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The hyperscaling property implies that spatially isotropic critical quantum states in d spatial dimensions have
a specific heat, which scales with temperature as T d/z, and an optical conductivity, which scales with frequency
as ω(d−2)/z for ω � T , where z is the dynamic critical exponent. We examine the spin density wave critical fixed
point of metals in d = 2 found by Sur and Lee [Phys. Rev. B 91, 125136 (2015)] in an expansion in ε = 3 − d .
We find that the contributions of the “hot spots” on the Fermi surface to the optical conductivity and specific heat
obey hyperscaling (up to logarithms), and agree with the results of the large N analysis of the optical conductivity
by Hartnoll et al. [Phys. Rev. B 84, 125115 (2011)]. With a small bare velocity of the boson associated with
the spin density wave order, there is an intermediate energy regime where hyperscaling is violated with d → dt ,
where dt = 1 is the number of dimensions transverse to the Fermi surface. We also present a Boltzmann equation
analysis which indicates that the hot-spot contribution to the dc conductivity has the same scaling as the optical
conductivity, with T replacing ω.
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I. INTRODUCTION

The anomalous properties of the “strange metal” phase of
the cuprates, and other correlated electron compounds, have
remained a long-standing challenge to quantum many-body
theory. Strange metals are states of quantum matter whose
density can be continuously varied by an external chemical
potential at zero temperature, but unlike in a Fermi liquid,
there are no long-lived quasiparticle excitations. It is generally
believed that strange metals should be described by a strongly-
coupled quantum-critical theory [1], but such a proposal
immediately faces an obstacle. Almost all strongly-coupled
quantum-critical states, including all conformal field theories,
obey the “hyperscaling” property [2]; this implies that the
specific heat CV and the conductivity σ scale as

CV ∼ T d/z, σ (ω � T ) ∼ ω(d−2)/z, (1.1)

where ω is frequency, T is temperature, d is the spatial
dimension, and z is the dynamic critical exponent; we will refer
to the conductivity in the ω � T regime above as the optical
conductivity. In the important spatial dimension of d = 2,
this immediately implies that the optical conductivity should
be frequency independent, which contradicts the ∼ω−0.65

behavior observed in the cuprates [3,4].
The scaling arguments can also be naively extended to the

dc conductivity, which would then imply that σ (ω � T ) ∼
T (d−2)/z. In d = 2, this contradicts the widely observed “linear-
in-T resistivity,” σ ∼ T −1. However, dc transport co-efficients
are sensitive to constraints from momentum conservation, and
so the naive application of hyperscaling to dc transport is often
not valid [5–14]. However, this sensitivity does not extend to
the optical conductivity, and so the observations of Refs. [3,4]
are the stronger challenge to the hyperscaling property.

There is a much-studied [15–29] strongly-coupled
quantum-critical point which violates hyperscaling: this is the
critical point to the onset of Ising-nematic order in a metal
in d = 2. A closely-related critical theory applies to a d = 2
metal coupled to an Abelian or non-Abelian gauge field. We

write the properties of the Ising-nematic theory in a suggestive
form similar to Eq. (1.1):

CV ∼ T dt /z, σ (ω � T ) ∼ ω(dt−2)/z,

with hyperscaling violation, (1.2)

where z = 3/2 is the “fermionic” dynamic critical exponent
(in the notation of Ref. [24]). For the specific heat, the
hyperscaling-violating dimensionality dt = 1 has been con-
nected to the number of dimensions transverse to the Fermi
surface [27,30]. This value of dt also happens to yield the
correct behavior of the optical conductivity in Eq. (1.2),
although the existing [19,31] physical interpretations of this
result are different. It is also notable that σ ∼ ω−2/3 is close
to the experimental observations [3,4].

The above violation of hyperscaling is in a theory with a
“critical Fermi surface.” On the other hand, theories with Dirac
fermions, which are gapless only at points in the Brillouin zone
do obey hyperscaling.

Our interest in this paper is the onset of spin density
wave order in two-dimensional metals, whose critical theory
is described by isolated points called “hot spots,” which
are connected to a gapless Fermi surface (see Fig. 1). This
transition is therefore intermediate between the critical Fermi
surface and critical Fermi point cases. Its field theory [32] has
a bosonic order parameter �φ coupled to fermionic excitations
at four pairs of hot spots around the Fermi surface.

In a large N analysis of such a field theory, it was
found [32,33] that at the two-loop level the Fermi surfaces near
the hot spots become asymptotically nested at low energies.
In terms of momenta kx,ky measuring deviations from the hot
spots, the Fermi surface is given by [see the bottom panel of
Fig. 1(b)]

ky ∼ ± kx

ln(1/|kx |) . (1.3)

The optical conductivity of the hot spots was computed by
Hartnoll et al. [31] in a Eliashberg framework, and they found
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(a) (b)

FIG. 1. (Color online) (a) Hot spot geometry, labeling conven-
tions, and choice of x,y-coordinate system in the Brillouin zone
of the two-dimensional square lattice in which the fermions move.
The boundary of the blue area denotes the Fermi surface separating
the filled particlelike states (blue area) from the holelike states
(white area). QAF = (π,π ) is the (commensurate) antiferromagnetic
ordering vector that intersects the Fermi surface at four pairs of hot
spots. (b) (Top) Fermi surface patches from a hot-spot pair connected
by QAF centered at a common origin in momentum space. The two
light colored regions are the regions occupied by fermions at the two
hot spots of the pair, respectively, the dark colored region is occupied
by fermions at both hot spots, and the white region is unoccupied. The
arrows perpendicular to the Fermi surfaces denote the directions of the
Fermi velocities. (Bottom) Under the RG flow, the Fermi surfaces are
deformed as shown at the strange metal fixed point, and as indicated
in Eq. (1.3). The Fermi velocities are exactly antiparallel only at the
hot spot (k = 0).

(at variance with an earlier treatment by Abanov et al. [34], and
that in Ref. [35]) a hot-spot contribution σ (ω) ∼ ωr0 , where
the exponent r0 > 0 was determined by the angle between the
Fermi surfaces at the hot spots. For the asympotically nested
Fermi surface in Eq. (1.3), it was found [31] that r0 → 0,
indicating that the optical conductivity is a constant (up to
logarithms), and so obeys hyperscaling as in Eq. (1.1) in d = 2.

This paper will reexamine these issues using the fixed
point for the spin density wave critical found by Sur and
Lee [36] using an expansion in ε = 3 − d. They also found
the asymptotically nested Fermi surfaces in Eq. (1.3) under
the one-loop renormalization group flow of the ε expansion.
We will review their RG analysis in Sec. II. We then proceed
to a computation of the optical conductivity in Sec. III, and
find that the hot spot contribution obeys the hyperscaling of
Eq. (1.1) (up to logarithmic corrections) in the ε expansion, in
agreement with Hartnoll et al. [31]. We turn to a computation of
the nonzero temperature free energy density in the ε expansion
in Sec. IV. We find a result for the hot-spot contribution to
the specific heat again in agreement with the hyperscaling
of Eq. (1.1), and for reasons similar to those for the optical
conductivity.

Sections III and IV also examine the optical conductivity
and the free energy in the limit of a vanishing bare �φ velocity:
c → 0. As the bare velocity is generically finite, such a limit
can only apply to observable properties over intermediate ω or
T : we find the allowed range is c� < ω,T < vF �, where vF

is a Fermi velocity [see Eq. (2.2)], and � is the high momentum

cutoff. Only in such a limit we find a hyperscaling violation
as described by Eq. (1.2) with dt = 1. The quantum critical
optical conductivity studied in Refs. [34,35] is analogous to
this intermediate regime, and we maintain that their results do
not apply when the bare velocity c is not small.

The more subtle question of the dc conductivity is examined
in Sec. V; in discussions of the dc conductivity, we implicitly
assume that ω � T . Here, we have to consider the interplay
between the hot spots on the Fermi surface with the remainder
of the “cold” Fermi surface more carefully [11,31,37,38]. The
cold fermions can short-circuit electronic transport, and so
possibly dominate the dc conductivity. More generally, this
belongs to a class of effects associated with the conservation of
total momentum, which can relax only via quenched disorder
or umklapp scattering beyond that already continued in the
continuum theory [11]. A general framework for describing
such effects was presented in Refs. [5,14], using solvable
holographic models, relativistic hydrodynamics, and memory
functions. In the context of strange metals, it is useful to begin
with a microscopic model in which the total momentum is
exactly conserved [7,11]. Then the conductivity can be written
as [5]

σ = σQ + Q2

M
1

(−iω)
, (1.4)

where σQ is a finite and T -dependent “quantum critical”
conductivity, and the second term can be viewed as the
contribution of the cold Fermi surface. The pole at ω =
0 has a coefficient determined by static thermodynamic
susceptibilities associated with the electric current J and
the momentum density P , with Q = χJP and M = χPP .
These thermodynamic susceptibilities are usually noncritical,
and so can be taken to be nonuniversal and T -independent
constants, which depend on the full short-distance structure of
the theory. Now we add perturbations associated with umklapp
scattering or quenched disorder, which can relax the total
momentum [5–14,39–43]: this leads to a momentum relaxation
rate 	, which shifts the pole in Eq. (1.4) off the real axis to
ω = −i	, and so the conductivity takes the finite value at
ω = 0:

σ = σQ + Q2

M
1

(−iω + 	)
. (1.5)

Note that 	 does have a singular T dependence associated with
universal properties of the quantum-critical theory, and can be
computed via memory functions [5–7,11,39,44–47]. A notable
feature [48] of Eq. (1.5) is that the quantum-critical σQ and the
momentum-mode conductivity are additive; this is in contrast
to Matthiessen’s rule for quasiparticle theories, in which
different quasiparticle scattering mechanisms are additive in
the resistivity. The T dependence of the momentum-mode term
in Eq. (1.5) was discussed in Ref. [11], using the assumption
that the cold regions of the Fermi surface are “lukewarm,”
i.e., the electron-electron scattering rate on the entire Fermi
surface is faster than the impurity scattering rate; the results of
Ref. [11] are not modified by the analysis of the present paper.

Section V will present a computation of the quantum-
critical conductivity σQ for the case of a spin density wave
quantum critical point in a metal in d = 2. The momentum
mode contribution in Eq. (1.5) was computed in a previous

165105-2



HYPERSCALING AT THE SPIN DENSITY WAVE QUANTUM . . . PHYSICAL REVIEW B 92, 165105 (2015)

work by two of us [11], and will not be addressed here.
The computation of σQ here is aided by the fact that the
theory describing the hot spots is particle-hole symmetric. This
implies that the scaling limit theory has Q = 0, and so we can
cleanly separate away the momentum mode contribution; the
full theory ultimately has Q �= 0, but this arises from portions
of the Fermi surface away from the hot spots [11]. Such a
separation between σQ and the momentum mode is more
complicated in general [12]: in particular, for the Ising-nematic
critical point there is no particle-hole symmetry to aid us, and
we are not aware of any computation of σQ for this case. For
the spin density wave critical point, we compute σQ in Sec. V
using a Boltzmann equation method developed for conformal
field theories [49–52]. We will carry out the Boltzmann
analysis directly in d = 2, rather than the technically more
cumbersome ε expansion. Consequently, our results for σQ

will be qualitative, and not systematic. From the computations
in Sec. V, we estimate that the leading T dependence of σQ has
the same form as the ω dependence of the optical conductivity,
i.e., with bare velocities finite, hyperscaling is preserved with
σQ ∼ constant, and with vanishing bare velocities, there is
violation of hyperscaling with σQ ∼ T (dt−2)/z and dt = 1 and
over intermediate T range c� < T < vF �.

II. MODEL

In this section, we first recapitulate the low-energy con-
tinuum quantum field theory for fermions moving in a two-
dimensional square lattice close to the transition to the antifer-
romagnetic phase with commensurate ordering wave vector
QAF = (π,π ) [32,33,36]. We then explain the embedding
by Sur and Lee [36] of the two-dimensional system into a
higher-dimensional d = 3 − ε space, and summarize the basic
features of the ε expansion.

We begin by defining the action in frequency and momen-
tum representation S[ψ̄,ψ, �φ] in two space dimensions x and
y and one temporal (imaginary time) direction τ :

S[ψ̄,ψ, �φ] =
4∑

�=1

∑
m=±

∑
σ=↑,↓

∫
k

ψ̄
(m)
�,σ (k)

[
ikτ + em

n (k)
]
ψ

(m)
�,σ (k)

+ 1

2

∫
q

�φ(−q) · [q2
τ + c2q2 + r

] �φ(q)

+ g

4∑
�=1

∑
σ,σ ′=↑,↓

∫
k

∫
q

[ �φ(q) · ψ̄
(+)
�,σ (k + q)

× �τσ,σ ′ψ
(−)
�,σ ′(k) + H.c.

]
. (2.1)

Here, the functional integral for the fermions goes over
fermionic Grassmann fields ψ̄ , ψ , which carry additional
labels according to their “home” hot spot (depicted in Fig. 1).
Via a “Yukawa” coupling g, the fermions are (strongly)
coupled to a bosonic vector field with three components �φ
whose fluctuations represent spin waves. At zero temperature,
kτ is a continuous (imaginary) frequency variable with k =
(kτ ,k) = (kτ ,kx,ky) and likewise for q.

According to Fig. 1, the dispersions of the fermions e±
� (k) =

v±
� · k in the hot regions are

e±
1 (k) = −e±

3 (k) = vF (vkx ± ky),

e±
2 (k) = −e±

4 (k) = vF (∓kx + vky) , (2.2)

with v being the ratio of the velocities in x and y directions;
we will henceforth set vF = 1. In particular, the limit v → 0
corresponds to locally nested pairs of hot spots, in which the
Fermi line becomes orthogonal to the antiferromagnetic order-
ing vector QAF and the fermion becomes one-dimensional and
disperses parallel to QAF.

The physics of the action (2.1) in two space dimensions has
been addressed with a variety of techniques including resum-
mation of subclasses of Feynman diagrams [32], field-theoretic
renormalization group techniques [31,33], and Polchinski-
Wetterich flow equations for the effective action [53]. The
bottom line is that the fermions and spin waves are strongly
coupled, one has to account for strong renormalization of the
shape of the Fermi surface [33].

Here, we embed the fermionic system in two space
dimensions described by Eq. (2.1) into a higher-dimensional
space; the “extra dimensions” are added perpendicular to the
physical Fermi surface [36] that lies in the x-y plane and has
co-dimension 1. Artificially introduced Fermi surfaces with
co-dimension >1 are gapped out by assuming a p-wave charge
density wave order in directions perpendicular to the physical
Fermi surface. This results in line nodes of the fermionic
dispersion with co-dimension 1 as needed. The main advantage
of this embedding is that the density of states at the Fermi line
is suppressed to ρ(E) ∼ Ed−2, that is, it vanishes with energy
for d > 2. This allows the powerful dimensional regularization
techniques of relativistic systems to be adapted to the present
problem.

The d + 1-dimensional action

S =
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∫
k

�̄n,σ,j (k)[i	 · K + iγd−1εn(k)]�n,σ,j (k)

+ 1

4

∫
q

[|Q|2 + c2q2]Tr[�(−q)�(q)]

+ gμ(3−d)/2

√
Nf

4∑
n=1

Nc∑
σ,σ ′=1

Nf∑
j=1

∫
k

∫
q

[�̄n,σ,j (k + q)�σ,σ ′

× (q)iγd−1�n̄,σ ′,j (k) + H.c.] (2.3)

is integrated over k = (K,k), which contains the physical mo-
mentum k = (kx,ky) and a d − 1 = 2 − ε dimensional “gener-
alized frequency” vector K = (kτ ,K̄) = (kτ ,k1, . . . ,kd−2), that
includes the physical frequency kτ in its first component and
the d − 2 extra dimensions in the others and likewise for
q. The bosons have been promoted to matrix fields φ(q) =∑N2

c −1
a=1 φa(q)τ a with Tr[τ aτ b] = 2δab conventions for the

trace over SU(Nc) generators τ a . The fermions are collected
in a SU(Nf ) flavor group and the physical limit of Eq. (2.3) is

K → kτ , ε → 1 , d → 2 , Nc = 2 , Nf = 1. (2.4)

Computations with Eq. (2.3) involve traces over products of
d − 1-dimensional gamma matrices, collected in the vector
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(	,γd−1) with 	 = (γ0,	̄) = (γ0,γ1, . . . ,γd−2), that satisfy
{γμ,γν} = 2Iδμν and Tr I = 2. The book-keeping indices
for the hot spots are: 1̄ = 3, 2̄ = 4, 3̄ = 1, 4̄ = 2; the two-
component fermion spinors appearing in Eq. (2.3) disperse
according to

ε1(k) = e+
1 (k),

ε2(k) = e+
2 (k),

(2.5)
ε3(k) = e−

1 (k),

ε4(k) = e−
2 (k),

with the right-hand-sides defined in Eq. (2.2). The two-
component spinors of Eq. (2.3) contain two of the original
fermions from opposing sides of the Fermi surface [36].

Sur and Lee [36] performed a field-theoretic one-loop
renormalization group analysis of Eq. (2.3) in d = 3 − ε

dimensions. They retained the simplest set of five independent
running couplings. For the fermion propagator three wave-
function renormalization factors are used, one in the direction
of “time and extra dimensions” K and one each in the kx

and ky directions. For the Bose propagator, there are two
wave-function renormalization factors, one in the Q direction
and one for the qx,y directions (which have to be equivalent by
point group symmetry).

The fixed point of the ε expansion is defined in terms of the
ratios λ = g2/v and w = v/c:

λ → λ∗ = 4πε
N2

c + NcNf − 1

N2
c + NcNf − 3

,

w → w∗ = NcNf

N2
c − 1

. (2.6)

The fixed point determines a dynamic critical exponent z via

z = 1 + λ∗

8π
+ O(ε2). (2.7)

Note that kτ and K̄ scale as kz
y ; so the extra d − 3 spatial

dimensions and the time dimension all scale as z with respect to
the two physical dimensions, instead of just the time dimension
as is usually the case with other models.

While the scaling structure described so far is conventional,
there are logarithmic corrections that arise from the flow of the
velocities v and c flow to zero at long-length scales. This flow
is described by

dc

d ln μ
≈ 4z

π
(z − 1)c2,

dv

d ln μ
≈ w∗ dc

d ln μ
, (2.8)

where μ is the renormalization group momentum scale. Such
a dynamic nesting with v → 0 was found also in an earlier
1/Nf expansion [33]. At the fixed point with vanishing v and
c, the antiferromagnetic ordering vectors intersect the Fermi
surface at a right angle. This is illustrated in Fig. 1(b). Note
that with v → 0 at the fixed point, we must also have g2 → 0
for the coupling λ to remain finite; this is indeed found to be
the case in the renormalization group flow.

III. OPTICAL CONDUCTIVITY σ (ω)

In this section, we compute the optical conductivity σ (ω)
for fermions near the hot spots at the ε expansion fixed point
described in Sec. II. Our computation will be to order ε, which
requires evaluation of two-loop Feynman graphs.

Before embarking on the description of the Feynman
graphs, let us review the expectations of a general scaling
analysis. The spatial directions x and y have scaling dimension
1, the time direction has scaling dimension z, and the 1 − ε

extra spatial directions with Dirac dispersion also have scaling
dimension z. So the scaling dimension of the free energy
density F is

[F ] = 2 + (2 − ε)z. (3.1)

The vector potential A has dimension 1, and so the electric
current J being proportional to δF/δA has dimension

[J ] = 1 + (2 − ε)z. (3.2)

Finally, the conductivity is given by the Kubo formula in terms
of a current correlator, from which we deduce

[σ ] = (1 − ε)z. (3.3)

These are the scaling expectations for a theory that obeys
hyperscaling. If we have a violation of hyperscaling, we expect
the spatial direction along the Fermi surface to not contribute
in the counting of scaling dimension. So we should have

[F ] = 1 + (2 − ε)z, [σ ] = −1 + (1 − ε)z,

with hyperscaling violation. (3.4)

We already know that the Fermi liquid contribution of the
quasiparticles far from the hot spots violates hyperscaling as
in Eq. (3.4) with z = 1. The question before us is whether the
hot-spot contribution preserves hyperscaling as in Eqs. (3.1)
and (3.3), or violates hyperscaling as in Eq. (3.4).

We first compute the one-loop (free fermion) contribution
to the two-point correlator of the current density 〈JyJy〉. Then,
we compute the two-loop (interaction) contributions to 〈JyJy〉,
of which there are two: the “self-energy correction” (Sec. III B)
and the “vertex correction” (Sec. III C). Finally, in Sec. III D,
we compile the results from the evaluation of the loop diagrams
and, applying the Kubo formula, we derive the scaling form
of the optical conductivity σ (ω) for the fermions near the hot
spots.

A. One-loop contribution to 〈Jy Jy〉
We have, for the current density in the y direction,

Jy = J (1)
y + J (3)

y + J (2)
y + J (4)

y

= i

Nc∑
σ=1

Nf∑
j=1

(�̄1,σ,j γd−1�1,σ,j − �̄3,σ,j γd−1�3,σ,j )

+ iv2
Nc∑

σ=1

Nf∑
j=1

(�̄2,σ,j γd−1�4,σ,j + �̄2,σ,j γd−1�4,σ,j ),

(3.5)

and likewise for Jx but with (1,3) ↔ (4,2).
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(a) (b) (c)

FIG. 2. Feynman graphs for the current-current correlator up
to two loops. The black and grey boxes are current vertices for
the n and n̄ hot-spot pairs, respectively. The wiggly lines are the
boson propagators and the solid lines stand for fermion propagators.
(a) One-loop contribution for free fermions. (b) Two-loop self-energy
correction computed in Sec. III B. There is also a partner diagram with
the boson on the lower fermion line. (c) Two-loop vertex correction
computed in Sec. III C.

The one-loop contribution to this correlator is simply
the noninteracting “bubble” containing a convolution of two
fermion propagators as shown in Fig. 2, both from the same
hot spot (we follow the index convention of Eq. (2.5) and
absorb the identical contributions from the other hot spots into
a prefactor)

〈JyJy〉1−loop(ω) = −2(1 + v2)NcNf

∫
d2k

(2π )2

d2−εK
(2π )2−ε

× Tr[iγd−1G1(K,k)iγd−1G1(K + W,k)],

(3.6)

where W = (ω,0̄) and the fermion propagator is given by

Gn(K,k) = (−i)
	 · K + γd−1εn(k)

K2 + εn(k)2
. (3.7)

We evaluate Eq. (3.6) using Feynman parameters in Ap-
pendix A1 and obtain in Eq. (A2) to leading order in ε:

〈JyJy〉1−loop(ω) = −√
1 + v2

∫
dk‖NcNf ω1−ε

(
1

16π

)
,

(3.8)

where k‖ is the component of k along the Fermi surface of ε1(k)
(note k‖ = kx for v = 0). For comparison with the subsequent
two-loop contribution, it is useful to write this as

〈JyJy〉1−loop(ω) = −(1 + v2)
∫

dε3

2v
NcNf ω1−ε

(
1

16π

)
,

(3.9)

where the variable of integration ε3 is a co-ordinate orthogonal
to the equal energy lines of ε3(k).

We can evaluate the integral over ε3 to yield a factor
of �, a large-momentum cutoff, and then we conclude that
σ1−loop(ω) ∼ ω−ε . We now observe that this result agrees
with hyperscaling violating scaling dimension in Eq. (3.4)
for z = 1. This is just the expected result, because we are
dealing with the contribution of free fermions, and there is
no distinction yet between the hot-spot contribution, and the
Fermi liquid contribution of quasiparticles far from the hot
spot.

B. Two-loop self-energy correction 〈Jy Jy〉SE

To investigate the impact of interactions on 〈JyJy〉, we
first compute the two-loop self-energy correction depicted

(a) (b)

FIG. 3. Key one-loop elements appearing in the two-loop self-
energy correction (a) and two-loop (current) vertex correction (b).

in Fig. 2(b). There are two diagrams here with identical
contributions, whose sum gives

〈JyJy〉SE(ω) = −4(1 + v2)Nf

∫
d2k

(2π )2

d2−εK
(2π )2−ε

× Tr[iγd−1G1(K,k)�1(K,k)G1(K,k)iγd−1

×G1(K + W,k)]. (3.10)

Here we note that this expression contains three fermion
propagators from the same hot-spot pair 1 and one, inside
the one-loop self-energy �n(K,k), depicted in Fig. 3(a) from
its “partner” hot-spot pair 3. We now compute �1(K,k)
separately. After that, we substitute the result back into
Eq. (3.10) and perform the remaining integrations over k
and K. The effect of large momentum-transfer scattering
of fermions from one hot-spot pair (1) to its partner (3)
via exchange of bosonic spin fluctuations is captured in the
self-energy

�1(K,k) = g2με

Nf

N2
c −1∑

j=1

(τ j τ j )
∫

d2q
(2π )2

d2−εQ
(2π )2−ε

iγd−1

×G3(Q + K,q + k)iγd−1D(Q,q) , (3.11)

where the spin fluctuation propagator

D(Q,q) = 1

Q2 + c2q2
(3.12)

involves the spin wave velocity c, which vanishes at the Sur-
Lee fixed point near the hot spots, as does the Yukawa coupling
g2; the ratio g2/c, however, attains a finite value (see Sec. II).

We evaluate the expressions first in Appendix A2 using a
simplifying approximation valid only for small bare velocities
c and v. In the limit v,c → 0, the integrand in Eq. (3.11) then
depends on qx only via the spin fluctuation propagator. Thus
we can first perform the qx integration and then set c = 0,
which is equivalent to replacing∫

d2q
(2π )2

→
∫

dqy

(2π )2
,

D(Q,q) → π

c

1

|Q| . (3.13)

in Eq. (3.11). This way, Eq. (3.11) picks up the finite prefactor
g2/c and the integrand becomes independent of both velocities
v and c. The resulting integrals are performed in Appendix A2
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using Feynman parameters to obtain

�1(K,k) = �1(K) = −i
π2−ε/2	(ε/2)

(2π )4−ε

με

Nf

g2

c

×
N2

c −1∑
j=1

(τ j τ j )
	 · K

[K2]ε/2

∫ 1

0
dx

(1 − x)
1
2 − ε

2

x
1
2 + ε

2

.

(3.14)

We observe that the above fermion self-energy depends only on
frequency and not an spatial momenta k anymore; the fermions
near the hot spots see an essentially “local” boson with the “1
over frequency” propagator of Eq. (3.13). Eq. (3.14) induces
an anomalous scaling for the K dependent part of the fermion
propagator, but the absence of anomalous dimensions for the
spatial k components renormalizes the dynamical exponent z

to values larger than one at the Sur-Lee fixed point.
However, for our purposes here, the approximation asso-

ciated with Eq. (3.13) turns out not to be sufficient, since v

and c vanish only logarithmically near the hot spot. It is thus
crucial to obtain the full v and c dependence of the pole term in
Eq. (3.14), and of that in Eq. (3.10). The needed integrals are
computed in Appendix C, and the final result for the two-loop
self-energy correction is the rather complicated expression in
Eqs. (C2) and (C3). Computing its singular pole in ε and
dropping power divergent terms, we obtain

〈JyJy〉SE(ω) ≈
∫

dε3

2v

(
N2

c − 1
)
g2μεω1−ε

64π3cε

×
∫ 1

0
dx

(1 − x)1/2(1 + v2)

(c2 + x(1 + v2 − c2))1/2

×
(

ω2 + c2ε2
3

c2 + x(1 + v2 − c2)

)−ε/2

, (3.15)

in terms of the same ε3 variable of integration used in Eq. (3.8).

C. Two-loop vertex correction to 〈Jy Jy〉vert

The vertex correction graph, Fig. 2(c), is considerably
more involved than the self-energy correction of the preceding
section; although for c → 0 it is free of 1/ε poles of the type
Eq. (3.15). Using the abbreviation �1(K,k,W) for the one-loop
current vertex correction in Fig. 3(b), we can write the entire
graph including contributions from all hot-spot pairs as

〈JyJy〉vert(ω)

= −2(1 − v2)iNf

∫
d2k

(2π )2

∫
d2−εK

(2π )2−ε

× Tr[γd−1G1(K,k)�3(K,k,W)G1(K+W,k)]. (3.16)

We observe that Eq. (3.16) contains two-fermion propagators
from one hot-spot pair and two-fermion propagators (inside
the current vertex �1) from the partner hot-spot pair, unlike
the self-energy correction (3.10). The one-loop correction to

the Jy vertex,

�3(K,k,W) = i
g2με

Nf

N2
c −1∑

j=1

(τ j τ j )
∫

d2q
(2π )2

d2−εQ
(2π )2−ε

×
[
γd−1G3(K + Q,k + q)γd−1G3(K + Q

+ W,k + q)γd−1
1

Q2 + c2q2

]
, (3.17)

does not contain a 1/ε pole in the limit of c → 0. This
subsequently leads to the lack of a pole in the two-loop
vertex correction (the details of the computation are presented
in Appendix A3). For v,c �= 0, however, as described in
Appendix C, the vertex correction picks up a small pole with
a coefficient of O(c):

〈JyJy〉vert(ω) ≈ −
∫

dε3

2v

(
N2

c − 1
)
g2cμεω1−ε

32π3ε

×
∫ 1

0
dx

(1 − x)1/2(1 − v2)

(c2 + x(1 + v2 − c2))3/2

×
(

ω2 + c2ε2
3

c2 + x(1 + v2 − c2)

)−ε/2

.(3.18)

However, this is subdominant to the self-energy correction in
Sec. III B, as the latter is finite in the limit c → 0; this is a
consequence of a Ward identity discussed in Appendix C.

D. Renormalized conductivity σ (ω)

We can now add the leading free contribution in Eq. (3.9),
the singular self-energy correction in Eq. (3.15), and the
appropriate counterterm to obtain the renormalization of the
conductivity σ (ω) near the fixed point:

σyy(ω) ≈ (1 + v2)
∫

dε3

2v

NcNf

16π
ω−ε

×
∫ 1

0
dx

[
1 + (z − 1)

π

(1 − x)1/2

(c2 + x(1 + v2 − c2))1/2

× ln

(
ω2

μ2
+ c2ε2

3/μ
2

c2 + x(1 + v2 − c2)

)]
. (3.19)

The interpretation of this central result requires some care
in the limit of small v and c, and we consider various cases
separately below. The important point here is that the argument
of the logarithm is of order (ω2 + (cε3)2)/μ2, and so the
renormalization-group-improved perturbation expansion will
lead to powers of (ω2 + (cε3)2)/μ2, in contrast to the power
of ω alone outside the square bracket. This difference arises
because, at leading order, the singular contribution of the hot
spot is the same as the rest of the Fermi surface, while at higher
orders there is quasiparticle breakdown only close to the hot
spot. Consequently, there is a modification in the nature of the
ε3 integral, where we recall that ε3 measures distance away
from the hot spot along the Fermi surface.

First, let us assume the bare value of c is so small that the
ε3 dependence of the argument of logarithm can be ignored;
this was, effectively, the limit that was implicitly taken in by
Abanov et al. [34]. This requires that c� < ω, where � is
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the momentum space cutoff. Then, we can easily perform the
integral over x, and after reexponentiating the logarithm in the
ε expansion, we conclude that

σyy(ω) ∼
∫

dε3

2v
ω−ε[1 + (z − 1) ln(ω/μ)]

∼ �μ1−z ω−ε+(z−1). (3.20)

This is the answer expected from the hyperscaling violation
case in Eq. (3.4) at this order in ε; Abanov et al. [34] found
σ (ω) ∼ 1/

√
ω, which is consistent with Eq. (3.4) for their

dynamic critical exponent z = 2. Thus the ω dependence of
σ violates hyperscaling as in Eq. (1.2) with dt = 1 for c� <

ω < �, which can be within a universal regime only if the
bare value of c is small enough, as claimed in Sec. I.

Next, we consider the more generic case where the bare
value of c is of order unity. Then, we can divide the integration
over ε3 in Eq. (3.19) into two regimes. There is the far from
the hot-spot regime where cε3 � ω, and the close to the hot-
spot regime of cε3 � ω. The contribution of the close to the
hot-spot regime is similar to that in Eq. (3.20), except that the
upper bound on the integration over ε3 involves ω:

σyy(ω) ∼
∫ ω/c

0

dε3

2v
ω−ε+(z−1). (3.21)

Actually, by scaling, we expect the upper bound on the
momentum integral over ε3/v to scale as ω1/z at higher order
in ε; using such an upper bound in Eq. (3.21), we obtain the
generic hot-spot contribution

σyy(ω) ∼ ω−ε+(z−1)+1/z. (3.22)

To this order in ε, this is the scaling expected by the
hyperscaling preserving scaling dimension in Eq. (3.3). In
comparison to the hyperscaling violating answer obtained in
the direct v,c → 0 limit used for Eq. (3.20), the conductivity
has acquired an extra factor of ω1/z. So we reach one of
our main conclusions, that the hot-spot contribution to the
conductivity generically obeys hyperscaling as in Eq. (1.1).
We have not written out explicit factors of v and c in the final
scaling forms, but these are ultimately only expected to yield
powers of (ln(1/ω))−1, and so hyperscaling is only obeyed up
to powers of ln(1/ω).

Finally, we also have to consider the contribution of the
far from the hot-spot regime cε3 � ω. In this regime, the
term inside the square brackets in Eq. (3.19) is ω-independent,
and so we obtain an additional contribution σ ∼ ω−ε . This
is just the additive Fermi liquid contribution of long-lived
quasiparticles far from the hot spot.

IV. T > 0 FREE ENERGY

In order to study the finite temperature dynamics of this
model, we need to compute the free energy density at T > 0.
The free energy density has contributions from the free
fermions, the free bosons, and a “self-energy” correction due
to their interactions. Following the lessons learned in the
analysis of the optical conductivity in Sec. III, we will perform
the computation here only in the simpler limit of vanishing
velocites v,c → 0, where we can replace the boson propagator
by the momentum-independent form in Eq. (3.13). However,

as described in Sec. III D, we will assume that the low T

hot-spot contribution for the case of finite velocities can be
estimated by limiting the range of the fermionic kx integral
(along the Fermi surface) to an upper limit ∼T 1/z; here, we
have assumed the upper cutoff is determined by T rather than
ω for the optical conductivity in Sec. III D.

The free fermion, F 0
f , and free boson, F 0

b contributions to
the free energy density, F , are obtained straightforwardly to
leading order in ε (the prefactor of 4 in the fermion contribution
comes from having 4 pairs of hot spots):

F 0
f = 4NcNf T

∫
dkx

2π

∫
dkyd

1−εK̄
(2π )2−ε

× ln
[(

1 + e(k2
y+K̄2)1/2/T

)(
1 + e−(k2

y+K̄2)1/2/T
)]

=
∫

dkxNcNf T 3−ε

(
3ζ (3)

2π2

)
, (4.1)

where the infinite temperature-independent constant part was
dropped. For the bosons,

F 0
b = (

1−N2
c

)
T

∫
d2q

(2π )2

∫
d1−εQ̄

(2π )1−ε
ln
[
1 − e−(c2q2+Q̄2)1/2/T

]
= π2

90c2

(
N2

c − 1
)
T 4−ε . (4.2)

The interaction contribution to the free energy at two-loop
order is given by Fig. 4. It may be expressed as

Ff b = 1

2
Tr

⎡⎣N2
c −1∑

j=1

τ j τ j

⎤⎦∫ d2qd1−εQ̄
(2π )3−ε

× T
∑
ωq

�(q,T )

Q̄2 + c2|q|2 + ω2
q

, (4.3)

where �(q,T ) is the RPA polarization bubble given by

�(q,T ) = g2
∑

n

∫
d2kd1−εK̄

(2π )3−ε

× T
∑
ωk

Tr[γd−1Gn(k)γd−1Gn(k + q)]. (4.4)

We separate out �(q,T ) as

�(q,T ) = (�(q,T ) − �(q,0)) + �(q,0), (4.5)

and evaluate the finite temperature part setting v = 0 at the
outset, taking g,c → 0 with g2/c finite and equal to its fixed
point value λ∗w∗. The zero temperature part is evaluated with
v �= 0 at the outset, and g,v → 0 with g2/v finite and equal to

FIG. 4. The simplest interaction contribution to the free energy
at O(g2).
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its fixed point value λ∗. As described in Appendix B, this sep-
arates out the contributions that renormalize the free fermionic
and bosonic contributions, with the finite temperature part of
� renormalizing the free fermionic contribution and the zero
temperature part renormalizing the bosonic contribution. We
then obtain (see Appendix B for details), for the singular parts,

Ff b = F
(1)
f b + F

(2)
f b ,

F
(1)
f b =

∫
dkx

(
N2

c − 1
)
T 3−2ε g2

c

(
3ζ (3)

16π3ε

)
, (4.6)

F
(2)
f b = (

N2
c − 1

)
T 4−2ε g2π

360vc2ε
.

We have set the momentum renormalization scale μ = 1 in the
present section. We thus get, after plugging in the fixed point
values,

Ff = F 0
f + F

(1)
f b =

∫
dkx

3ζ (3)

2π2
NcNf T 3−ε

×
(

1 + (z − 1)
T −ε

ε

)
→
∫

dkx

3ζ (3)

2π2
NcNf T 3−ε−(z−1),

(4.7)

where the pure 1/ε pole is canceled by the usual addition of a
counter term. Similarly,

Fb = F 0
b + F

(2)
f b = π2

90c2
(N2

c − 1)T 4−ε

×
(

1 + 2
z − 1

ε
T −ε

)
→ π2

90c2

(
N2

c − 1
)
T 4−ε−2(z−1).

(4.8)

We now observe that the bosonic term Fb is compatible
with the behavior ∼T 2−ε+2/z expected from the hyperscaling
preserving scaling dimension in Eq. (3.1); the agreement holds
to first order in ε after recalling that z − 1 is O(ε) from
Eq. (2.7). For the fermionic contribution, as in Sec. III D,
the behavior depends upon the fate of the kx integral. As
noted at the beginning of the present section, for the low-T
behavior, we should impose an upper cutoff on the integral
of order T 1/z; then Ff ∼ T 3−ε−(z−1)+1/z, which also agrees
with ∼T 2−ε+2/z to first order in ε. Thus both the bosonic and
fermionic contributions to the free energy obey hyperscaling,
and the behavior in Eq. (1.1), up to logarithms.

As was the case in Sec. III, for very small bare velocity
c, and for c� < T < �, there is a regime of hyperscaling
violation when the kx integral is replaced by �, and behavior
is as in Eq. (1.2). Note that we are using units in which the
velocity vF in Eq. (2.2) has been set equal to unity; so the full
condition for this intermediate regime is c� < T < vF �.

V. QUANTUM BOLTZMANN EQUATION

We now compute the hot-spot conductivity σQ appearing
in Eq. (1.4) in d = 2 using a quantum Boltzmann equation
approach [49–52]. We use the Keldysh formalism at one-loop
order to derive quantum kinetic equations for the fermions
and bosons in the presence of an applied electric field, and
then solve these equations in linear response to obtain the
contribution of the fermions near the hot spots to the dc

conductivity. Note that, unlike the previous sections, we are
not performing a systematic ε expansion here, but working
directly in d = 2 to minimize technical complexity.

As in Sec. IV, we will restrict our analysis to the case of
vanishing v and c, when the Fermi surfaces are nested, and
manipulations similar to Eq. (3.13) can be applied. With finite
v and c, as argued in Secs. III D and IV, we can estimate the
low-T hot-spot conductivity by limiting the kx integral along
the Fermi surface by an upper bound of order T 1/z.

A. Keldysh framework

We begin by expressing the action in Eq. (2.1) on the closed
time Keldysh contour [51,52]. Denoting with subscripts + the
forward part of the contour and with subscripts − the backward
part of the contour, we obtain for the free part of the action:

Sψ̄ψ =
∫ ∞

−∞
dt

∫
d2p

(2π )2

4∑
�=1

∑
m=±

∑
σ=↑,↓

× [
ψ̄

(m)
�,σ,+(t,p)

(
i∂t − em

� (p)
)
ψ

(m)
�,σ,+(t,p)

− ψ̄
(m)
�,σ,−(t,p)

(
i∂t − em

� (p)
)
ψ

(m)
�,σ,−(t,p)

]
,

S �φ �φ = 1

2

∫ ∞

−∞
dt

∫
d2q

(2π )2

[ �φ+(t, − q) · (− ∂2
t − ω2

q

) �φ+(t,q)

− �φ−(t, − q) · (− ∂2
t − ω2

q

) �φ−(t,q)
]
, (5.1)

with ωq = c|q|. The interacting part is given by

S �φψ̄ψ = −g

∫ ∞

−∞
dt

∫
d2r

4∑
�=1

∑
σ,σ ′=↑,↓

× [ �φ+(t,r) · ψ̄
(+)
�,σ,+(t,r)�τσ,σ ′ψ

(−)
�,σ ′,+(t,r)

− �φ−(t,r) · ψ̄
(+)
�,σ,−(t,x)�τσ,σ ′(t,r)ψ (−)

�,σ ′,−(t,r) + H.c.
]
.

(5.2)

We now perform the standard bosonic and fermionic Keldysh
rotations: for the real bosons, we use

�φ+ = �φc + �φq,

�φ− = �φc − �φq, (5.3)

and for the Grassmannian fermions, we have

ψ
(m)
�,σ,+ = 1√

2

(
ψ

(m)
�,σ,1 + ψ

(m)
�,σ,2

)
,

ψ̄
(m)
�,σ,+ = 1√

2

(
ψ̄

(m)
�,σ,1 + ψ̄

(m)
�,σ,2

)
,

(5.4)

ψ
(m)
�,σ,− = 1√

2

(
ψ

(m)
�,σ,1 − ψ

(m)
�,σ,2

)
,

ψ̄
(m)
�,σ,− = 1√

2

(
ψ̄

(m)
�,σ,2 − ψ̄

(m)
�,σ,1

)
.
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Hence we get for the free fermion part of the Lagrangian:

Lψ̄ψ =
4∑

�=1

∑
m=±

∑
σ=↑,↓

(
ψ̄

(m)
�,σ,1(t,p) ψ̄

(m)
�,σ,2(t,p)

)
×
([

GR�m
0

]−1
δK
f

0
[
GA�m

0

]−1

)(
ψ

(m)
�,σ,1(t,p)

ψ
(m)
�,σ,2(t,p)

)
, (5.5)

where the infinitesimal δK
f ensures convergence. Inverting this

matrix, we obtain the bare fermion Green’s function matrix

Ĝ�m
0 =

(
GR�m

0 GK�m
0

0 GA�m
0

)
. (5.6)

The bare retarded (R) and advanced (A) fermion Green’s
functions thus are

GR�m
0 (ω,p) = 1

ω + i0+ − em
� (p)

,

GA�m
0 (ω,p) = 1

ω − i0+ − em
� (p)

. (5.7)

For the free boson part of the Lagrangian, we have

L �φ �φ = 1

2
( �φc(−ω, − q) �φq(−ω, − q))

×
(

0
[
DA

0

]−1[
DR

0

]−1
δK
b

)( �φc(ω,q)
�φq(ω,q)

)
, (5.8)

where the infinitesimal δK
b again ensures convergence. After

performing the matrix inverse,

D̂0 =
(

DK
0 DR

0

DA
0 0

)
(5.9)

and the retarded and advanced boson Greens’ functions hence
are

DR
0 (ω,q) = 1

2

1

(ω + i0+)2 − ω2
q

,

DA
0 (ω,q) = 1

2

1

(ω − i0+)2 − ω2
q

. (5.10)

The interaction between fermions at the (�,+) and (�,−) hot
spots and the boson takes the following form:

L �φψ̄ψ = −g

4∑
�=1

∑
σ,σ ′=↑,↓

(ψ̄ (+)
�,σ,1(t,r) ψ̄

(+)
�,σ,2(t,r))

×
( �φc(t,r) · �τσσ ′ �φq(t,r) · �τσσ ′

�φq(t,r) · �τσσ ′ �φc(t,r) · �τσσ ′

)(
ψ

(−)
�,σ ′,1(t,r)

ψ
(−)
�,σ ′,2(t,r)

)
+ H.c. . (5.11)

This gives rise to the Feynman rules summarized graphically
in Fig. 5.

We adopt the shorthand convention of x = (t,r) and q =
(ω,q) to combine spatial and temporal components. We have
the relations

GK�m = GR�m ◦ Ff − Ff ◦ GA�m,

DK = DR ◦ Fb − Fb ◦ DA, (5.12)

where C = A ◦ B implies C(x,x ′) = ∫
dx1A(x,x1)B(x1,x

′)
and Ff,b are, respectively, the fermionic and bosonic distribu-
tion functions. The Dyson equations for the matrix fermion
and boson Green’s functions are([

Ĝ�m
0

]−1 − �̂�m
f

) ◦ Ĝ�m = 1,(
D̂−1

0 − �̂b

) ◦ D̂ = 1. (5.13)

The self-energy matrices �̂ have the same form as the inverse
Green’s function matrices in Eqs. (5.6) and (5.8), and hence
the different components of the self-energies are given by the
graphs in Fig. 5 at the one loop level. Defining central and
relative coordinates xc = (x + x ′)/2 and xr = (x − x ′)/2, we
can convert the two point functions G, D, F and � which are of
the form A(x,x ′) = A(xc + xr/2,xc − xr/2) into a momentum
representation via the Wigner transform

A(xc,p) =
∫

dxre
−ipxr A

(
xc + xr

2
,xc − xr

2

)
. (5.14)

Since we have spatial translational invariance in the linear
response limit a of weak applied electric field E, we can
further simplify A(xc,p) → A(t,p). We will also always
consider external particles to be on shell in the subsequent
computations of the collision integrals. We define an alternate
parametrization ff,b of the distribution functions Ff,b:

Ff (t,p,ω) = 1 − 2ff (t,p,ω),

Fb(t,q,ω) = 1 + 2fb(t,q,ω). (5.15)

In thermal equilibrium in the absence of any applied elec-
tric fields, we have ff,b(t,k,ω) = nf,b(ω), where nf,b(ω) =
1/(1 ± eω/T ) are the thermal Fermi and Bose functions,
respectively [52].

B. Kinetic equations for fermions and bosons

There are two coupled quantum kinetic equations [52,54],
one for the electrically charged fermions,(

∂

∂t
+ E · ∂

∂p

)
F�±

f (t,p) = I coll
f �±[Ff ,Fb](t,p), (5.16)

with the on-shell fermion distribution function F�±
f (t,p) =

Ff (t,p,e±
� (p)), and one for the neutral bosons,

∂

∂t
Fb(t,q,ωq) = I coll

b [Ff ,Fb](t,q). (5.17)

The fermion electric charge is set to 1 for simplicity. The two
collision integrals have the general form [52]

I coll
f �±[Ff ,Fb](t,p) = i�K�±

f (t,p,e�±(p)) + 2F�±
f (t,p)

× Im
[
�R�±

f (t,p,e�±(p))
]
,

I coll
b [Ff ,Fb](t,q) = i�K

b (t,q,ωq) + 2Fb(t,q,ωq)

× Im
[
�R

b (t,q,ωq)
]
. (5.18)

At the one-loop level, �
R,K�±
f,b are given by the graphs

in Fig. 5. The self-energies and collision integrals are
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(a)

(c)

(d)

(b)

FIG. 5. Feynman rules and one-loop graphs for the self-energies of the fermions and bosons in the Keldysh formalism. (a) Fermion
propagators. (b) Boson propagators. (c) Yukawa vertices. (d) Self energies. Here, x = (t,r), hot-spot indices (�,±) are suppressed and the
external legs on the self-energy diagrams are amputated. The external momentum and frequency on the self-energy diagrams is on shell. The
2-1 and q-q propagators are zero and hence are omitted.

computed in Appendix D. We obtain

I coll
f �±[ff ,fb](t,p) = 3g2

∫
d2q
2π

1

ωq

{
δ(e±

� (p) − e∓
� (p − q) − ωq)

[
f �±

f (t,p)
(
1 − f �∓

f (t,p − q)
)− f �∓

f (t,p − q)fb(t,q,ωq)

+ f �±
f (t,p)fb(t,q,ωq)

]− δ(e±
� (p) − e∓

� (p − q) + ωq)
[
f �±

f (t,p)
(
1 − f �−

f (t,p − q)
)

− f �∓
f (t,p − q)fb(t,q, − ωq) + f �±

f (t,p)fb(t,q, − ωq)
]}

, (5.19)

and

I coll
b [ff ,fb](t,q) = 4g2

∑
�

∫
d2k
2π

[
δ(e−

� (k) + ωq − e+
� (k + q))

(
f �+

f (t,k + q)
(
1 − f �−

f (t,k)
)

+ f �+
f (t,k + q)fb(t,q,ωq) − f �−

f (t,k)fb(t,q,ωq)) + (+ ↔ −)
]
, (5.20)

where we have expressed the collision integrals in the alternate
parametrization (5.15) of the distribution functions Ff,b and
f �±

f (t,p) = ff (t,p,e±
� (p)).

C. Ansatz and solution for conductivity

If we set the collision integrals to zero, the distribution
function for the neutral bosons unaffected by the applied

electric field remains fixed at its equilibrium value. For the
fermions, we have(

∂

∂t
+ E · ∂

∂p

)
f �±

f (t,p) = 0. (5.21)

To solve this in linear response, we switch from the time to the
frequency domain and parameterize the deviation of f �±

f (ω,k)
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from its equilibrium value by [54,55]

f �±
f (ω,p) = 2πδ(ω)nf (v±

� · p) + v±
� · E(ω)ϕ(v±

� · p,ω)nf

× (v±
� · p)(1 − nf (v±

� · p)). (5.22)

Inserting this parameterization into Eq. (5.21), we obtain the
collisionless ϕ function in linear response:

ϕnc(v±
� · p,ω) = 1/T

−iω + 0+ . (5.23)

We have the electrical current density

J(ω) = 2
4∑

�=1

∑
m=±

∫
d2p

(2π )2
vm

�

〈
ψ

m†
� ψm

�

〉
(ω,p)

= 2
4∑

�=1

∑
m=±

∫
d2p

(2π )2
vm

� f �m
f (ω,p), (5.24)

and hence obtain the linear response conductivity

σij (ω) = δJi(ω)

δEj (ω)
= 2

4∑
�=1

∑
m=±

∫
d2p

(2π )2

(
vm

� · êi

)(
vm

� · êj

)
ϕ

× (v±
� · p,ω)nf (v±

� · p)(1 − nf (v±
� · p)). (5.25)

It is easily seen that if the ϕnc is used in the above expression,
we obtain a temperature independent collisionless conductivity
that has a delta function in ω in its real part. In fact, for the
Sur-Lee embedding in higher dimensions, we have for the
collisionless conductivity

Re
[
σ nc

xx(ω)
] = Re

[
σ nc

yy (ω)
] ∝

∫
dkxT

1−εδ(ω), (5.26)

which is derived in Appendix D; assuming the kx integral
yields a factor of the cutoff �, this yields a conductivity with
the hyperscaling violating scaling dimension in Eq. (3.4), as
expected for free fermions. Once collisions of the fermions
with the bosons are included, these delta functions are
broadened, and the kx integral has to be performed with more
care, as in Sec. III D.

Returning to d = 2, we find that, to linear order in E,
the bosons still remain in equilibrium and their distribu-
tion function is hence given by the thermal Bose function
fb(t,k,ωk) = nb(ωk) if the parameterization (5.22) is used
(see Appendix D for a derivation of this fact). Intuitively,
this is because the linearly dispersing hot-spot model exhibits
particle-hole symmetry, making the charge carrying modes
excited by the applied electric field particle-hole pairs with the
particle and hole moving in opposite directions. The bosons
then do not absorb any momentum that they have to dissipate
when the particle-hole pairs recombine and hence remain in
equilibrium. This behavior is also present for quantum critical
transport in graphene [54].

We now consider the system to be at the fixed point
discussed previously, in the spirit of Ref. [49]. We take the
applied electric field to be in the y direction (E = Ey êy);
since v → 0 at the fixed point, only the � = 1 and � = 3
pairs of hot spots contribute significant response in this case.
(For the electric field in the x direction we obtain the same
response with the � = 4 and � = 2 hot-spot pairs, respectively.)
We insert the f �±

f functions parameterized by Eq. (5.22)
and the thermal Bose function for fb into the frequency
domain version of the fermion kinetic equation Eq. (5.16),
and linearize in Ey to get the following integral equation
for ϕ in the v → 0 limit (considering the � = 1 pair of
hot spots):

− 1

2

3g2

2π

∫
d2q
c|q| {δ(2py − qy − c|q|)[ϕ(py,ω)nf (py)(1 − nf (py))(1 − nf (qy − py) + nb(c|q|))

+ ϕ(qy − py,ω)nf (qy − py)(1 − nf (qy − py))(nf (py) + nb(c|q|))]
− δ(2py − qy + c|q|)[ϕ(py,ω)nf (py)(1 − nf (py))(1 − nf (qy − py) + nb(−c|q|))
+ ϕ(qy − py,ω)nf (qy − py)(1 − nf (qy − py))(nf (py) + nb(−c|q|))]}

= (−iω + 0+)ϕ(py,ω)nf (py)(1 − nf (py)) − 1

T
nf (py)(1 − nf (py)). (5.27)

In the collision term, the boson momentum parallel to the Fermi surface, qx , is limited by the Bose function to a value of order
T/c. Integrating out qx , we obtain

3g2

2πc

[
C0(py)ϕ(py,ω) + C1[ϕ,py]

nf (py)(1 − nf (py))

]
= (−iω + 0+)ϕ(py,ω) − 1

T
. (5.28)

where

C0(py) = 1

2

∫ ∞

−∞
dqy

⎡⎣sgn(qy − 2py)
�
(
(qy − 2py)2 − c2q2

y

)√
(qy − 2py)2 − c2q2

y

(1 − nf (qy − py) + nb(2py − qy))

⎤⎦,

C1[ϕ,py] = 1

2

∫ ∞

−∞
dqy

[
sgn(qy − 2py)

�
(
(qy − 2py)2 − c2q2

y

)√
(qy − 2py)2 − c2q2

y

ϕ(qy − py,ω)nf (qy − py)

× (1 − nf (qy − py))(nf (py) + nb(2py − qy))

]
. (5.29)
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This equation may be solved iteratively by choosing the trial
solution

ϕ1(py,ω) = −1/T

3g2

2πc
C0(py) + iω − 0+

(5.30)

and iterating(
3g2

2πc
C0(py) + iω − 0+

)
ϕj+1(py,ω)

= − 1

T
− 3g2

2πc

C1[ϕj ,py]

nf (py)(1 − nf (py))
, (5.31)

for j > 1 [note that ϕ1 in Eq. (5.30) may be derived from
inserting ϕ0 = 0 into Eq. (5.31)]. The integral for C1 may
be evaluated numerically by sampling ϕ at a discrete set
of points and then constructing an interpolating function
through these points. The exponential decay of nf,b at large
values of their arguments ensures convergence of the integrals
and suppresses errors arising from the extrapolation of the
interpolating function to large arguments. The trial solution ϕ1

is actually fairly accurate, and this algorithm converges in a
small number of iterations.

In the limit of c → 0, which also occurs at the fixed point,
we see that C0 ∼ 1/c because the singularity in nb(2py − qy)
as 2py − qy → 0 is cut off by c in the � function in Eq. (5.28);
this also occurs in the integral for C1 in (5.29). Hence, in this
limit, we have for ω → 0,

ϕ1(py,0) ≈ c2

g2T
χ

(
py

T

)
(5.32)

for some function χ . It can be seen from Eq. (5.31), and
also established numerically, that given the above form for
ϕ1, all ϕj>1 will also be of the same form. Numerically, we
find that χ is an even function and χ (0) = 0. Since χ is
an even function, it is easy to show that the (1,−) hot spot
contributes the same value to the conductivity as the (1,+)
hot spot as it is related by the transformation of py → −py

in the above computation. Similarly, the (3,±) hot spots also
produce identical contributions equal to those from the (1,±)
hot spots. Hence, using Eq. (5.25),

σyy(0) ≈ 8
c2

g2T

∫
d2p

(2π )2
χ

(
py

T

)
nf (py)(1 − nf (py))

∼
∫

dkx

c2

g2
. (5.33)

In the last step, we have changed the fermion momentum no-
tation from px to kx for compatibility with earlier discussions.
It is also easily seen that σxx = σyy if we repeat the above
analysis for the � = 2 and � = 4 hot spots instead, and that
σxy = σyx = 0. So Eq. (5.33) is the estimate by the Boltzmann
equation of the value of the conductivity σQ in Eq. (1.4).

We now need to determine the T dependence implied by
Eq. (5.33) using scaling ideas. Under the renormalization
group flow, we expect that the coupling λ = g2/v flows to
a fixed point value. While this fixed point can be determined
precisely under an ε expansion, we are only able to make
an estimate in the present computation carried out directly
in d = 2, where g2/v is a dimensionful quantity of order
με . The natural scale for the momentum μ is set by the

temperature, and so μ ∼ T 1/z. So in d = 2, we can expect that
g2/v ∼ T 1/z. Ignoring the logarithmic factors, we therefore
have the estimate

σQ ∼
∫

dkxT
−1/z. (5.34)

Finally, as in Secs. III and IV, we bound the kx integral by
T 1/z to conclude that σQ ∼ constant, as claimed in Sec. I.
And also as in previous sections, for a small bare c, we will
have σQ ∼ �T −1/z in the intermediate T regime c� < T < �

(and as noted at the end of Sec. IV, after restoring units, this
condition is c� < T < vF �).

VI. CONCLUSIONS

We have computed the critical conductivity and free energy
at the onset of spin density wave order in metals in d = 2 using
the ε expansion introduced by Sur and Lee [36]. The advantage
of this method is that the ε expansion appears to be valid
systematically order-by-order in ε, and there is no breakdown
in the renormalization group flows. The ε expansion exhibits
a logarithmic flow of the velocity v to zero at large-length
scales, and a dynamic nesting of the Fermi surfaces. We found
that hyperscaling was obeyed, with the hot-spot contributions
scaling as in Eq. (1.1).

It is interesting to compare these results with a previous
two-loop, large N renormalization group analysis of the
spin-density wave critical point in Ref. [33], which also found
a logarithmic flow of v to zero at low energies. However,
it was also found that the large N expansion broke down
at sufficiently large scales. The same large N framework
was used to compute the optical conductivity by Hartnoll
et al. [31], and it was found that hot-spot contribution was
σ (ω) ∼ constant in the limit of vanishing v, as expected under
hyperscaling in d = 2.

This similarity between the large N and ε expansion
indicates that the terminology “quasilocal” for the latter
expansion [36] should be used with some care, and we have
avoided it here. The basic scaling properties are similar to
those of a standard, spatially-isotropic, critical point obeying
hyperscaling with a finite dynamic critical exponent z given
by Eq. (2.7). The deviations from strong scaling arise only in
logarithmic corrections, which are linked, ultimately, to the
asymptotic nesting of the Fermi surfaces [32,33] in Fig. 1(b).

We also carried out computations for the free energy density
at nonzero T using the ε expansion. Again our results were
in excellent accord with hyperscaling expectations. Both the
fermionic excitations at the hot-spot and the collective bosonic
fluctuations scaled with the same power of T , as shown in
Sec. IV.

There was, however, for the somewhat unnatural case of a
sufficiently small bare boson velocity, an intermediate energy
regime where hyperscaling was violated. This was discussed in
Sec. III for the optical conductivity, and in Sec. IV for the free
energy. The optical conductivity results of Refs. [34,35] are
similar to this hyperscaling violating regime, and our analysis
indicates that their results do not apply when the bare boson
velocity is not small.

Finally, in Sec. V, we addressed the question of the dc
conductivity. Because of the constraints of total momentum
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conservation, such a computation must be carried out [5,7]
in the context of the expression in Eq. (1.4), which separates
a quantum critical conductivity σQ from that associated with
“drag” from the conserved momentum. We estimated σQ in
Sec. V and found a result that scaled as T 0, up to logarithms.
Thus the σQ contribution to Eq. (1.5), in the theory of the spin
density wave critical point, is likely not the mechanism of the
strange metal linear resistivity.

The momentum-drag term in Eq. (1.5) was considered
in a previous work by two of us [11] for the spin density
wave critical point: there we found that quenched disorder,
which changes the local critical coupling, did lead to a
linear-in-T resistivity. This conclusion is not modified by the
considerations of the present paper.
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APPENDIX A: COMPUTATION OF 〈Jy Jy〉
All computations in this appendix are symbolically described for the n = 1 fermions, with the identical contributions for

n = 3 accounted for by doubling the overall prefactors. Momentum integrals in dimensional regularization are performed using
the standard identity

∫
ddk

ka

(k2 + �)b
= πd/2

	(d/2)

	((a + d)/2)	(b − (a + d)/2)

	(b)
�(a+d)/2−b. (A1)

1. Free fermion contribution to 〈Jy Jy〉
The free fermion contribution to 〈JyJy〉 is given by Fig. 2(a) and is straightforwardly computed in dimensional regularization:

〈JyJy〉free(ω) − 2(1 + v2)NcNf

∫
d2k

(2π )2

d2−εK
(2π )2−ε

Tr

[
iγd−1(−i)

	 · K + γd−1ε1(k)

K2 + ε1(k)2
iγd−1(−i)

	 · (K + W) + γd−1ε1(k)

(K + W)2 + ε1(k)2

]
= −4NcNf

√
1 + v2

∫
dk‖

∫ 1

0
dx

∫
dε1(k)

(2π )2

d2−εK
(2π )2−ε

−K · (K + W) + ε1(k)2

[(K + xW)2 + ε1(k)2 + x(1 − x)W2]2

= −NcNf

2π

√
1 + v2

∫
dk‖

∫ 1

0
dx

∫
d2−εK

(2π )2−ε

{ −K2 + W2x(1 − x)

[K2 + x(1 − x)W2]3/2
+ 1

[K2 + x(1 − x)W2]1/2

}
= − NcNf π1−ε/2

π	(1 − ε/2)(2π )2−ε

√
1 + v2

∫
dk‖ω1−ε

∫ 1

0
dx

[
	(1 − ε/2)	(ε/2 − 1/2)

2	(1/2)
(x(1 − x))1/2−ε/2

+	(1 − ε/2)	(1/2 + ε/2)

2	(3/2)
(x(1 − x))1/2−ε/2 − 	(2 − ε/2)	(−1/2 + ε/2)

2	(3/2)
(x(1 − x))1/2−ε/2

]
= −

√
1 + v2

∫
dk‖NcNf ω1−ε

(
1

16π
+ O(ε)

)
, (A2)

where k‖ is the component of k along the Fermi surface.

2. Fermion self-energy correction to 〈Jy Jy〉
In this section, we will freely take the limit of vanishing velocities associated with Eq. (3.13). The extension to the case of

finite velocities will be presented in Appendix C.
This self-energy correction is given by Fig. 2(b) and a partner diagram with the boson on the lower fermion line. The sum of

the two gives

〈JyJy〉SE(ω) = 4iNf

∫
d2k

(2π )2

d2−εK
(2π )2−ε

Tr

[
γd−1

	 · K + γd−1ky

K2 + k2
y

�1(K,k)
	 · K + γd−1ky

K2 + k2
y

γd−1
	 · (K + W) + γd−1ky

(K + W)2 + k2
y

]
. (A3)
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We first compute the fermion self-energy, given by Fig. 3(a):

�1(K,k) = g2με

Nf

N2
c −1∑

j=1

(τ j τ j )
∫

d2q
(2π )2

d2−εQ
(2π )2−ε

iγd−1(−i)
	 · (K + Q) − γd−1(qy + ky)

(K + Q)2 + (qy + ky)2
iγd−1

1

Q2 + c2q2

= i
g2με

Nf

N2
c −1∑

j=1

(τ j τ j )
∫ 1

0
dx

∫
d2q

(2π )2

d2−εQ
(2π )2−ε

−	 · K(1 − x) − γd−1(qy + ky)

[Q2 + x(1 − x)K2 + c2q2(1 − x) + x(qy + ky)2]2

= i
π1−ε/2	(1 + ε/2)

(2π )2−ε

g2με

Nf

N2
c −1∑

j=1

(τ j τ j )
∫ 1

0
dx

∫
d2q

(2π )2

−	 · K(1 − x) − γd−1(qy + ky)

[x(1 − x)K2 + c2q2(1 − x) + x(qy + ky)2]1+ε/2

= i
π3/2−ε/2	(1/2 + ε/2)

(2π )4−ε

g2με

cNf

N2
c −1∑

j=1

(τ j τ j )
∫ 1

0
dx

∫
dqy√
1 − x

−	 · K(1 − x) − γd−1(qy + ky)

[x(1 − x)K2 + x(qy + ky)2]1/2+ε/2
, (A4)

where in the last step we integrated out qx and then sent c → 0. After shifting qy by ky , we integrate it out to get

�1(K,k) = −i
π2−ε/2	(ε/2)

(2π )4−ε

g2με

cNf

N2
c −1∑

j=1

(τ j τ j )
∫ 1

0
dx(x(1 − x))−ε/2

√
1 − x

x

	 · K
[K2]ε/2

. (A5)

Inserting this into the expression for 〈JyJy〉SE,

〈JyJy〉SE(ω) = 16
(
1 − N2

c

)π5/2−ε/2	(ε/2)	(1/2 − ε/2)

21−ε(2π )8−2ε	(1 − ε/2)

g2με

c

∫
dkx

∫
dkyd

2−εK
K4 + W · KK2 − k2

y(3K2 + K · W)(
K2 + k2

y

)2(
(K + W)2 + k2

y

)
(K2)ε/2

= 32
(
1 − N2

c

)π5/2−ε/2	(ε/2)	(1/2 − ε/2)

21−ε(2π )8−2ε	(1 − ε/2)

g2με

c

∫
dkx

∫ 1

0
dy(1 − y)

×
∫

dky

d2−εK
(K2)ε/2

K4 + W · KK2 − k2
y(3K2 + K · W)[

(K + yW)2 + W2y(1 − y) + k2
y

]3

= 4
(
1 − N2

c

)π7/2−ε/2	(ε/2)	(1/2 − ε/2)

21−ε(2π )8−2ε	(1 − ε/2)

g2με

c

∫
dkx

∫ 1

0
dy(1 − y)

× d2−εK
(K2)ε/2

{
3

K4 + W · KK2

[(K + yW)2 + W2y(1 − y)]5/2
− 3K2 + K · W

[(K + yW)2 + W2y(1 − y)]3/2

}
= 4

(
1 − N2

c

) π7/2−ε/2	(1/2 − ε/2)

21−ε(2π )8−2ε	(1 − ε/2)

g2με

c

∫
dkx

∫ 1

0
dz

∫ 1

0
dy(1 − y)d2−εK

×
{

3
K4 + W · KK2

[(K + yzW)2 + y2z(1 − z)W2 + W2yz(1 − y)]5/2+ε/2

	(5/2 + ε/2)

	(5/2)
z3/2(1 − z)ε/2−1

− 3K2 + K · W
[(K + yzW)2 + y2z(1 − z)W2 + W2yz(1 − y)]3/2+ε/2

	(3/2 + ε/2)

	(3/2)
z1/2(1 − z)ε/2−1

}
. (A6)

Now we shift K → K − yzW. This leads to the replacements ((K · W)2 ≡ K2W2/(2 − ε) as far as integration over K is
concerned)

K4 + W · KK2 → K4 + 4K2W2y2z2

2 − ε
+ 2K2W2y2z2 − 2K2W2yz

2 − ε
− K2W2yz + W4y4z4 − W4y3z3,

K2 → K2 + W2y2z2, K · W → −yzW2. (A7)

Then, integrating out K,

〈JyJy〉SE(ω) = 4
(
1 − N2

c

) π9/2−ε	(1/2 − ε/2)

2−ε(2π )8−2ε	(1 − ε/2)2

g2με

c
ω1−2ε

∫
dkx

∫ 1

0
dz

∫ 1

0
dy

×
{

(1 − y)(1 − z)ε/2−1

[
− (3y2z2 − yz)

(
	
(
ε + 1

2

)
	
(
1 − ε

2

))
(y2(1 − z)z + (1 − y)yz)−ε−1/2z1/2

2	
(

3
2

)
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+ 3yz
(
	
(
ε + 1

2

)
	
(
2 − ε

2

))(
yz
(

4
2−ε

+ 2
)− (

2
2−ε

+ 1
))

(y2(1 − z)z + (1 − y)yz)−ε−1/2z3/2

2	
(

5
2

)
− 3

(
	
(
ε − 1

2

)
	
(
2 − ε

2

))
(y2(1 − z)z + (1 − y)yz)1/2−εz1/2

2	
(

3
2

)
+ 3

(
	
(
ε − 1

2

)
	
(
3 − ε

2

))
(y2(1 − z)z + (1 − y)yz)1/2−εz3/2

2	
(

5
2

)
+ 3y3z3(yz − 1)

(
	
(
ε + 3

2

)
	
(
1 − ε

2

))
(y2(1 − z)z + (1 − y)yz)−ε−3/2z3/2

2	
(

5
2

) ]}
. (A8)

To leading order in ε, we can take only the (1 − z)ε/2−1 term in the above integrand for its z dependence and set z = 1 elsewhere
(which produces 2/ε for the integral over z). This agrees with numerically evaluating the y and z integrals. We thus get

〈JyJy〉SE(ω) =
∫

dkx

(
1 − N2

c

)
32π3ε

g2με

c
ω1−2ε

∫ 1

0
dyy(6y − 5)

√
1 − y

y

=
∫

dkx

(
N2

c − 1
)g2με

c
ω1−2ε

(
1

128π2ε
+ O(1)

)
. (A9)

3. Vertex correction to 〈Jy Jy〉
As in Appendix A2, here too we will freely take the limit of vanishing velocities associated with Eq. (3.13). The case of finite

velocities will be presented in Appendix C.
This correction is then given by Fig. 2(c):

〈JyJy〉vert(ω) = 2iNf

∫
d2k

(2π )2

∫
d2−εK

(2π )2−ε
Tr

[
γd−1

	 · K + γd−1ky

K2 + k2
y

�3(K,k,W)
	 · (K + W) + γd−1ky

(K + W)2 + k2
y

]
. (A10)

We again first compute the current (Jy) vertex, given by Fig. 3(b):

�3(K,k,W) = g2με

Nf

N2
c −1∑

j=1

(τ j τ j )
∫

d2q
(2π )2

d2−εQ
(2π )2−ε

iγd−1

× (−i)
	 · (K + Q) − γd−1(qy + ky)

(K + Q)2 + (qy + ky)2
(−iγd−1)(−i)

	 · (K + Q + W) − γd−1(qy + ky)

(K + Q + W)2 + (qy + ky)2
iγd−1

1

Q2 + c2q2

= −2i
g2με

Nf

N2
c −1∑

j=1

(τ j τ j )
∫ 1

0
dx

∫ 1−x

0
dy

∫
d2q

(2π )2

d2−εQ
(2π )2−ε

[−(K + Q) · (K + Q + W) + (qy + ky)2

+ 2	 · (K + Q)γd−1(qy + ky) + 	 · Wγd−1(qy + ky) − 	 · (K̄ + Q̄)	 · W]

× [(Q + (x + y)K + yW)2 + W2y(1 − y) + (1 − (x + y))(K2(x + y) + 2K · Wy)

+ (x + y)(qy + ky)2 + (1 − (x + y))q2c2]−3γd−1

= −i
g2μεπ3/2−ε/2

cNf (2π )4−ε	(1 − ε/2)

N2
c −1∑

j=1

(τ j τ j )
∫ 1

0
dx

∫ 1−x

0
dy

1√
(1 − (x + y))

×
∫

dqy

{
[(ky + qy)2 − (K(x + y − 1) + W(y − 1)) · (K(x + y − 1) + Wy)

+ 2	 · (K(1 − (x + y)) − Wy)γd−1(ky + qy) − 	̄ · K̄(1 − (x + y))	 · W + 	 · Wγd−1(ky + qy)]

× 	(3/2 + ε/2)	(1 − ε/2)�−(3/2+ε/2)
1 − 	(1/2 + ε/2)	(2 − ε/2)�−(1/2+ε/2)

1

}
γd−1, (A11)

where we again integrated out qx and then sent c → 0 in the last step of the above, and

�1 = W2y(1 − y) + (1 − (x + y))(K2(x + y) + 2W · Ky) + (x + y)(ky + qy)2.
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Proceeding,

�3(K,k,W) = − i
g2μεπ2−ε/2

cNf (2π )4−ε	(1 − ε/2)

N2
c −1∑

j=1

(τ j τ j )
∫ 1

0
dx

∫ 1−x

0
dy

1√
(1 − (x + y))(x + y)

×
{

[−(K(x + y − 1) + W(y − 1)) · (K(x + y − 1) + Wy) − 	̄ · K̄(1 − (x + y))	 · W]

× 	(1 − ε/2)	(1 + ε/2)

�
(1+ε/2)
2

− 	(ε/2)

�
ε/2
2

(
	(2 − ε/2) − 	(1 − ε/2)

2(x + y)

)}
γd−1, (A12)

where

�2 = W2y(1 − y) + (1 − (x + y))(K2(x + y) + 2W · Ky). (A13)

An important feature of the above computation is that because∫ 1

0
dx

∫ 1−x

0
dy

2(x + y) − 1

(x + y)3/2
√

1 − (x + y)
= 0, (A14)

the coefficient of the 1/ε pole (i.e., the coefficient of 	(ε/2)) in � vanishes when ε → 0. This eventually leads to the lack of a
1/ε pole in 〈JyJy〉vert, and hence the correction to scaling of 〈JyJy〉 arises solely from the self-energy graphs.

Taking the expression for the current vertex and inserting it into the one for 〈JyJy〉vert, we get

〈JyJy〉vert(ω) =4g2μεπ3−ε/2
(
N2

c − 1
)

c(2π )8−2ε	(1 − ε/2)

∫
dkx

∫
d2−εK

∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0

dy√
(1 − (x + y))((x + y)

×
{[

−(K(x + y − 1)+W(y − 1)) · (K(x + y − 1) + Wy)

(
1

�
1/2
3

− K · (K + W)

�
3/2
3

)
+ K̄2W2(1 − (x + y))

�
3/2
3

]

× 	(1 − ε/2)	(1 + ε/2)

�
(1+ε/2)
2

− 	(ε/2)

�
ε/2
2

(
	(2 − ε/2) − 	(1 − ε/2)

2(x + y)

)(
1

�
1/2
3

− K · (K + W)

�
3/2
3

)}
, (A15)

where now

�2 = W2y(1 − y) + (1 − (x + y))(K2(x + y) + 2W · Ky),

�3 = (K + zW)2 + z(1 − z)W2. (A16)

We combine denominators using

1

�s
2�

b
3

= 	(s + b)

	(s)	(b)

∫ 1

0
da

as−1(1 − a)b−1

[a�2 + (1 − a)�3]s+b
, (A17)

and the denominator square completion is

a�2 + (1 − a)�3 = (a(x + y)(1 − (x + y)) + (1 − a))

[
W(ay(1 − (x + y)) + (1 − a)z)

a(x + y)(1 − (x + y)) + (1 − a)
+ K

]2

+ W2

{
− [ay(1 − (x + y)) + (1 − a)z]2

a(x + y)(1 − (x + y)) + (1 − a)
+ a(1 − y)y + (1 − a)z

}
. (A18)

Defining

f1 = a(x + y)(1 − (x + y)) + (1 − a),

f = 1

f1
[ay(1 − (x + y)) + (1 − a)z],

f2 = a(1 − y)y + (1 − a)z − f1f
2, (A19)

we can process the numerators and write down the final expression:

〈JyJy〉vert(ω) = 8g2μεπ4−ε
(
N2

c − 1
)

c(2π )8−2ε	(1 − ε/2)2
ω1−2ε

∫
dkx

∫ 1

0
da

∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy(T1 + T2 + T3 + T4), (A20)
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where

T1 =
√

1 − aaε/2f
ε
2 −3

1 f
−ε− 3

2
2√−(x + y − 1)(x + y)π

	
(

1 − ε

2

){ 1

ε − 2
f1f2	

(
2 − ε

2

)
	

(
ε + 1

2

)
[2f 2(ε − 4)(x + y − 1)2

− f (ε − 4)(x + 3y − 2)(x + y − 1) − 2xy + x + (y − 1)(y(ε − 4) + 1) − (1 − (x + y))(ε − 1)]

+ (f −1)ff 2
1 	
(

1− ε

2

)
	

(
ε+ 3

2

)
(f (x + y − 1) − y)(f (x + y − 1) − y + 1) + f 2

2 (x + y − 1)2	
(

3 − ε

2

)
	

(
ε − 1

2

)}
,

T2 = aε/2f
ε
2 −2

1 f
−ε− 1

2
2√

1 − a
√−(x + y − 1))(x + y)π

	
(

1 − ε

2

)[
− f1	

(
1 − ε

2

)
	

(
ε + 1

2

)
(f (x + y − 1) − y)

× (f (x + y − 1) − y + 1) − f2(x + y − 1)2	
(

2 − ε

2

)
	

(
ε − 1

2

)]
,

T3 =
√

1 − aa
ε
2 −1f

ε
2 −2

1 f
−ε− 1

2
2

4
√

π
√−x − y + 1(x + y)3/2

	
(

1 − ε

2

)2
	

(
ε − 1

2

)
(x(ε − 2) + y(ε − 2) + 1)

× (f 2(f1 − 2f1ε) + ff1(2ε − 1) + f2(ε − 2)),

T4 = a
ε
2 −1f

ε
2 −1

1 f
1
2 −ε

2

4
√

1 − a
√

π (−x − y + 1)(x + y)3/2
	
(

1 − ε

2

)2
	

(
ε − 1

2

)
(x(ε − 2) + y(ε − 2) + 1). (A21)

This multidimensional integral over four parameters is finite in the limit of ε → 0 and can be done numerically. We first integrate
over x and y: the resulting function of a and z has integrable singularities in the limits of a → 1 and a → 0, which can be
handled by numerical integration using an adaptive grid. The final result is

〈JyJy〉vert(ω) =
∫

dkx

g2με
(
N2

c − 1
)

32π4c
ω1−2ε(α0 + O(ε)), (A22)

where α0 ≈ 1.1 is a finite numerical constant.

APPENDIX B: FREE ENERGY COMPUTATIONS

As in the previous appendix, we will freely take the limit of vanishing velocities associated with Eq. (3.13) here as well to
compute the correction to the fermion free energy:

Ff b = 1

2
Tr

⎡⎣N2
c −1∑

j=1

τ j τ j

⎤⎦∫ d2qd1−εQ̄
(2π )3−ε

T
∑
ωq

1

Q̄2 + c2|q|2 + ω2
q

[(�(q,T ) − �(q,0)) + �(q,0)]. (B1)

Where �(q,T ) is the fermion RPA bubble at external momentum and frequency given by q evaluated at temperature T . As
described in the main text, we evaluate the finite temperature part of the bubble at v = 0 to renormalize the fermion free energy
and the zero temperature part at v �= 0 to renormalize the boson free energy. To evaluate the frequency summations, we use the
following zeta-function regularization identities:

T
∑
ωq

1

|ωq |s = 2
T 1−s

(2π )s
ζ (s), T

∑
ωk

1

|ωk|s = 2
T 1−s

(2π )s
ζ

(
s,

1

2

)
. (B2)

Where ωq is a bosonic Matsubara frequency and ωk is a fermionic Matsubara frequency. We then have

�(q,T ) − �(q,0) = − 4g2
∫

dkx

2π

∫
dkyd

1−εK̄
(2π )2−ε

(
T
∑
ωk

−
∫

dωk

2π

)
Tr[iγd−1G(k)iγd−1G(k + q)]

= − 4g2
∫

dkx

∫
dkyd

1−εK̄
(2π )3−ε

(
T
∑
ωk

−
∫

dωk

2π

)[
Q̄2 + q2

y + ω2
q(

K̄2 + k2
y + ω2

k

)
((K̄ + Q̄)2 + (ky + qy)2 + (ωk + ωq)2)

− 1

K̄2 + k2
y + ω2

k

− 1

(K̄ + Q̄)2 + (ky + qy)2 + (ωk + ωq)2

]
. (B3)
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The last two terms in the square brackets yield identical contributions, because the q in the last term can be shifted out. Thus

�(q,T ) − �(q,0) = − 4g2
∫

dkx

∫
dkyd

1−εK̄
(2π )3−ε

(
T
∑
ωk

−
∫

dωk

2π

)[
Q̄2 + q2

y + ω2
q(

K̄2 + k2
y + ω2

k

)
((K̄ + Q̄)2 + (ky + qy)2 + (ωk + ωq)2)

]

+ 8g2
∫

dkx

∫
dkyd

1−εK̄
(2π )3−ε

(
T
∑
ωk

−
∫

dωk

2π

)
1

K̄2 + k2
y + ω2

k

. (B4)

We evaluate the second term to leading order in ε in the above using dimensional regularization for the momentum integral and
zeta function regularization for the frequency sum:

8g2
∫

dkx

∫
dkyd

1−εK̄
(2π )3−ε

(
T
∑
ωk

−
∫

dωk

2π

)
1

K̄2 + k2
y + ω2

k

= 8g2
∫

dkx

∫
dkyd

1−εK̄
(2π )3−ε

T
∑
ωk

1

K̄2 + k2
y + ω2

k

= 8πg2

(2π )2ε

∫
dkxT

∑
ωk

1

|ωk|ε = −
∫

dkx

8g2T 1−ε ln 2

(2π )2
, (B5)

where we have used the fact that scaleless integrals vanish in dimensional regularization. Thus

�(q,T ) − �(q,0) = 4g2
∫

dkx

∫
dkyd

1−εK̄
(2π )3−ε

(∫
dωk

2π
− T

∑
ωk

)[
Q̄2 + q2

y + ω2
q(

K̄2 + k2
y + ω2

k

)
((K̄ + Q̄)2 + (ky + qy)2 + (ωk + ωq)2)

]

−
∫

dkx

8g2T 1−ε ln 2

(2π )2
, (B6)

To evaluate the first term, we introduce a Feynman parameter y to combine the denominators. Doing the k momentum integral
and ωk frequency summation (integral for the T = 0 part), we have, to leading order in ε:

�(q,T ) − �(q,0) = − g2

8π2

∫
dkx

∫ 1

0
dy[t(y,q̃2,ωq,ε) − 2π ]

(
q̃2 + ω2

q

)1/2−ε/2 −
∫

dkx

8g2T 1−ε ln 2

(2π )2
. (B7)

Where q̃ = (Q̄2 + q2
y )1/2. We determine the following asymptotic expansion numerically:

∫ 1

0
dyt(y,q̃2,ωq,ε) =

(
2π − T 1−ε 16 ln 2(

q̃2 + ω2
q

)1/2−ε/2 + 48ζ (3)T 3−ε
2ω2

q − q̃2(
q̃2 + ω2

q

)5/2−ε/2
+ O

(
T 5−ε

q̃5−ε,ω5−ε
q

)
+ . . .

)
(B8)

Simple power counting dictates that the higher terms in the above asymptotic expansion can not produce any logarithmic UV
divergences in the final two-loop graph because they fall off too fast in q. Thus retaining only terms that will survive and
contribute to the pole in the final two-loop integral,

�(q,T ) − �(q,0) = − g2

8π2

∫
dkx

(
48ζ (3)T 3−ε

2ω2
q − q̃2(

q̃2 + ω2
q

)2

)
. (B9)

We evaluate �(q,0) using dimensional regularization at finite v to get, to leading order in ε:

�(q,0) = −4g2
∫

d2k
(2π )2

d2−εK
(2π )2−ε

Tr[iγd−1Gn(K,k)iγd−1Gn̄(K + Q,k + q)]

= −4g2

v

∫
dεn(k)dεn̄(k)

(2π )2

d2−εK
(2π )2−ε

−K · (K + Q) + εn(k)εn̄(k + q)

[K2 + εn(k)2][(K + Q)2 + εn̄(k + q)2]

= −g2

v

∫
d2−εK

(2π )2−ε

−K · (K + Q)

[K2]1/2[(K + Q)2]1/2

= −g2

v

Q2−ε

8πε
= −g2

v

(
Q̄

2 + ω2
q

)1−ε/2

8πε
, (B10)
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where the last integral was performed using Feynman parametrization. Inserting the expressions for �(q,T ) − �(q,0) and
�(q,0) into Eq. (B1), we get, using dimensional regularization for the q momentum integrals,

Ff b = F
(1)
f b + F

(2)
f b ,F

(1)
f b = (

N2
c − 1

) ∫ d2qd1−εQ̄
(2π )3−ε

T
∑
ωq

�(q,T ) − �(q,0)

Q̄2 + c2|q|2 + ω2
q

= (
1 − N2

c

)
T 3−ε 6ζ (3)g2

πc

∫
dkx

∫
dqyd

1−εQ̄
(2π )3−ε

T
∑
ωq

2ω2
q − q̃2(

q̃2 + ω2
q

)2
√

Q̄2 + ω2
q

. (B11)

Where we integrated out qx and then sent c → 0 in the last step of the above. Doing the remaining integrals first over qy and
then Q̄, we get, to leading order in ε:

F
(1)
f b = 3ζ (3)g2

(
N2

c − 1
)
T 3−ε

16cπ2

∫
dkxT

∑
ωq

1

|ωq |1+ε
=
∫

dkx

3ζ (3)g2
(
N2

c − 1
)
T 3−2ε

16cπ3ε
. (B12)

The other part gives

F
(2)
f b = (

N2
c − 1

) ∫ d2qd1−εQ̄
(2π )3−ε

T
∑
ωq

�(q,0)

Q̄2 + c2|q|2 + ω2
q

= (
1 − N2

c

) g2

8πvε

∫
d2qd1−εQ̄

(2π )3−ε
T
∑
ωq

(
Q̄2 + ω2

q

)1−ε/2

Q̄2 + c2|q|2 + ω2
q

. (B13)

Integrating first over Q̄ and then over q using the dimensional regularization, we get, to leading order in ε,

F
(2)
f b = (

N2
c − 1

) g2π

6vc2ε
T
∑
ωq

1

|ωq |−(3−2ε)
= (

N2
c − 1

) g2π

360vc2ε
T 4−2ε . (B14)

APPENDIX C: FINITE v AND c

In this appendix, we describe the breakdown of the results derived in the previous appendices when we do not have v,c → 0.
We illustrate this by first computing the self-energy correction to 〈JyJy〉 for finite v and c; similar problems occur in the
computations of the fermion free energy. The fermion self-energy for v,c �= 0 is given by [36]

�1(K,k) = −i
π2−ε/2	(ε/2)

(2π )4−ε

g2με

cNf

∫ 1

0
dx

N2
c −1∑

j=1

(τ j τ j )
	 · K − γd−1

c2ε3(k)
c2+x(1+v2−c2)[

K2 + c2ε2
3(k)

c2+x(1+v2−c2)

]ε/2

x−ε/2(1 − x)1/2−ε/2

(c2 + x(1 + v2 − c2))1/2
, (C1)

We can ignore the term with the prefactor of c2 in the numerator of the integrand in Eq. (C1); since v �= 0 ε1(k) and ε3(k) can be
taken to be independent variables of integration over k space via the coordinate transformation d2k → dε1dε3/(2v). This term
then only produces contributions to 〈JyJy〉SE that are odd in ε3 and hence vanish under integration over ε3. Thus dropping this
term, we have

〈JyJy〉SE(ω) =16
(
1 − N2

c

)
π2−ε/2	(ε/2)g2με

(2π )8−2εc

∫ 1

0
dx

x−ε/2(1 − x)1/2−ε/2(1 + v2)

(c2 + x(1 + v2 − c2))1/2

×
∫

dε1dε3

2v
d2−εK

K4 + W · KK2 − ε2
1(3K2 + K · W)(

K2 + ε2
1

)2(
(K + W)2 + ε2

1

)[
K2 + c2ε2

3
c2+x(1+v2−c2)

] ε
2

(C2)

evaluating this as in Appendix A2 gives the singular contribution

〈JyJy〉SE(ω) ≈∫
dε3

2v

(
N2

c − 1
)g2με

c
ω1−2ε

∫ 1

0
dxκ1

(
c2ε2

3

ω2(c2 + x(1 + v2 − c2))
,ε

)
(1 − x)1/2(1 + v2)

(c2 + x(1 + v2 − c2))1/2

(
1

64π3ε

)
, (C3)

where the crossover function κ1(x,ε) ≈ (1 + x)−ε/2 for x � 1.
The singular part of the one-loop current vertex at finite v and c is most easily derived from the Ward identity:

�3(K,k,0)

∣∣∣∣
pole

= − d�1(K,k)

dky

∣∣∣∣
pole

iγd−1
π2−ε/2	(ε/2)

(2π )4−ε

g2cμε

Nf

N2
c −1∑

j=1

(τ j τ j )

×
∫ 1

0
dx

[
K2 + c2ε2

3(k)

c2 + x(1 + v2 − c2)

]−ε/2
x−ε/2(1 − x)1/2−ε/2

(c2 + x(1 + v2 − c2))3/2
. (C4)
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Inserting this into Eq. (3.16) gives, for the singular part of the two-loop vertex correction to 〈JyJy〉, via a computation very similar
to that for the self-energy correction (an additional prefactor of 2 has to be inserted to account for both the poles associated with
vertex corrections to each of the two current vertices in the graph),

〈JyJy〉vert(ω) ≈ − g2cμε
(
N2

c − 1
)

8π6ε

∫
dε1dε3

2v
d2−εK

∫ 1

0
dx

(1 − x)1/2(1 − v2)

(c2 + x(1 + v2 − c2))3/2

×
⎧⎨⎩ −K · (K + W) + ε2

1(
K2 + ε2

1

)(
(K + W)2 + ε2

1

)[
K2 + c2ε2

3
c2+x(1+v2−c2)

]ε/2

⎫⎬⎭
≈ −

∫
dε3

2v

(
N2

c − 1
)
g2cμεω1−2ε

∫ 1

0
dxκ2

(
c2ε2

3

ω2(c2 + x(1 + v2 − c2))
,ε

)
(1 − x)1/2(1 − v2)

(c2 + x(1 + v2 − c2))3/2

(
1

32π3ε

)
,

(C5)

where again the crossover function κ2(x,ε) ≈ (1 + x)−ε/2 for x � 1.

APPENDIX D: BOLTZMANN EQUATION COMPUTATIONS

1. Collisionless conductivity in d = 3 − ε

We can diagonalize the Hamiltonian corresponding to the free fermion part of Eq. (2.3) as

Hf =
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∫
d2kd1−εK̄

(2π )3−ε
�̄n,σ,j (k,K̄)[i	̄ · K̄ + iγd−1εn(k)]�n,σ,j (k,K̄)

=
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∑
m=±

∫
d2kd1−εK̄

(2π )3−ε
λ
†
n,σ,j,m(k,K̄)ξn,m(k,K̄)λn,σ,j,m(k,K̄) (D1)

with the particle-hole symmetric dispersions ξn,m(k,K̄) = m(K̄2 + ε2
n(k))

1/2
. The physical current density becomes

J =
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∑
m=±

∫
d2kd1−εK̄

(2π )3−ε

(
vn

mεn(k)√
K̄2 + εn(k)2

λ
†
n,σ,j,m(k,K̄)λn,σ,j,m(k,K̄)

)
+ J2, (D2)

where εn(k) = vn · k and J2 contains particle-hole terms λ
†
+λ−,λ

†
−λ+ that are unimportant for transport in the low frequency

regime of ω � T [54,55]. Defining the distribution functions

fn,m(k,K̄,t) = 〈λ†
n,σ,j,m(k,K̄,t)λn,σ,j,m(k,K̄,t)〉, (D3)

we have the collisionless kinetic equation in the presence of an applied electric field:(
∂

∂t
+ mE · ∂

∂k

)
fn,m(k,K̄,t) = 0, (D4)

with the frequency-domain solution to linear order in E

fn,m(k,K̄,ω) = 2πδ(ω)nf (ξn,m(k,K̄)) + vn · E(ω)
mεn(k)√

K̄2 + εn(k)2

1/T

−iω + 0+ nf (ξn,m(k,K̄))[1 − nf (ξn,m(k,K̄))]. (D5)

Inserting this into the expression for J, we obtain the collisionless conductivity

σxx(ω) = δJx(ω)

δEx(ω)
= 4NcNf

(1 + v2)/T

−iω + 0+

∫
d2kd1−εK̄

(2π )3−ε

ε2
n(k)

K̄2 + ε2
n(k)

nf (ξn,+(k,K̄))[1 − nf (ξn,+(k,K̄))],

Re[σxx(ω)] = 2NcNf

∫
dk‖

√
1 + v2

δ(ω)

T

∫
dεnd

1−εK̄
(2π )2−ε

ε2
n

K̄2 + ε2
n

nf

(√
K̄2 + ε2

n

)(
1 − nf

(√
K̄2 + ε2

n

))
= 2NcNf

√
1 + v2

∫
dk‖δ(ω)T 1−ε π1−ε/2(1 − 2ε)	(2 − ε)ζ (1 − ε)

(2π )2−ε	(2 − ε/2)
= Re[σyy(ω)]. (D6)
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2. Derviation of the fermion collision integral

We derive the following expressions for the different components of the fermion self-energies in the Keldysh formalism. For
a fermion at hot spot given by (�,+), we get for the first diagram for �R

f in Fig. 5,

�
R�+(1)
f,σσ ′ (x,x ′) = ig2τ a

σρτ
a
ρσ ′D

K
0 (x,x ′)GR�−

0 (x,x ′) = 3iδσσ ′g2DK
0 (x,x ′)GR�−

0 (x,x ′). (D7)

We use that for products of Wigner transforms,

DK
0 (x,x ′)GR�−

0 (x,x ′) →
∑

q

DK
0 (x,p − q)GR�−

0 (x,q), (D8)

and plug in the representation of the Keldysh propagator in terms of the distribution function to get

�
R�+(1)
f,σσ ′ (x,p) = 3δσσ ′g2

∑
q

Fb(x,p − q) i
[
DR

0 (x,p − q) − DA
0 (x,p − q)

]
GR�−

0 (x,q). (D9)

For the collision integral on the right-hand side of (5.16), we need twice the imaginary part of this expression. Using

2Im
[
GR�−

0 (x,q)
] = 1

i

[
GR�−

0 (x,q) − GA�−
0 (x,q)

]
, (D10)

we get

2Im
[
�

R�+(1)
f,σσ ′ (x,p)

]
= 3δσσ ′g2

∑
q

Fb(x,p − q) i
[
DR

0 (x,p − q) − DA
0 (x,p − q)

]1

i

[
GR�−

0 (x,q) − GA�−
0 (x,q)

]
= −3δσσ ′g2

∫
d2q

∫
dω

2π

1

4ωp−q
(δ(e+

� (p) − ω − ωp−q) − δ(e+
� (p) − ω + ωp−q))δ(ω − e−

� (q))Fb(t,p − q,e+
� (p) − ω)

= −3δσσ ′g2
∫

d2q
2π

1

4ωp−q
[δ(e+

� (p) − e−
� (q) − ωp−q)Fb(t,p − q,ωp−q) − δ(e+

� (p) − e−
� (q) + ωp−q)Fb(t,p − q, − ωp−q)]

= 2δσσ ′Im
[
�

R�+(1)
f (t,p,e+

� (p))
]
, (D11)

where we have used spatial translational invariance and also have kept the external fermion on shell. Likewise, for the second
diagram for �R

f in Fig. 5 contributing to �R�+
f,σσ ′ we have

2Im
[
�

R�+(2)
f,σσ ′ (x,p)

] = 3δσσ ′g2
∑

q

Ff (x,q)
[
GR�−

0 (x,q) − GA�−
0 (x,q)

][
DR

0 (x,p − q) − DA
0 (x,p − q)

]
= −3δσσ ′g2

∫
d2q
2π

1

4ωp−q
[δ(e+

� (p) − e−
� (q) − ωp−q) − δ(e+

� (p) − e−
� (q) + ωp−q)]F�−

f (t,q)

= 2δσσ ′Im
[
�

R�+(2)
f (t,p,e+

� (p))
]
. (D12)

For the diagrams in Fig. 5 contributing to �K�+
f,σσ ′ , the first gives

i�
K�+(1)
f,σσ ′ (x,p) = −3δσσ ′g2

∑
q

Ff (x,q)Fb(x,p − q)
[
GR�−

0 (x,q) − GA�−
0 (x,q)

][
DR

0 (x,p − q) − DA
0 (x,p − q)

]
= 3δσσ ′g2

∫
d2q
2π

1

4ωp−q

[
δ(e+

� (p) − e−
� (q) − ωp−q)F�−

f (t,q)Fb(t,p − q,ωp−q)

− δ(e+
� (p) − e−

� (q) + ωp−q)F�−
f (t,q)Fb(t,p − q, − ωp−q)

]
= 2iδσσ ′�

K�+(1)
f (t,p,e+

� (p)). (D13)

The second and third combined yield

i�
K�+(2+3)
f,σσ ′ (x,p)

= −3δσσ ′g2
∑

q

[
GR�−

0 (x,q)DR
0 (x,p − q) + GA�−

0 DA
0 (x,p − q)

]
= 3δσσ ′

∫
d2q
4π2

∫
dω

2π

g2

4ωp−q

[
1

ω − e−
� (q) + i0+

(
1

e+
� (p) − ω + ωp−q + i0+ − 1

e+
� (p) − ω − ωp−q + i0+

)
+ c.c.

]
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= 3δσσ ′g2
∫

d2q
2π

1

4ωp−q
[δ(e+

� (p) − e−
� (q) − ωp−q) − δ(e+

� (p) − e−
� (q) + ωp−q)]

= 2iδσσ ′�
K�+(2+3)
f (t,p,e+

� (p)). (D14)

Combining the above expressions gives the collision integral for fermions of any spin at the hot spot given by (�,+):

I coll
f �+[Ff ,Fb](t,p) = 3g2

∫
d2q

1

4ωp−q

{
δ(e+

� (p) − e−
� (q) − ωp−q)

[
1 + F�−

f (t,q)Fb(t,p − q,ωp−q) − F�−
f (t,q)F�+

f (t,p)

− F�+
f (t,p)Fb(t,p − q,ωp−q)

]− δ(e+
� (p) − e−

� (q) + ωp−q)
[
1 + F�−

f (t,q)Fb(t,p − q, − ωp−q)

− F�−
f (t,q)F�+

f (t,p) − F�+
f (t,p)Fb(t,p − q, − ωp−q)

]}
. (D15)

The collision integral for the hot spot given by (�, -) is given by simply interchanging + ↔ − in the above. With the alternate
parametrization (5.15) of the distribution functions, and relabeling of momenta q ↔ p − q we may rewrite this for any hot spot
as

I coll
f �±[ff ,fb](t,p)

= 3g2
∫

d2q
2π

1

ωq

{
δ(e±

� (p)−e∓
� (p−q)−ωq)

[
f �±

f (t,p)
(
1−f �∓

f (t,p−q)
)− f �∓

f (t,p − q)fb(t,q,ωq) + f �±
f (t,p)fb(t,q,ωq)

]
− δ(e±

� (p) − e∓
� (p − q) + ωq)

[
f �±

f (t,p)
(
1 − f �−

f (t,p − q)
)− f �∓

f (t,p − q)fb(t,q, − ωq) + f �±
f (t,p)fb(t,q, − ωq)

]}
.

(D16)

3. Derivation of the boson collision integral

We begin with the retarded component of the boson self-energy in the Keldysh formalism. The sum of the two diagrams for
this component in Fig. 5 gives

�R
b (x,x ′) = −ig2

∑
�

[
GK�+

0 (x,x ′)GA�−
0 (x ′,x) + GR�−

0 (x,x ′)GK�+
0 (x ′,x) + (+ ↔ −)

]
. (D17)

Wigner transforming this gives

2Im
[
�R

b (x,q)
]

= −g2
∑

�

∑
k

[
Ff (x,k + q)

(
GR�+

0 (x,k + q) − GA�+
0 (x,k + q)

)(
GA�−

0 (x,k) − GR�−
0 (x,k)

)
+ Ff (x,k)

(
GR�+

0 (x,k) − GA�+
0 (x,k)

)(
GR�−

0 (x,k + q) − GA�−
0 (x,k + q)

)+ (+ ↔ −)
]

= −g2
∑

�

∫
d2k
2π

[
δ(e−

� (k) + ωq − e+
� (k + q))F�+

f (t,k + q) − δ(e+
� (k) + ωq − e−

� (k + q))F�+
f (t,k) + (+ ↔ −)

]
= 2Im

[
�R

b (t,q,ωq)
]
, (D18)

where we have used spatial translational invariance and also have kept the external boson on shell. For the Keldysh component
of the boson self-energy, the second diagram in Fig. 5 gives

i�
K(2)
b (x,q) = g2

∑
�

∑
k

[
Ff (x,k + q)

(
GR�+

0 (x,k + q) − GA�+
0 (x,k + q)

)
Ff (x,k)

(
GR�−

0 (x,k) − GA�−
0 (x,k)

)+ (+ ↔ −)
]

= −ig2
∑

�

∫
d2k
2π

[δ(ωq + e−
� (k) − e+

� (k + q))F�+
f (t,k + q)F�−

f (t,k) + (+ ↔ −)]

= 2i�
K(2)
b (t,q,ωq). (D19)

The first and third diagrams for the Keldysh component when combined give

i�
K(1+3)
b (x,q) = g2

∑
�

∑
k

[(
GR�+

0 (x,k + q)GA�+
0 (x,k)

)+ (
GA�+

0 (x,k + q)GR�−
0 (x,k)

)+ (+ ↔ −)
]

= g2
∑

�

∫
d2k
4π2

∫
dω

2π

[
1

ωq + ω − e+
� (k + q) + i0+

1

ω − e−
� (k) − i0+ + c.c. + (+ ↔ −)

]
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= g2
∑

�

∫
d2k
2π

[δ(ωq + e−
� (k) − e+

� (k + q)) + (+ ↔ −)]

= 2i�
K(1+3)
b (t,q,ωq). (D20)

Thus we obtain the boson collision integral:

I coll
b [Ff ,Fb](t,q) = −g2

∑
�

∫
d2k
2π

[
δ(e−

� (k) + ωq − e+
� (k + q))

× (− 1 − F�−
f (t,k)Fb(t,q,ωq) + F�+

f (t,k + q)F�−
f (t,k) + F�+

f (t,k + q)Fb(t,q,ωq)
)+ (+ ↔ −)

]
(D21)

or

I coll
b [ff ,fb](t,q) =4g2

∑
�

∫
d2k
2π

[
δ(e−

� (k) + ωq − e+
� (k + q))

[
f �+

f (t,k + q)
(
1 − f �−

f (t,k)
)

+ f �+
f (t,k + q)fb(t,q,ωq) − f �−

f (t,k)fb(t,q,ωq)
]+ (+ ↔ −)

]
. (D22)

4. Solution of the boson kinetic equation

Inserting the parametrization (5.22) for the fermion f functions into the boson collision integral and also parameterizing fb

in the frequency domain as

fb(ω,q,ωq) = 2πδ(ω)nb(ωq) + u(ω,q,ωq), (D23)

where u is linear in E. Changing variables to p�
1 = e−

� (k) = v−
� · k and p�

2 = e+
� (k) = v+

� · k, the boson collision integral (5.20)
becomes

I coll
b [Ff ,Fb](t,q) = g2

πv

∑
�

∫
dp�

1dp
�
2

[
δ
(
p�

1 + ωq − p�
2 − v+

� · q
)[

f +
� (t,k + q)(1 − f −

� (t,k))

+ f +
� (t,k + q)fb(t,q,ωq) − f −

� (t,k)fb(t,q,ωq)
]+ (+ ↔ −,1 ↔ 2)

]
. (D24)

Always integrating out p�
2 in this expression, and keeping only terms up to linear order in E, we get, in the frequency domain,

using the boson kinetic equation Eq. (5.17):

2(−iω + 0+)u(ω,q,ωq) = I coll
b [Ff ,Fb](ω)

= g2

πv

∑
�

∫
dp�

1

[
a
(
p�

1,ωq,v−
� · q

)
(2πδ(ω)nb(ωq) + u(ω,q,ωq))

+ E(ω) · b�(p�
1,ωq,v−

� · q)nb(ωq) + E(ω) · b�
1(p�

1,ωq,v−
� · q) − E(ω) · d�

(
p�

1,ωq,v−
� · q

)
− c

(
p�

1,ωq,v−
� · q

)
(2πδ(ω)) + a1

(
p�

1,ωq,v−
� · q

)
(2πδ(ω))

]
, (D25)

where

a
(
p�

1,ωq,v−
� · q

) = (
nf

(
p�

1 + ωq
)− nf

(
p�

1

))+ (
nf

(
p�

1 + v−
� · q

)− nf

(
p�

1 + v−
� · q − ωq

))
,∫

dp�
1a
(
p�

1,ωq,v−
� · q

) = −2ωq,

b�
(
p�

1,ωq,v−
� · q

) = v+
� nf

(
p�

1+ωq
)(

1 − nf

(
p�

1+ωq
))

ϕ
(
p�

1+ωq
)−v−

� nf

(
p�

1

)(
1−nf

(
p�

1

))
ϕ
(
p�

1

)
+v−

� nf

(
p�

1 + v−
� · q

)(
1 − nf

(
p�

1 + v−
� · q

))
ϕ
(
p�

1 + v−
� · q

)
−v+

� nf

(
p�

1 + v−
� · q − ωq

)(
1 − nf

(
p�

1 + v−
� · q − ωq

))
ϕ
(
p�

1 + v−
� · q − ωq

)
,

b�
1

(
p�

1,ωq,v−
� · q

) = v+
� nf

(
p�

1 + ωq
)(

1 − nf

(
p�

1 + ωq
))

ϕ
(
p�

1 + ωq
)

+v−
� nf

(
p�

1 + v−
� · q

)(
1 − nf

(
p�

1 + v−
� · q

))
ϕ
(
p�

1 + v−
� · q

)
,

d�
(
p�

1,ωq,v−
� · q

) = v−
� nf

(
p�

1 + ωq
)
nf

(
p�

1

)(
1 − nf

(
p�

1

))
ϕ
(
p�

1

)
+v+

� nf

(
p�

1

)
nf

(
p�

1 + ωq
)(

1 − nf

(
p�

1 + ωq
))

ϕ
(
p�

1 + ωq
)

+v+
� nf

(
p�

1 + v−
� · q

)
nf

(
p�

1 + v−
� · q − ωq

)(
1 − nf

(
p�

1 + v−
� · q − ωq

))
ϕ
(
p�

1 + v−
� · q − ωq

)
+v−

� nf

(
p�

1 + v−
� · q − ωq

)
nf

(
p�

1 + v−
� · q

)(
1 − nf

(
p�

1 + v−
� · q

))
ϕ
(
p�

1 + v−
� · q

)
,
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c
(
p�

1,ωq,v−
� · q

) = nf

(
p�

1 + ωq
)
nf

(
p�

1

)+ nf

(
p�

1 + v−
� · q

)
nf

(
p�

1 + v−
� · q − ωq

)
,

a1
(
p�

1,ωq,v−
� · q

) = nf

(
p�

1 + ωq
)+ nf

(
p�

1 + v−
� · q

)
,∫

dp�
1

[
a1
(
p�

1,ωq,v−
� · q

)− c
(
p�

1,ωq,v−
� · q

)] = 2
∫

dp�
1nf

(
p�

1 + ωq
)(

1 − nf

(
p�

1

)) = 2ωqnb(ωq).

(D26)

Since each term in the b�, b�
1, d� terms results in a convergent integral over p�

1, the v−
� · q s can be shifted out. Then, since∑

� v±
� = 0, the contribution from the b�, b�

1 and d� terms vanishes. Then,

2(−iω + 0+)u(ω,q,ωq) = −8ωq
g2

πv
u(ω,q,ωq). (D27)

Since this has to hold for all values of ω, we can only have u = 0. Hence the boson collision integral is trivially solved by the
thermal Bose distribution and the bosons do not respond to the applied electric field in our approximation. It is also easily seen
using the identity

nf (x)(1 − nf (x − y)) + nb(y)(nf (x) − nf (x − y)) = 0 (D28)

that the thermal Fermi distribution nf nullifies the fermion collision integral in the absence of an applied electric field if the
thermal Bose distribution nb is used for the bosons, as it should.
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