
sheet, there is a metal-insulator transition for some critical
angle. This suggests a change of the bulk state as a function
of tilting. Indeed, extensive theoretical studies of the ν = 0
ground state (GS) structure of bulk graphene [6,7,23,24] have
shown the existence of various competing phases with distinct
symmetry-breaking properties. While the graphene GS at neu-
trality is a highly degenerate SU(4) ferromagnetic multiplet,
small symmetry-breaking terms due to short-distance physics

lift this degeneracy and the system may form various different
phases. Among these phases are, e.g., the ferromagnet (F)
state [1,2] or the antiferromagnet (AF) state, where the latter
may form a canted antiferromagnetic (CAF) state as has been
pointed out by Kharitonov in Ref. [7]. Further possible phases
include a charge-density wave [3,6,25,26] (CDW) or a Kekulé
distorted state [27,28] (KD). Transitions between these states
may be induced by varying the Zeeman energy which is done
by tilting the field.

In this paper we study the edge structure of the ν = 0 QH
state in the presence of SU(4)-symmetry-breaking interactions.
We use a simple model of the edge potential in the basis of the
n = 0 Landau level (LL) orbitals appropriate to an armchair
termination of the graphene lattice and treat interactions by
a Hartree-Fock (HF) approximation. Our variational ansatz is
orbital-dependent so it captures the spatial variations of the
ordering from the bulk to the edge (an effect which is absent
in previous HF studies [29]). We find that there is always a
crossover towards a Kekulé distorted region close to the edge.
There is appearance also of spin/valley nontrivial entanglement
which is limited to the transition region towards Kekulé order
and does not take place either in the bulk or close to the edge.
We propose a quantitative measurement of the entanglement
by computing the concurrence as a function of edge distance.
Within HF we also compute the single-particle properties of
the particle-hole excitation spectrum. We discuss how this
spectrum varies with the edge distance and also how it is
influenced by the nature of the bulk order. Our main finding
is that there should be always a metal-insulator transition as a
function of the Zeeman field whatever the nature of the ordered
phase. So strictly speaking the experimental observations of
Ref. [22] do not imply that their graphene bulk is a CAF
state. It should be noted that our HF treatment has some
shortcomings. Notably the Coulomb exchange interaction
in the n = 0 LL leads to a coupling between charge and
spin/valley degrees of freedom. So in general charge motion is
done through spin/valley textures as proposed in Refs. [30–33].
As in previous HF works [29] we will not try to model these
effects. While the edge effects will overcome exchange energy
close enough to boundary, they may change the nature of
excitations right in the transition region. More work is needed
to understand this point.
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The paper is structured as follows: In Sec. II, we define
the theoretical framework describing the ν = 0 QH state of
graphene in the presence of a boundary and the corresponding
model Hamiltonian. We introduce the parametrization of the
Hartree-Fock (HF) GS wave function in Sec. III. In Sec. IV,
we present results for the GS and its properties obtained
from minimizing the HF energy functional. We describe the
evolution of the different possible bulk phases when moving
towards to the edge. We find that the presence of a boundary
gives rise to novel spin/isospin configurations which do not
exist in the bulk. Furthermore, we show the existence of
an intermediate region between the bulk and the edge with
nontrivial entanglement of spin and valley isospin. In Sec. V,
we extend our HF treatment to compute the spatial evolution
of the single-particle (SP) energy levels and corresponding
eigenstates from the bulk to the boundary. As pointed out by
previous work [29], the SP spectra can either exhibit nonzero
gaps or support gapless edge states, depending on the system
parameters determining the bulk phase. We describe how the
spatial variation of the spin/isospin texture influences the shape
of the SP energy levels. This leads to an understanding of
the edge gap, the number of conducting channels, as well as
possible conclusions for the bulk symmetry properties drawn
from the conductance behavior of the edges. In a final part, we
compute the spin and isospin properties of the corresponding
SP eigenstates to directly prove that the edge states of the ν = 0
QH state in graphene indeed exhibit the helical properties of a
QSH state. Section VI finally discusses our results in relation
to experimental findings and contains our conclusions.

II. MODEL OF THE GRAPHENE EDGE

We first recall basic facts about the electronic structure
of graphene [34,35]. The hexagonal structure admits two
triangular Bravais sublattices A and B that form the basis for a
tight-binding Hamiltonian. In the Brillouin zone there are two
special degeneracy points: at these Dirac points K and K ′, the
valence and the conductance band form Dirac cones and touch
at the Fermi level for neutral graphene. In the vicinity of the
Dirac points, for each orientation of the spin σ = ↑,↓, the
electronic wave functions �A and �B on the two sublattices
can be written as

�A,σ (r) = eiK·rψA,σ + e−iK′ ·rψ ′
A,σ , (1a)

�B,σ (r) = eiK·rψB,σ + e−iK′ ·rψ ′
B,σ . (1b)

Assembling the envelope functions in a four-spinor notation
we write for the electronic state

�σ =

⎛
⎜⎜⎝

ψA,σ

ψB,σ

ψ ′
A,σ

ψ ′
B,σ

⎞
⎟⎟⎠

HK,K′ ⊗HA,B

, (2)

where the subindex HK,K ′ ⊗ HA,B indicates that the state �σ

lives in the Hilbert space formed as the direct product between
Dirac valley space HK,K ′ and the A,B sublattice space HA,B .
An applied magnetic field leads to the formation of Landau

levels (LL) with energies

En = vF

�B

√
2|n| sgn(n), (3)

where n ∈ Z is the LL index, �B =
√

�c
eB⊥

is the magnetic
length for perpendicular magnetic field strength B⊥, and vF

denotes the Fermi velocity. The corresponding eigenstates can
be written as

�n	=0,σ = 1√
2

⎛
⎜⎝

|n − 1〉
|n〉

−|n − 1〉
−|n〉

⎞
⎟⎠

HK,K′ ⊗HA,B

,

�n=0,σ =

⎛
⎜⎝

0
|0〉
0

−|0〉

⎞
⎟⎠

HK,K′ ⊗HA,B

. (4)

The filling factor ν of the Landau levels is defined by

ν = ne

2π�2
B

, (5)

where ne denotes the electronic density. The configuration of
neutral graphene, i.e., ν = 0, is peculiar. Indeed this particle-
hole symmetric situation corresponds to the case in which
all the LLs with n < 0 are filled and all the LLs with n > 0
are empty, but the n = 0 LL is exactly half filled with two
electrons per orbital. The form of the n = 0 wave function as
given in Eq. (4) implies that n = 0 LL electrons reside on one
of the sublattices only. In the following, we consider the case of
neutral graphene and therefore study the properties of electrons
in the n = 0 LL. We simplify the notation by collecting only
the nonzero entries of the n = 0 spinor in Eq. (4) as

�0 =

⎛
⎜⎝

| ↑ +〉
| ↑ −〉
| ↓ +〉
| ↓ −〉

⎞
⎟⎠

H

, (6)

identifying the valley and the sublattice indices in a common
valley-isospin τ as τ = + =̂ K ↔ A and τ = − =̂ K ′ ↔ B.
In the four-dimensional Hilbert space H = Hspin ⊗ Hvalley we
use the indices μ,ν to label the four possible configurations of
spin and isospin in this space: μ,ν ∈ {↑ +, ↑ −, ↓ +, ↓ −}.
Due to the fourfold degeneracy in spin space (σ = ↑,↓) and
in valley space (τ = +,−), the integer QH effect in graphene
is expected at values of ν that change in steps of four.

The total Hamiltonian we use is given by

H = Hkin + HZ + HCoul + Haniso, (7)

where we have a space-dependent kinetic energy induced by
the presence of the boundary:

Hkin = −
∑

i

Ekin(ri)τ
i
x, (8)

where the index i labels the positions of the electron orbits. The
hexagonal graphene lattice can be terminated in many different
ways, yielding several possible edge structures. Every different
atomic configuration leads to different boundary conditions for
the wave function [36]. Two extreme cases are the so-called
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FIG. 1. (Color online) Shape of the kinetic energy edge potential
Ekin in Hkin of Eq. (8). The kinetic energy rises from Ekin = 0
in the bulk (equivalent to the case of infinitely extended, transla-
tionally invariant graphene in the n = 0 LL) to the energy of the
n = 1 LL exactly at the edge. The curve was obtained from solving
the problem of free electrons on a graphene lattice in the presence
of a magnetic field in the presence of boundary, i.e., by applying
appropriate boundary conditions for an armchair edge (see inset).
Zigzag edges have similar nonzero energy states but also additional
zero-energy modes that are beyond the scope of our work.

zigzag and armchair edges [30]. A finite piece of graphene
terminated by a zigzag edge and an armchair edge is shown in
the inset of Fig. 1. The kinetic energy and the corresponding
eigenstates can be obtained analytically [10,31,37,38]. This is
equivalent to turning the level index into a space-dependent
quantity n(R) where R relates to the distance to the edge
r as r = R�B/

√
2. In Fig. 1 we show the spatial shape

of the kinetic energy Ekin obtained by this procedure, as
we will use it in the subsequent calculations. We write the
kinetic energy as a space-dependent potential proportional to
τx (a comparable treatment can be found in Refs. [29,33]).
This corresponds to a perturbative treatment as it assumes
an expansion of the perturbed edge states in terms of the
unperturbed bulk basis states. It restricts our description to
the case of “armchair-like” boundaries: one can always infer
the number of branches in the SP edge spectrum as being
equal to the number of degenerate SP levels in the bulk and
hence apply a perturbative expansion as implied by Eq. (8).
A derivation of such a Hamiltonian describing the kinetic
potential of a graphene edge using arguments of perturbation
theory can be found in Ref. [29]. The edges terminated by
a zigzag boundary condition support dispersionless surface
states [30,31] that break the simple bulk/edge correspondence.
They are beyond our simple treatment. The form of the kinetic
energy in Eq. (8) is valid only in the regime Ekin � �ωc, i.e.,
spatially not too close to the edge. As can be seen from Fig. 1,
this condition is very well met if we restrict the subsequent
discussion to the regime R > 3. Hence the restriction R > 3
corresponds to a minimal distance rmin ≈ 2.12�B , which at
realistic experimental values corresponds to rmin ≈ 120a0,
where a0 denotes the lattice constant of graphene. The Zeeman
energy can be written as

HZ = −EZ

∑
i

σ i
z . (9)

In the case of graphene the spacing between kinetic LL energy
levels, 
Ekin, easily exceeds the Zeeman energy by two orders
of magnitude. The Coulomb interaction is given by

HCoul = 1

2

∑
i 	=j

e2

ε

1

|ri − rj | , (10)

where ε is an effective dielectric constant which depends upon
the substrate [39]. It has full SU(4) symmetry. At neutrality
we have an example of quantum Hall ferromagnetism [1]
with this large symmetry: the ground state is thus highly
degenerate and forms an irreducible representation of SU(4).
However this symmetry is only approximate. In fact it is
weakly broken by lattice-scale effects that include short-range
Coulomb interactions and electron-phonon couplings. It is
difficult to obtain precise estimates of these effects but their
symmetry-breaking properties can be encoded in the following
Hamiltonian:

Haniso = 1

2

∑
i 	=j

[
gxτ

i
xτ

j
x + gyτ

i
yτ

j
y + gzτ

i
z τ

j
z

]
δ2(ri − rj ),

(11)

with δ denoting the Dirac delta function. This Hamiltonian
Haniso has been proposed by Aleiner et al. [40] and its effects
have been analyzed at the mean-field level by Kharitonov [7].
Its symmetry properties and phase diagram have been studied
by exact diagonalization [41]. It is parametrized by the
coupling constants gx,y,z whose values are not known with
precision. It is likely that the ratio of the energy scales between
Coulomb interaction and these anisotropies is of the order of
102. It is thus best to explore the complete phase diagram
taking these parameters as unknowns. For monolayer and
bilayer graphene at neutrality, there is a rich phase diagram as
a function of these couplings [7,42]. The fractional quantum
Hall states are also sensitive to these effects [9].

We now perform a HF study of this Hamiltonian by
including the edge potential. We note that in this approach
we neglect all possible spatial dependence of the coupling
constants, which is justified as long as we analyze a spatial
domain not too close to the edge.

III. HARTREE-FOCK TREATMENT

The neutral ν = 0 state corresponds to the half-filled case
where two of the four available states per orbital are occupied.
We look for the ground state within the family of Slater
determinants of the form

|G〉 =
∏
p

(∑
μ,ν

gμν c†μ(p)c†ν(p)

)
|0〉, (12)

where p denotes the Landau-gauge momentum component
along the edge which labels the electron orbitals. The vacuum
|0〉 consists of the completely occupied set of states for all
n < 0 and completely empty states for all n > 0. In Eq. (12)
g is a 4×4 antisymmetric matrix, i.e., gμν = −gνμ, in order to
describe a valid fermionic state and Tr[gg†] = 2 to ensure
normalization of the two-particle state. We minimize the
energy of the Slater determinant by varying g. To capture
the effect of the edge potential we take the g matrix to
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be momentum-dependent, i.e., g ≡ g(p) in Eq. (12). Due
to the duality between the longitudinal momentum p and
the transverse coordinate rp = p�2

B this is equivalent to a
space-dependent description of the problem. The most general
antisymmetric matrix g has 12 real parameters. By exploiting
the symmetry properties of the state |G〉 and the Hamiltonian,
one can reduce the number of free parameters. We use the
same strategy as in Ref. [43] where an equivalent problem
was studied in the context of electronic bilayer systems. It is
convenient to rewrite the problem in terms of the following
simple expectation values:

Sα = 1
2 〈G|c†(p)σα c(p)|G〉 = 1

2 Tr[σαgg†], (13a)

Tα = 1
2 〈G|c†(p)ταc(p)|G〉 = 1

2 Tr[ταgg†], (13b)

Rαβ = 1
2 〈G|c†(p)σατβc(p)|G〉 = 1

2 Tr[σατβgg†]. (13c)

The expressions of Eqs. (13a) and (13b) yield the compo-
nents of the total spin Sα and isospin Tα per orbital p. The
energy contribution from the symmetry-breaking interaction
Hamiltonian of Eq. (11) is now given by

〈G|Haniso|G〉 = 1

2

∑
α

uα(Tr[ταgg†]2 − Tr[ταgg†ταgg†]),

(14)

where the anisotropy energies uα are given by uα = gα

2π�2
B

.
Isotropy of the interaction potential in the x-y plane implies
that ux = uy =: u⊥. Using Eqs. (13) and (14), we obtain the
following expression for the functional of the total energy
Etot = 〈G|H|G〉:

Etot = −2Ekin Tx − 2EZ Sz +
∑

α

uα

(
T 2

α −
∑

i

R2
iα − S2

)
.

(15)

The 12 − 2 = 10 free parameters of the problem (dropping
the overall phase and normalization constant) are now encoded
in the 6 components of the total spin S and the total isospin
T, together with 4 out of 9 components of Rαβ which can be
chosen independently. The invariance of Etot in Eq. (15) under
rotations of S in spin space and rotations of T around the z axis
in isospin space allows us to choose Sy = Sx = Ty = 0 with no
loss of generality, yielding seven variables to be determined.
The dimension of parameter space can be further reduced by
careful consideration of all the symmetries of the problem.
As demonstrated by Ezawa et al. [43] in a situation of an
equivalent symmetry class, reduction is possible to a total
number of three free parameters. For the present system, this
leads us to a minimization problem for the total energy Etot

with respect to the variational parameters −1 � α � 1, − 1 �
β � 1, and χ ∈ R, which are related to observables of Eq. (13)
by

Sz = 1√
1 + χ2

√
1 − α2, Tx = χ√

1 + χ2
α
√

1 − β2,

Tz = χ√
1 + χ2

αβ, (16)

and∑
i

R2
ix = T 2

z

χ2
,

∑
i

R2
iy = χ2S2,

∑
i

R2
iz = T 2

x

χ2
, (17)

where the index i runs over the spatial components {x,y,z}.
The density matrix ρg = gg† is connected to these quantities
as (summation convention implied)

ρg = 1
21 + 1

2 (σi Si + τi Ti + σiτj Rij ). (18)

IV. GROUND-STATE PROPERTIES

A. Evolution of the spin-isospin texture close to the edge

The bulk GS of graphene within the model we use has
several different phases depending on the anisotropy energies
u⊥ and uz compared to the Zeeman energy EZ [7,41]. The
anisotropies u⊥,uz and the Zeeman term EZ select some
subset of the manifold of SU(4) ferromagnetic ground states.
These phases have distinct spin and isospin configurations,
i.e., by different spin textures. The mean-field GS diagram
is shown in Fig. 2. It is correct beyond mean-field as shown
by exact diagonalization techniques [41]. Notably all these
bulk phases do not involve spin/valley entanglement. We now
generalize the description of these phases by treating the
effect of a boundary of the lattice. We proceed as follows:
we minimize the energy Etot(α,β,χ ) of Eq. (15), including a
space-dependent edge potential of the shape shown in Fig. 1
by varying the parameters α,β,χ . Then from the knowledge of
the parameters α(R),β(R),χ (R), we can compute the values of
the observables Sz(R),Tx(R),Tz(R) of the GS |G〉 via Eq. (16).

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

4

5

CAF

FKD

CDW

5

2

-2

u⊥ /EZ

u /EZ

FIG. 2. (Color online) Bulk GS phase diagram as a function
of the coupling energies u⊥ and uz of the ν = 0 QH state for a
Hamiltonian as in Eq. (7). Different colors distinguish between the
different possible GS phases. The white, dotted lines indicate the
parameters we choose throughout this paper to perform cuts through
the phase diagram in order to explore the behavior of all possible GS
phases when starting from the bulk and moving towards an edge of
the graphene lattice. The phase diagram for the different GS phases
in the bulk of graphene was first presented in Ref. [7].
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It is also possible to construct the entire density matrix ρg

characterizing the GS via Eq. (18).
In order to obtain a full picture capturing the edge behavior

of all possible bulk phases shown in Fig. 2, our choice of system
parameters is guided by the following idea: for fixed Zeeman
energy EZ , we vary the coupling energies u⊥ and uz because
this can be realized experimentally by tilting the magnetic field.

We choose three values of the perpendicular coupling energy
uz: uz = 5EZ, uz = 2EZ , and uz = −2EZ , and we vary the
perpendicular coupling in the range −3EZ � u⊥ � 3EZ . This
leads to horizontal cuts through the ν = 0 GS phase diagram
in the u⊥,uz plane, shown by white dotted lines in the phase
diagram of Fig. 1. For uz = 5EZ and uz = 2EZ by varying u⊥
we meet the KD, CAF, and F phases:

u⊥ = −∞ KD

u⊥ > − 1
2 uz +

√
2E2

Z + u2
z

)
CAF

u⊥ > −EZ

2

F
u⊥

For uz = −2EZ and varying again u⊥ we find the KD, CDW, and F phases:

u⊥ = −∞ KD
u⊥ > uz

CDW
u⊥ > −(EZ + uz)

F
u⊥

The corresponding bulk phase transitions are indicated by
white arrows in the phase diagram in Fig. 1.

We first investigate the influence of the edge potential
on the spin and isospin observables S and T. More pre-
cisely, we discuss the spatial evolution of the components
Sz(R),Tx(R),Tz(R) for different choices of the anisotropy
energies u⊥ and uz compared to the Zeeman energy EZ .
Figure 3 shows the results for uz = 5EZ , corresponding to
a cut through the upper half plane (we plot observables with
colored lines). The four different panels depict the situation
for different values of u⊥: for u⊥ = −EZ , the bulk system
is in the CAF phase with canting angle cos θ = Sz = 1/2
(upper left panel), whereas for u⊥ = −0.2EZ , u⊥ = 0.5EZ ,
and u⊥ = 1.5EZ the bulk system establishes a F phase in

0
0.2
0.4
0.6
0.8

1

S
z, T

x, T
z, C

uz= 5EZ
u⊥= -EZ 

CAF

uz= 5EZ
u⊥= -0.2EZ

F

3 4 5 6R  
0

0.2
0.4
0.6
0.8

1

CS
z, T

x, T
z, C

u⊥= 0.5EZ

F

3 4 5 6R  

u⊥= 1.5EZ

Sz Tz Tx

F

FIG. 3. (Color online) Evolution of the spin and isospin as well as
the concurrence C as functions of R = √

2r/�B , with r the distance
from the edge. We fix uz = 5 EZ and vary u⊥. (Colored lines: Sz,
solid; Tz, dashed; Tx , dotted. Black, thin, solid line: Concurrence C.)
There is a transition between the bulk phase on the right-hand side
[CAF for u⊥ = −EZ in the upper left panel (green colors) and F
for all other choices of u⊥ shown (blue colors)] to a KD phase at
the edge. In an intermediate regime spin and isospin are canted with
0 < Sz < 1 and 0 < Tx < 0 at the same time and nonzero values of
the concurrence. With growing u⊥, this domain wall grows narrower
in space and moves closer to the boundary.

which the spins are fully polarized. The colored curves shown
in Fig. 4 correspond to the observables for a cut through the
lower half plane of the phase diagram at uz = −2EZ . Here,
the perpendicular couplings are chosen so that the left panel at
u⊥ = −0.6EZ corresponds to a CDW phase whereas the right
panel at u⊥ = 1.2EZ again corresponds to a F bulk phase, as
predicted by the GS phase diagram of Fig. 2. Curves for values
of the anisotropy energies favoring a KD phase in the bulk are
not shown since in this case the system does not undergo any
transition whatsoever but remains in the bulk KD phase all the
way to the edge.

In general, one can distinguish three different regimes for
the behavior of the observables as a function of the distance
r = �B√

2
R to the edge. For sufficiently large values of R, i.e.,

deep enough in the bulk, we recover the results of mean-field
theory [7]. Close enough to the edge, the system is driven into a
KD phase with Nx = 1 and Sz = Nz = 0, independently of the
bulk phase it adopts. This behavior is due to the edge potential
in the kinetic energy Hamiltonian Hkin in Eq. (8): this term is
proportional to τx , so it acts as a Zeeman effect in isospin space,
polarizing the isospin along the x direction as soon as Ekin(R)
is large enough. This behavior is also consistent with previous
works [32,33]. In an intermediate regime we find a finite
interval in space in which Sz 	= 1, Tx 	= 1 and Tz 	= 0, Nx 	= 0;
i.e., the spin and the isospin are canted simultaneously with

3 4 5 6R
0

0.2
0.4
0.6
0.8

1

S
z, T

x, T
z, C uz= -2EZ 

u⊥= -0.6EZ 
Tz
Tx

Sz

CDW

3 4 5 6R

C

uz= -2EZ
u⊥= 1.2EZ

F

FIG. 4. (Color online) Same as Fig. 3 for transverse coupling
energy uz = −2EZ and different perpendicular coupling energies u⊥,
such that the phases of the lower half plane of the GS phase diagram
are established in the bulk. Left panel: u⊥ = 0.6, leading to a CDW
in the bulk (red colors). Right panel: u⊥ = 1.2EZ , at which the bulk
is in a F phase (blue colors).
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respect to their bulk values. There is thus a domain wall at a
small finite distance from the edge. For the CAF configuration,
this domain wall connects smoothly to the bulk configuration.
For a system in a F phase in the bulk, however, the change
in spin and isospin is abrupt and the domain wall is narrower
with increasing u⊥. Hence, for larger values of u⊥, the F phase
of the bulk proves to be more resistant against the increasing
influence of the edge.

From our analysis and the results shown in Figs. 3 and 4
we therefore draw the following conclusions: The phases
in the bulk of a finite sample of graphene do not remain
unaffected close enough to the edges. Indeed the effective edge
potential causes the bulk state to undergo a transition in which
the polarizations of spin and isospin change simultaneously.
Sufficiently close to the edge, the GS is driven into a KD phase
independently of the nature of the bulk phase.

B. Spin-valley entanglement of edge states

The parametrization of S,T, and Rαβ in terms of the three
parameters α,β, and χ in Eqs. (16) and (17) allows for
complete reconstruction of the density matrix ρg via Eq. (18)
using the values of the parameters obtained by minimizing
Etot from Eq. (15). Therefore, we have a full description
of the GS and its spatial evolution from the bulk towards
the edge. In this paragraph we investigate the entanglement
between spin and isospin degrees of freedom in the system.
For the infinite bulk case, product states of the form |s〉 ⊗ |n〉,
where |s〉 denotes the (single particle) spin state and |n〉 the
(single particle) isospin state, have been used as an ansatz to
minimize the GS energy [7,29,42]. Existing studies of edge
states using a variational trial wave function approach have
suggested [33], however, that for a nonzero edge potential,
spin and isospin might not remain independent, separable
observables, but become entangled. In order to quantify the
amount of entanglement in the bipartite two-level system
H = Hspin ⊗ Hvalley, we calculate the concurrence C according
to the definition [44]

C = max(λ1 − λ2 − λ3 − λ4,0), (19)

where the λi are the eigenvalues of the matrix

R = √
ρg(σy ⊗ σy)ρ∗

g (σy ⊗ σy)
√

ρg, (20)

in decreasing order λ2
i � λ2

i+1 ∀i. In Eq. (20), σy denotes the
2×2 Pauli matrix. The quantity C ranges from 0 to 1 with
C = 0 meaning no entanglement and C = 1 for maximally
entangled states.

In order to study the entanglement of all phases, we
perform the same cuts through the phase diagram as in the
previous paragraph, fixing the transverse coupling at uz = 5EZ

and uz = 2EZ to investigate the upper half plane and at
uz = −2EZ to study the lower half plane, and we vary the
perpendicular coupling u⊥ at these fixed values. Examples of
the spatial behavior of the concurrence C(R) as a function of
the distance from the edge is depicted by the black solid lines
in Figs. 3 and 4. The curves reveal several characteristics of
the behavior of the concurrence. It goes to zero deep enough
in the bulk for all values of the anisotropies limR→∞ C(R) =
0 ∀ uz,u⊥. Close enough to the edge, the concurrence is also
equal to zero for all possible bulk phases, as can be seen in

Figs. 3 and 4 for C(R ≈ 3) ≡ 0 ∀ uz,u⊥. In an intermediate
regime for which the system is in a F or CAF phase in the
bulk, we find that the concurrence develops a sharp peak. This
peak appears precisely within the domain wall separating its
bulk phase to the KD phase near the edge. The peak is sharper
and higher with rising u⊥, as the domain wall becomes more
and more narrow in space. Another behavior is observed when
the bulk is CDW (left panel of Fig. 4). Here, the concurrence
remains zero independently of the distance from the edge:
C(R) ≡ 0 ∀R.

Our findings are summarized in Fig. 5, where we plot
the maximum concurrence Cmax as a function of u⊥. The
resulting curves characterize the behavior of the spin-valley
entanglement of the edge states. Nonzero values of the con-
currence are found only for anisotropies favoring a CAF phase
(green squares) or a F phase (blue circles) in the bulk. In these
regimes, the maximum concurrence Cmax is a monotonically
rising function of the perpendicular coupling u⊥, with no
discontinuity at u⊥ = −EZ/2, which would correspond to the
CAF/F transition in the bulk. Discontinuous jumps appear
at values of u⊥ corresponding to the transitions KD/CAF
or CDW/F. Combining the information from Figs. 3, 4
and Fig. 5, we draw the following conclusions: unlike the
states in an infinite system, the GS in the presence of a
boundary may exhibit nonzero spin-valley entanglement. As
demonstrated in Figs. 3 and 4, the concurrence is exactly
zero in all configurations where either the spin or the isospin
is strictly zero. Nonzero values of the concurrence appear

-2 -1 1 2

0.2

0.4

0.6

0.8

1
F
CAF
CDW
KD

u⊥ / EZ

Cmax

uz = 5Ez

uz= 2Ez

uz = -2Ez

FIG. 5. (Color online) Maximum concurrence Cmax in the differ-
ent regimes from the bulk to the edge. For three different values
of the coupling energy uz, we vary u⊥. Different symbols represent
different phases in the bulk at the respective value of u⊥: F (blue
circles), CAF (green squares), CDW (red diamonds), and KD (gray
triangles). Empty, shaded, or filled symbols distinguish between the
cuts at different uz. The dashed lines connect the data points as a guide
to the eye. Vertical, gray lines mark the values of {uz,u⊥}, at which, in
the bulk, transitions between the respective phases occur. We observe
that nonzero values of C happen only if the system in the bulk is in
a CAF or in a F phase. In this case, the CAF/F transition is smooth.
If the bulk is CDW or KD, the concurrence remains equal to zero all
the way from the bulk to the edge. This leads to a discontinuous jump
in the curve of Cmax at the point of the CDW/F transition.
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for configurations in which both spin and isospin are canted
simultaneously.

Compared to the bulk case, we find that the lattice boundary
gives rise to novel ground state phases close to the edge, with
simultaneous canting of spin and isospin, 0 < S < 1, 0 < T <

1, and nonzero spin-valley entanglement. These phases cannot
be described using trial wave functions in the form of separable
product states [7,29].

V. MEAN-FIELD SPECTRUM OF EXCITED STATES

A. Single-particle energy levels

We now diagonalize the single-particle HF Hamiltonian.
The spectrum of the excited states is of particular interest,
since the conduction properties of real graphene samples
are governed by the edge modes in the QH regime. Recent
conductance experiments have shown [22] that upon tilting the
applied magnetic field there is a transition from an insulating
regime to a phase where presumably edge states carry a
nonzero current. Tilting the magnetic field corresponds to
varying the parameter u⊥/EZ in the system. The experimental
observations therefore suggest that the gap to excited states in
the edge spectrum varies as a function of u⊥/EZ and closes,
eventually, giving rise to a metal-insulator transition. We write
the one-body HF Hamiltonian hHF corresponding to the full
Hamiltonian H of Eq. (7). It consists of four terms:

hHF
μν (p) = −Ekin(p)[τx]μν − EZ[σz]μν + C
μν + A
μν,

(21)

which we obtain via standard HF decoupling. For the mean-
field potential from the Coulomb interaction Hamiltonian of
Eq. (10) we find

C
μν = −u0[gg†]μν, (22)

where u0 describes the exchange term of the Coulomb
interaction Hamiltonian of Eq. (10). This formula is valid
provided we neglect the spatial dependence of g. It means that

we do not capture the spin texture effects of the exchange.
For completeness, in the following analytical calculations
and expressions, the Coulomb contribution of Eq. (22) will
be written explicitly. The mean-field potential due to the
interactions breaking SU(4) symmetry is given by

A
μν =
∑

α

uα([τα]μν Tr[gg†τα] − [ταgg†τα]μν). (23)

Within HF mean-field theory, diagonalizing hHF provides
access to SP energies εi , satisfying hHF |i〉 = εi |i〉, where
the state labeled by i stands for the ith SP HF eigenstate.
In the following, we assume the eigenvalues to be ordered
ε1 � ε2 � ε3 � ε4. In earlier work [29], this Hamiltonian has
been studied with the assumption of constant order parameter
to the edge.

However, the explicit effective valley field due to the edge
certainly invalidates this simple assumption. It should be noted
also that in the intermediate regime between the bulk state and
the edge regime the HF ground state is no longer a simple
tensor product state even within the HF approximation and
there is some nontrivial spin/valley entanglement. To facilitate
subsequent discussion we summarize the results of Ref. [29]
in Table I. The analytical expressions for the mean-field
levels were presented in Ref. [29] for the F/CAF cases. A
straightforward calculation allows direct extension to the KD
and the CDW configuration. Examples for the SP energy levels
ε±± obtained within this approximation for the different phases
are plotted in Fig. 6 for various choices of the couplings.

The ansatz that we introduced in Secs. II and III is able to
describe spatial dependence of the order and also to capture
spin/valley entanglement.

We obtain the set of parameters {α(R),β(R),χ (R)} char-
acterizing the GS |g〉, by minimizing the total energy Etot

of Eq. (15). From these space-dependent parameters, we
construct the corresponding density matrix ρg = gg† via
Eq. (18), which in turn allows us to reconstruct and diagonalize
hHF of Eq. (21). The analysis is repeated for every point in

TABLE I. Analytical expressions for the mean-field potential of the symmetry-breaking terms, A
, the eigenvalues of the full mean-field
Hamiltonian, ε±±, and the minimum gaps in the bulk and at the edge, 
εbulk/edge. We denote by s and t the SP spin and isospin configuration
of the two electrons per orbital and θ describes the canting angle between the two spins. In all the formulas for the mean-field potentials, we
dropped a constant term − 1

2 (u0 + 2u⊥ + uz)1 ⊗ 1. These analytical results have been obtained within the approximation that the bulk phase
does not change as a function of space when approaching the edge.

CAF/F phase:

A
 = A
0z1 ⊗ σz + A
zxσz ⊗ σx

with A
0z = − 1
2 (u0 + uz + 2u⊥) cos θ and A
zx = − 1

2 (u0 + uz − 2u⊥) sin θ ,

ε±± = ±
√

[Ekin(p) ± (EZ − A
0z) ]2 + ( A
zx)2,


εedge = 2 | A
zx |,
εCAF
bulk = u0 + uz − 2u⊥,
εF

bulk = 2|EZ − A
0z|.
CDW/KD phase:
A
 = A
x0σx ⊗ 1 + A
y0σy ⊗ 1 + A
z0σz ⊗ 1

with A
x,y0 = − 1
2 (u0tx,y − uztx,y − 4u⊥tx,y) and A
z0 = − 1

2 (u0tz − 3uztz − 2u⊥tz),

which implies A
CDW
z0 = − 1

2 (u0 − 3uz − 2u⊥) and A
KD
x0 = − 1

2 (u0 − uz − 4u⊥),

εCDW
±± = ±EZ ±

√
Ekin(p) 2 + ( A
CDW

z0 )2
, and εKD

±± = ±EZ ± [Ekin(p) − A
KD
x0 ],


εbulk = 2|EZ − |A
z0/x0||.
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FIG. 6. (Color online) SP energy levels ε±± for the different
phase regimes as they are obtained from the analytical formulas in
Table I. Upper left panel: CAF (solid, green lines), F (blue, dashed
lines). Upper right panel: CDW for |
| > EZ (solid, red lines) and
|
| < EZ (dashed, black lines). Lower left panel: KD for |
| < EZ

with 
 > 0 (solid, orange lines) or 
 < 0 (dashed, black lines).
Lower right panel: KD for |
| > EZ with 
 > 0 (solid, orange
lines) or 
 < 0 (dashed, black lines). Depending on the sign and
the magnitude of 
, the different cases for the SP spectra differ in
the number of level crossings, even within one and the same phase.

space, thereby yielding the spatial behavior as a function of
the distance from the edge. The results for the spectra εi

established near the edge for different phases in the bulk
are shown in Figs. 7 and 8. We have chosen the same
parameters as in the plots of Figs. 3 and 5. For uz > 0 in
Fig. 7, we explore the upper half plane, whereas for uz < 0
(Fig. 8), the evolution of the bulk phases of the lower half
plane is displayed. In all figures the thick colorful lines show
the outcome of our numerical studies. The thin black lines
represent the analytical results for the SP energy levels for
the phase established in the bulk at the particular system
parameters shown, as given in Table I. Figure 7 illustrates
the evolution of the edge SP levels for a transverse coupling
energy of uz = 5EZ and different values of the perpendicular
coupling u⊥, for which the bulk phase configuration passes
from a CAF phase at u⊥ = −EZ (green lines, upper left panel)
to a F phase at u⊥ = −0.2EZ,u⊥ = 0.5EZ , and u⊥ = 1.5EZ ,
respectively (blue spectra in the upper right and the two lower
panels). In general, the spectra in all four panels show the
following behavior: two flat energy levels, separated by the
gap 
εbulk , are present in the bulk, both twofold degenerate,
and they split into four branches when approaching the edge.
The two intermediate levels, being labeled ε2 and ε3, first
bend towards each other, establishing the minimum energy
gap 
εedge < 
εbulk , before, even closer to the edge, the two
lowest and the two highest levels ε1,ε2 and ε3,ε4 are driven
apart in two parallel pairs, respectively.

In Fig. 8, we show the spectra corresponding to the phases
of the lower half plane: at uz = −2, we display the energy
levels at u⊥ = −0.6EZ (red lines in the left panel), for which
the bulk is CDW as well as for u⊥ = 1.2EZ (blue lines in
the right panel), where the bulk is F. The behavior of the SP
energy levels in a CDW bulk phase qualitatively differs from
the situation of the CAF/F phase described above. In the left

-10

-5

0

5

10

ε i / 
E

z

uz= 5EZ

1

2
3

4

u⊥= -EZ

CAF Δεedge

u⊥= -0.2EZ

uz= 5EZ

F

3 4 5 6R
-10

-5

0

5

10 uz= 5EZ

ε i / 
E

z

u⊥= 0.5EZ

F

3 4 5 6R

u⊥= 1.5EZ
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FIG. 7. (Color online) Spatial behavior of the energetic SP spec-
tra in the presence of a boundary for positive transverse coupling
uz = 5EZ and different values of the perpendicular coupling u⊥:
CAF bulk phase at u⊥ = −EZ in the upper left panel (green lines),
F bulk phase at u⊥ = −0.2EZ , u⊥ = 0.5EZ , and u⊥ = 1.5EZ in
the remaining panels, respectively (blue lines). Thick, colorful lines
show our numerical results. Here, different line shapes distinguish
between the different single-particle energy levels ε1 � ε2 � ε3 � ε4.
Thin, black lines compare to the analytical formulas for ε±±(R)
listed in Table I for the different phases, respectively, in which no
modulation of the underlying spin/isospin texture towards the edge is
taken into account. We see two bulk levels, being twofold degenerate
and separated by a gap of width 
εbulk in the bulk, split into four
branches when approaching the edge. The branches exhibit kinks
and regimes of different behavior corresponding to the transitions
between different spin and isospin phases during the evolution from
the bulk to the edge (see Fig. 3). The edge gap between the two
intermediate levels ε2 and ε3 (dotted and dashed lines, respectively)

εedge = min(|ε3 − ε2|] remains finite over a certain range of u⊥,
reducing gradually as u⊥ increases until it finally closes completely.
The lower right panel shows a configuration were the levels cross and
form gapless edge states. Special attention should be paid to the upper
right panel and the lower left panel in which the numerical results
show configurations with a F phase in the bulk were finite edge gaps

εedge 	= 0 remain, whereas the analytical curves cross as soon as the
bulk passes into an F phase. The behavior of the 
εedge as a function
of u⊥ is studied further in Fig. 9.

panel of Fig. 8 there are four nondegenerate levels in the bulk.
In contrast to the levels of the CAF/F case, they do not bend
towards each other and there is no minimum energy induced by
the edge behavior. Hence, we find that the minimum edge gap is
equal to the bulk gap: 
εedge = 
εbulk . Sufficiently close to the
edge, the levels again form two parallel pairs. The spectra for
the KD phase in the bulk are not shown because, as mentioned
in Sec. IV, this state does not undergo any significant evolution
when approaching the edge. The spectra do not differ from the
analytical prediction for ε±± shown for A
KD

x0 in the lower
right panel of Fig. 6.

When comparing this behavior to the analytical results as
given in Table I (black lines), deep in the bulk we find that
all curves coincide as they should. Furthermore, from the
discussion in Sec. IV B, we know that there is no spin-valley
entanglement in the bulk; i.e., the bulk states indeed are of
separable product form. Yet, significant deviations between
the numerical results capturing the full GS properties and the
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FIG. 8. (Color online) Same as Fig. 7 for uz = −2EZ and differ-
ent u⊥, hence displaying the SP spectra for the bulk phase regimes
of the lower half plane of the GS phase diagram. Left panel: CDW
bulk phase at u⊥ = −0.6EZ (red lines). Right panel: F bulk phase at
u⊥ = −1.3EZ (blue lines). Thin, black lines compare to the analytical
formulas given in Table I for the different phases, respectively,
in which the evolution of the bulk’s phase towards the edge is
neglected. For the CDW wave phase in the left panel we observe
four nondegenerate SP levels in the bulk; furthermore, as these levels
do not bend towards each other but disperse when approaching the
edge, the minimum energy gap to SP excitations is given by the bulk
gap 
εedge = 
εbulk .

analytical curves from the simplified treatment are observed
when moving closer to the edges, where the GS spin/isospin
configuration starts to deviate from the bulk phase; cf. Fig. 3.
The SP energies εi have kinks whenever the underlying
spin/isospin texture changes and exhibit qualitatively different
behavior in the different texture regimes. Thus, the emergence
of different spin/isospin configurations due to the edge
potential when approaching the edges directly translates into
the SP spectra leading to a complex energy structure as a
function of space.

Furthermore, in Ref. [29], it is claimed that for a system
being in a CAF phase, the edge spectra always exhibit a gap,
which closes when approaching a F phase, such that a system in
the F phase always supports gapless edge states. Due to the fact,
however, that the system does not remain in its bulk phase when
approaching the edge, we see from Fig. 7 that configurations
can be found, in which the bulk indeed is in a F phase, but
the edge states still exhibit a finite gap 
εedge 	= 0. In Fig. 7,
this is the case for the anisotropy energies u⊥ = −0.2 EZ and
u⊥ = 0.5 EZ (Blue lines in the upper right and lower left panel,
respectively). As the value of u⊥ rises, the gap 
εedge becomes
smaller, until it finally does close, as to be seen in the lower
right panel of Fig. 7 for u⊥ = 1.5 EZ . We elucidate further
on the closing of edge gaps as consequences of the symmetry
structure of the underlying phases in the following Sec. V B.

B. Single-particle level crossings in the different texture regimes

The energy levels of the SP ground and excited states show
a complex structure as a function of space depending on the
spatial changes of the spin and isospin texture when approach-
ing the graphene edge. In particular, in some configurations,
the SP spectra exhibit a finite gap, whereas for other system
parameters, the edge states are gapless when the SP levels
cross. In this section, we investigate the crossings between
SP energy levels which leads to gapless edge excitations. We
first discuss the properties of the edge gap and its behavior
when approaching the critical values where it closes. Then, we
explain the number of allowed crossing points between energy

levels and the connection to the symmetry properties of the
underlying spin/isospin texture phases. The spatial variation
of the order parameters has a direct impact on the overall
shape of the dispersion of edge modes. This is readily seen
in Figs. 7 and 8, where we plot the dispersions from our
calculation including edge effects and results from a similar
calculation using only bulk values without spatial variation.
In order to investigate the closure of the edge gap 
εedge as
a function of the ratio u⊥/EZ , we evaluate the size of the
minimum gap in the SP spectra for various system parameters.
We choose the same values for the anisotropy energies as in
Sec. IV by fixing uz = 5EZ,uz = 2EZ , and uz = −2EZ and
varying u⊥ so that we access all bulk phases in the GS phase
diagram. The resulting curves 
εedge(u⊥/EZ) are shown in
Fig. 9. We find that the size of the edge gap 
εedge is a strictly
monotonic decreasing function of u⊥/EZ for all values of uz.
When the bulk is KD or CDW the flat bulk SP levels split
further apart when approaching the edge so that the minimum
gap in the spectrum is equal to the bulk gap 
εedge = 
εbulk .
In these two cases we find that the bulk gap is a linear function
of the perpendicular coupling energy: 
ε

KD/CDW

bulk ∝ u⊥/EZ .
The numerical results in Fig. 9 follow exactly the analytical
prediction given in Table I: At uz = −2EZ , we find 
εKD

bulk =
−4u⊥ and 
εCDW

bulk = −2u⊥ + 4EZ , whereas the KD edge
gap at uz = 2EZ behaves as 
εKD

bulk = −4u⊥ − 4EZ . These
analytical curves are plotted in Fig. 9 as dotted lines for
comparison (they are shifted by a constant offset with respect to
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FIG. 9. (Color online) Behavior of the gap 
εedge in the SP
spectra close to the edge. We use three couplings: uz = −2EZ , uz =
2EZ , and uz = 5EZ (filled, shaded, and empty symbols, respectively).
Different colors and symbols stand for different bulk phases: KD
(gray triangles), CDW (red diamonds), CAF (green squares), and F
phase (blue circles). Dashed, colored lines connect the data points as
a guide to the eye. The dotted, black lines represent the behavior of
the data in the linear regimes (they are shifted by a constant offset
with respect to the curves for better visibility). Gray vertical lines
indicate the critical values for bulk phase transitions. For all phases
the gap 
εedge monotonically decreases as u⊥ grows until it finally
closes in the regime where the bulk is in an F phase. The inset is
a close-up on how the blue lines smoothly approach 
ε = 0. The
transitions from 
εedge 	= 0 to 
εedge = 0 take place at u⊥ ≈ 0.3EZ ,
u⊥ ≈ EZ , u⊥ ≈ 1.625EZ .
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the numerical results for better visibility). As a consequence
of this linear behavior in u⊥, for couplings favoring KD or
CDW in the bulk, at the system parameters chosen in Fig. 9,
there is always a nonzero gap to SP excitations. When the GS
in the bulk is a CAF or a F phase, the SP spectra now bend
towards each other and therefore exhibit a minimum energy
gap 
εedge near the edge which is smaller than the bulk gap.

For u⊥ � −EZ/2 where the bulk is a CAF phase (green
squares), the spectrum always exhibits an nonzero edge gap
which is almost linear as a function of the perpendicular
coupling. At values u⊥ � −EZ/2, hence for a F bulk, the
shape of the spectrum changes qualitatively and the bulk gap
closes in a nonlinear way, asymptotically approaching zero at
sufficiently large values of u⊥. For the transverse couplings
chosen in Fig. 9, uz = 5 EZ , uz = 2 EZ , and uz = −2 EZ ,
the edge gap 
εedge closes at u⊥ ≈ EZ , u⊥ ≈ 0.3EZ , and
u⊥ ≈ 1.6EZ , respectively. All these values leads to a bulk
which is ferromagnetic. So the prediction for the gap closure
point clearly differs from the value u⊥ = −EZ

2 , which can be
read from the bulk phase diagram in Fig. 2. This is due to the
changes of the spin/isospin configuration of the GS induced
by the effective edge potential as we approach the boundary;
cf. Fig. 3. Indeed the system does not remain in a F phase
configuration all the way from the bulk to the edge. During its
transition into a KD phase close to the boundary, there is an
intermediate regime with nonzero spin-valley entanglement
and simultaneous canting of both spin and isospin. Hence,
in this transition regime there is no a priori justification for



CAF/F

edge of Table I to yield a correct description of the edge
gap.

From this analysis of the gaps of the SP spectra we can
draw the following conclusion: when the bulk is CDW, KD, or
CAF phase, the SP energy levels always have nonzero gaps.
However for a bulk F phase one may have gapped or gapless
spectra. We note that ignoring the spatial variation of the trial
HF state leads to qualitatively different results [29].

C. Number of level crossings

We now discuss in more detail the number of crossings of
the HF single-particle states. In the F phase with dispersion
εF
±± in Table I, the intersecting levels εF

+− and εF
−− cross

exactly once as their slope is given by the slope of the
kinetic energy term and they are monotonic functions of the
spatial coordinate. For several system parameters, such as
in the spectrum in the lower left panel of Fig. 7 at uz =
5EZ,u⊥ = 1.5EZ as well as in close-ups shown in Fig. 10,
we observe multiple crossings. We first discuss the occurrence
of multiple crossings and the relation with the underlying
spin/valley texture. The number of crossings is governed by the
symmetries of the HF Hamiltonian and the magnitude of the
HF self-consistent potentials. After discussing the different
phases separately, we apply the insights to the edge-state
structure described in Sec. IV, where the GS phase changes as
a function of space when approaching the edge from the bulk.
We first discuss the case of the CAF/F transition. We rewrite
the mean-field Hamiltonian of Eq. (21) involving the CAF/F
mean-field potential given in Table I by decomposing it into
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FIG. 10. (Color online) Close-up on the SP spectra in the regime
with multiple crossings for uz = 2EZ . Left side: u⊥ = 1.2EZ , right
side: u⊥ = 3EZ . The blue lines show the SP energy levels εi . The
different background colors mark the spatial regimes in which the
GS establishes different spin/isospin textures: there is a F phase (blue
region). In the intermediate (white) region, the system undergoes a
transition before it finally ends up in a KD phase (yellow region). We
observe the crossings of the SP levels to occur in regions of different
spin/isospin phases—their origins lie in the different symmetries of
the F and KD phases.

four 2×2 matrices as

hHF (p) =
[
γ1 γ2

γ3 γ4

]
, (24)

where the respective entries for the CAF/F phase are given by

γ1 = A
zxσx − (EZ − A
0z) σz,

γ2 = γ3 = −Ekin(p) 1,

γ3 = − A
zx σx − (EZ − A
0z) σz, (25)

with A
zx and A
0z defined for the CAF/F phase in Table I.
The size of the gap is therefore governed by the first off-
diagonal coupling matrix elements A


CAF/F
zx . If A


CAF/F
zx 	=

0, as is the case for any nonzero canting angle θ 	= 0, the
eigenvalues of the Hamiltonian hHF

CAF/F exhibit the character-
istic behavior of avoided crossings. The SP levels are allowed
to cross only for A


CAF/F
zx = 0 at θ = 0, i.e., in the F phase. In

the bulk, i.e., at Ekin ≡ 0, all values of the coupling energies
uz and u⊥ allowed for the F phase yield the same ordering
of the SP energy levels ε

F,0
±± = ε

F,0
±±(Ekin ≡ 0), independently

of the sign or the modulus of 

CAF/F

0z : ε
F,0
+− = ε

F,0
−+ < 0 <

ε
F,0
−− = ε

F,0
++. Hence, there is only one possible scenario of level

crossings when approaching the boundary as the increasing
edge potential is driving the SP levels away from their bulk
values. This leads to exactly one crossing of the levels εF

+− and
εF
−−, shown by the blue, dashed lines in the upper left panel

of Fig. 6. We can perform the same analysis for CDW or KD
phases. Again, we rewrite the corresponding HF Hamiltonians
of Eq. (21) with the potentials A


CDW/KD

z0/x0 from Table I and
we find the respective entries for the CDW:

γ1 = −EZ σz + A
z0 1,

γ2 = γ3 = −Ekin(p) 1, (26)

γ4 = −EZ σz − A
z0 1,

165110-10
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whereas for the KD phase we find

γ1 = γ4 = EZ σz,

γ2 = γ3 = (
A
KD

x0 − Ekin(p)
)
1. (27)

The Hamiltonians for the CDW phase and the KD phase thus
turn out to have higher symmetry than in the CAF phase: In
hHF

CDW and hHF
KD , all entries of the two first off-diagonals as

well as of the antidiagonal are zero. Pairwise degeneracy of
the corresponding eigenvalues, i.e., crossings between the SP
energy levels, is now allowed. Note that, unlike the transition
from a CAF to a F phase, all other transitions do not correspond
to smooth transitions. In these cases, a transition between
phases goes along with an abrupt change of the symmetry
properties of the spin/isospin configuration of the GS and the
corresponding Hamiltonian.

We now discuss the different possible scenarios of SP level
crossings in CDW and KD phases. The SP energy levels
of the CDW εCDW

±± in Table I are independent of the sign
of A
CDW

z0 . Different orderings of the bulk levels ε
CDW,0
±± at

Ekin ≡ 0 may, however, appear depending on the modulus
of A
CDW

z0 : for | A
CDW
z0 | > EZ , the bulk states are ordered

as ε
CDW,0
−− < ε

CDW,0
+− < ε

CDW,0
−+ < ε

CDW,0
++ . In this case, when

approaching the boundary, the kinetic energy potential drives
the positive and the negative energy states farther apart from
each other such that they do not cross. In the case where
| A
CDW

z0 | < EZ , however, the bulk states rather follow the
hierarchy ε

CDW,0
−− < ε

CDW,0
−+ < 0 < ε

CDW,0
+− < ε

CDW,0
++ . In this

case, turning on the effective edge potential drives the levels
ε

CDW,0
−+ and ε

CDW,0
+− towards each other and they cross at zero

energy. These two different scenarios are depicted in the upper
right panel of Fig. 6, where the red, solid lines show the levels
εCDW
±± from Table I at A
CDW

z0 = 2EZ > EZ and the black,
dashed lines show the spectrum for A
CDW

z0 = 0.3EZ < EZ .
The latter case, | A
CDW

z0 | < EZ , however, is prohibited by the
conditions imposed on the couplings uz and u⊥ in order for
the system to establish a CDW phase in the bulk. Requiring
uz < u⊥ and uz < −EZ − u⊥ will always force | A
CDW

z0 | >

EZ . Therefore, treating the system as having a stable CDW
phase in the bulk and all the way to the edge will never
lead to any crossings of the SP edge levels. Turning to the
more important case of the KD phase, the situation becomes
even richer. Here, depending on the sign and the modulus of
A
KD

x0 , four different SP level orderings in the bulk and four
resulting crossing scenarios may appear. For |A
KD

x0 | < EZ , if
A
KD

x0 > 0, there is one level crossing at zero energy and two
additional crossings above and below the zero-energy line,
respectively, whereas for negative A
KD

x0 , only one crossing
at zero energy is present. The case |A
KD

x0 | > EZ can lead to
four crossings, two at zero energy plus one above and one
below, respectively, if 
KD

x0 > 0, whereas for A
KD
x0 < 0, the

four levels do not cross.
Examples of the four different cases are shown in the lower

panels of Fig. 6, where the lower left panel shows the possible
situations for | A
KD

x0 | < EZ (solid, orange lines for A
KD
x0 =

−0.3EZ < 0 and black dashed lines for A
KD
x0 = 0.7EZ > 0),

whereas the right panel displays the corresponding spectra for
| A
KD

x0 | > EZ (here, the solid, orange lines are for A
KD
x0 =

−1.5EZ < 0 and black dashed lines for A
KD
x0 = 2EZ > 0).

Note that, just as in the case of the CDW phase, not all
these cases are allowed by the restrictions on the parameter
range for a KD bulk: requiring the couplings uz and u⊥ to

fulfill the relations u⊥ < uz and uz <
E2

Z

2u⊥
− u⊥ always implies

A
KD
x0 > EZ . Therefore, again, all cases including possible

crossings between edge levels are ruled out for a system with
a KD phase in the bulk.

This simple picture drawn for constant order parameters
changes when considering the electronic GS structure de-
scribed in Sec. IV. Indeed the GS spin/isospin texture deviates
from the bulk phase when moving towards the edge as a
consequence of the growing edge potential. Close enough
to the edge the system is always driven into a KD phase.
Hence when moving sufficiently close to the edge the GS does
becomes KD-ordered, even though the system parameters uz

and u⊥ do not allow KD order in the bulk. Two examples
are shown in the close-ups in Fig. 10. Parameters in both
panels are chosen such that the bulk system at Ekin ≡ 0 is
in a F phase. When moving towards the edge the energy
levels evolve according to εF

±± of Table I (corresponding to
the evolution within the blue region). A first crossing between
the intermediate levels occurs, as predicted by the analysis
of the F phase energy levels. After the transition region (left
white), the GS becomes KD (marked by the yellow shading).
However, the system parameters do not force A
KD

x0 > EZ:
in the left panel of Fig. 10, we find A
KD

x0 = −3.4EZ and in
the right panel we have A
KD

x0 = −7EZ . Therefore the energy
levels now evolve according to εKD

±± of Table I in the case
A
KD

x0 < 0, | A
KD
x0 | < EZ . As a consequence, in this regime,

one more level crossing may occur. Hence, the appearance
of several crossings of the SP energy levels in the numerical
spectra as in the lower right panel of Fig. 7 and in Fig. 10 can be
explained combining the insight of Sec. IV that any bulk phase
by the edge potential always is driven into a KD phase close to
the boundary, with the understanding of the possible behavior
of εKD

±± depending on the value of A
KD
x0 as a function o the

coupling energies uz and u⊥. The SP energy levels describing
the numerical results of Figs. 7, 8, and 10 can be summarized
as

ε±±(R) =

⎧⎪⎨
⎪⎩

εbulk
±± (R) for R > R2,

unknown for R1 < R < R2,

εKD
±± (R) for R < R1,

(28)

where εbulk
±± (R) denotes the level spectra for the bulk phase

established at a given choice of system parameters and R2 and
R1 label the inner and outer limits in space of the domain
wall, for which there is no simple analytic expression. The
evolution of εKD

±± (R) is no longer limited to the noncrossing
behavior imposed for a bulk KD phase but it can exhibit any of
the shapes drawn in the two lower panels of Fig. 6. Which of
these curves describes the KD-like evolution of the edge states
correctly is determined by the system parameters u⊥ and uz

that govern the bulk texture phase. From the analysis of the
number of SP level crossings we hence learn that, in principle,
by choosing appropriate values of uz and u⊥, SP energy levels
can have zero, one, two, or even three crossings at zero energy.
Among these crossings, one is due to the symmetry properties
of the bulk F phase. The remaining crossings appear in the
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FIG. 11. (Color online) Evolution of the single-electron spin and
isospin components sz(i) and tx(i) of the SP eigenstates from the bulk
towards the edge for the two anisotropy energies u⊥ = −EZ (CAF
bulk GS, left panels with green lines) and u⊥ = −0.2 EZ (F bulk
GS, right panels with blue lines). Different line shapes distinguish
between the four SP energy levels ε1 � ε2 � ε3 � ε4. Green/blue
lines correspond to the observables of the two lowest-lying states
which are occupied orbitals in the HF GS. Gray lines indicate the
behavior of the higher-lying SP states. Arrows show the behavior of
the spin and isospin polarizations. The second and third levels |2〉
and |3〉 are oppositely polarized in spin and isospin at the edge. In all
plots we set uz = 5 EZ .

KD phase close to the boundary, which in this regime shows
novel properties not present for a KD phase in the bulk. We
note that these crossings occur at different distances from the
edge—at the distance where the corresponding KD phase SP
levels for a certain A
KD

x0 cross, it is necessary for the system

already to have evolved from the bulk phase into the KD edge
phase in order for the additional SP level crossings to occur.
This is the reason why we do not see any crossings in the
SP spectrum shown in the lower left panel of Fig. 8 where
the bulk is in a CDW phase: at the distance Rcross where the
KD-like levels near the edge would cross, the system still
behaves according to its bulk CDW phase. In this case, the
crossing is thus prevented by the fact that the crossing point lies
outside the KD region: Rcross > R2. Nevertheless, a situation
in which the bulk is a CDW but the SP edge states are gapless
due to crossings of the KD-like levels close to the boundary
is not forbidden by the underlying symmetry principles as
the restrictions for the coupling energies of the CDW bulk
phase allow negative values of A
KD

x0 . The exact distances
from the edge R1,R2, or Rcross which define the points of
crossing involve the explicit form of the kinetic energy Ekin(R)
as they are determined by the eventual dominance of the
kinetic energy. Numerical values for R1,R2, or Rcross therefore
strongly depend on the model potential chosen for Ekin(R).
This is not true, however, for the answer to the question
of whether crossings are allowed or not since the values of
A
 are determined generically by the system parameters u⊥
and uz.

D. Properties of the underlying SP states

In order to obtain a better understanding of the nature of the
excited states we analyze the properties of the single-electron
states. We compute the spin and isospin components sz(i) =
1
2 〈i|σz|i〉 and tx(i) = 1

2 〈i|τx |i〉 and display the results as a
function of space in Fig. 11.

The evolution of the observables can be summarized as
follows:

sz(i) edge intermediate bulk tx(i) edge intermediate bulk
sz(1) : ↑ ↗ ↑ tx(1) : ↑ ↗ ↑
sz(2) : ↓ ↘−→↗ ↑ tx(2) : ↑ ↗−→↘ ↓
sz(3) : ↑ ↗−→↘ ↓ tx(3) : ↓ ↘−→↗ ↑
sz(4) : ↓ ↙ ↓ tx(4) : ↓ ↙ ↓

(29)

where arrows represent schematically the spin and isospin
vectors.

The HF GS |G〉 is built from Slater determinants of |1〉
and |2〉 as the eigenstates of the two lowest lying branches ε1

and ε2 in Fig. 7. The lowest energy excitations correspond
to single-particle excitation from the second to the third
level ε2 → ε3. These two states have oppositely polarized
spin and isospin components. The closing of the gap 
εedge

between the second and the third SP level in Fig. 11 hence
is a transition from insulating to conducting behavior with
the counterpropagating current-carrying edge states exhibiting
opposite spin and isospin polarizations. This is the behavior of
gapless helical edge states of a QSH state [45].

VI. CONCLUSION

The SU(4) QH ferromagnetism leads to a highly degen-
erate manifold of ground states for neutral graphene. This

degeneracy is lifted by small lattice-scale anisotropies and
there is a competition between phases with several types of
order. This competition is affected notably by the substrate
supporting the graphene sample. We have used a simple model
of these anisotropies to study the edge properties of neutral
graphene by means of a HF approach. The sharp atomic
edge is then described by an effective field in valley space
which modifies the competition between phases. Ultimately,
whatever the bulk order, the system is in a KD phase close
enough to the edge. In the transition region between this
edge order and the bulk order, we have obtained evidence
for an intermediate regime with spin/valley entanglement. In
this regime there is a nontrivial change of the single-particle
spectrum. We find that the number of levels crossing the Fermi
energy can be varied by changing the parameter u⊥/EZ . This
means that there are metal-insulator transitions when tilting
the magnetic field. This is consistent with the experimental
findings of Young et al. [22]. If we adopt the estimates
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for the approximate magnetic field dependencies of EZ and
u⊥ stated in Refs. [7] and [29] as EZ(B) ≈ 0.7B [T]K and
u⊥(B⊥) ≈ 1–10B⊥ [T]K, where B denotes the total magnetic
field and B⊥ its component perpendicular to the device plane,
the values for the parameters stated in Ref. [22] suggest that
the authors were able to experimentally tune the ratio u⊥/EZ

roughly in a range from −13 to −0.5. The picture we obtain
is more complex than that obtained by assuming that the order
does not persist up to the edge [29]. Notably the occurrence
of the metal-insulator transition, while it sets constraints on
the microscopic parameters, does not imply that the bulk is
CAF ordered. The observation of a conductance G ≈ 2e2/h

which corresponds to two conducting channels, i.e., to one
single-level crossing, has two possible explanations: either
the bulk is in a F phase leading to one crossing unaffected
by the KD edge regime, or the bulk has noncrossing SP
levels, but the crossing occurs in the KD regime close to the
edge. Furthermore, our results suggest that the observation of
exactly one crossing only corresponds to a limited parameter
range. Varying the anisotropy parameters may lead to the
observation of conductance values of higher multiples of two,
corresponding to several crossings in the SP edge spectrum.

Of course there are obvious limitations of our theoretical
approach: we apply a perturbative treatment of the edge,
whose validity is limited to a certain range [cf. the discussion
following Eq. (8)]. The appearance of a KD phase in the
vicinity of the edge is a direct consequence of treating the
effective edge potential perturbatively. Furthermore, in our
calculations we assume the anisotropy energies u⊥ and uz

to remain constant at their bulk values [as we discuss after
introducing Eq. (11)]. This approximation certainly becomes
less exact as we approach the boundary. Also we have
neglected the exchange energy effects that will create textures
in the charge-carrying states.

In conclusion, in this paper we have studied the influence
of an edge on the ν = 0 QH state in monolayer graphene.
We found that the effective edge potential induces a change
of the GS spin/isospin texture. During this evolution, novel
phases are observed, involving simultaneous canting of spin
and isospin as well as nonzero spin/valley entanglement.
Phases of this kind are not present in the bulk. Furthermore,
we analyzed how this spatial evolution changes the SP excited
states. Here we have shown that, as a consequence of the
spatial modulation of the underlying spin/isospin texture, the
direct correspondence between the conductance properties
of the edge states and the bulk phase is lost. The transport
properties are governed by either zero, one, or multiple SP
level crossings. The analysis of the SP eigenstates shows that
the lowest SP excitation describes counterpropagating helical
edge states carrying opposite spin and isospin polarizations.
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