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Negative static permittivity and violation of Kramers-Kronig relations
in quasi-two-dimensional crystals
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We investigate the wave vector and frequency-dependent screening of the electric field in atomically thin
(quasi-two-dimensional) crystals. For graphene and hexagonal boron nitride we find that, above a critical wave
vector qc, the static permittivity ε(q > qc,ω = 0) becomes negative and the Kramers-Kronig relations do not hold
for ε(q > qc,ω). Thus, in quasi-two-dimensional crystals, we reveal the physical confirmation of a proposition
put forward decades ago [D. A. Kirzhnits, Sov. Phys. Usp. 19, 530 (1976)], allowing for the breakdown of
Kramers-Kronig relations and for negative static permittivity. In the vicinity of the critical wave vector, we find
a giant growth of the permittivity. Our results, obtained in the ab initio calculations using both the random-phase
approximation and the adiabatic time-dependent local-density approximation, and further confirmed with a
simple slab model, allow us to argue that the above properties, being exceptional in the three-dimensional case,
are common to quasi-two-dimensional systems.
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The concept of causality plays one of the central roles in
contemporary science [1]. It is well known that causality in
the time domain (the impossibility for an effect to precede
the cause in time) leads to the analyticity of a causal
response function in a complex half plane in the frequency
domain, which in turn leads to Kramers-Kronig (KK) relations
between the real and the imaginary parts of the response
function [2].

It must, however, be recognized that the causality assumes
that the response function is applied to a cause and it produces
an effect. In the case of a longitudinal electric field in a
translationally invariant or a periodic system, the definition
of the permittivity ε(q,ω) reads φtot(q,ω) = φext(q,ω)/ε(q,ω),
where φext and φtot are the scalar potentials of the externally
applied and the total electric fields, respectively. Since the
cause is φext and the effect is φtot, not vice versa, this is
1/ε that is guaranteed to be causal, but not ε itself [3].
Accordingly, KK relations must be satisfied by 1/ε, but may or
may not be satisfied by ε. For |q| > 0, this leaves ε(q,ω = 0)
a freedom to be negative without violating the causality or
destroying the stability of the system [4,5]. If this happens,
then the inverse permittivity has zeros in the upper half of the
complex ω plane, making the permittivity itself a nonanalytic
function.

In the three-dimensional (3D) world the realizations of
such negative static permittivity are scarce and they mostly
concern exotic noncrystalline systems [6–10]. In this Rapid
Communication we show that, above a critical wave vector
q > qc in the first Brillouin zone, the permittivity ε(q,ω) of
quasi-two-dimensional (Q2D) systems of monolayer graphene
and boron nitride is negative in the static limit. Accordingly,
KK relations for the permittivity do not hold in this case. The
inverse permittivity, on the contrary, remains causal and does
satisfy KK relations.

We start by writing the permittivity of a Q2D crystal [11]
(atomic units e2 = � = me = 1 are used throughout unless
otherwise indicated),

1

ε(q,ω)
= 1 + 2π

q

∫ ∞

−∞
χ00(z,z′,q,ω)dzdz′, (1)

where χGG′(z,z′,q,ω) is the density-response function of the
system in the mixed, reciprocal in the system plane (xy), and
real in the z-direction representation (G are the 2D reciprocal
lattice vectors).

Our time-dependent density-functional theory (TDDFT)
calculation of the permittivity consists of two steps. Since Q2D
systems lack periodicity in the z direction, it is customary to use
the supercell method [12–14]. First, in the supercell geometry,
we calculate the density-response function χ̃Gg,G′g′(q,ω; d)
of an auxiliary 3D system comprising an infinite periodic
array of monolayers with the separation d between them,
as is schematized in Fig. 1(b) (the dependence of χ̃ on d

is shown explicitly). Here, g are reciprocal vectors in the z

direction.
We have conducted the calculation for monolayer pristine

graphene using the full-potential linear augmented plane-wave
(FP-LAPW) code ELK [15]. The z-axis period d of the supercell
was taken as 20 a.u. A k-point grid of 512 × 512 × 1, 30 empty
bands, and a damping parameter of 0.002 a.u. were used in
both the ground-state and the linear-response calculations. The
former was carried out within the local-density approximation
(LDA) [16] for the exchange-correlation (xc) potential, while
the latter was the random-phase approximation (RPA) one (i.e.,
the xc kernel fxc [17] was set to zero).

Results for ε3D, obtained through

1

ε3D(q,ω; d)
= 1 + 4π

q2
χ̃00,00(q,ω; d), (2)

are presented in the left panels of Figs. 2 and 3 for q = 0.049
and 0.152 a.u., respectively, along the �M direction.

It is, however, known that ε3D(q,ω; d), calculated in the
supercell geometry, is a quantity completely different from the
permittivity ε(q,ω) of a single layer [11–14], as can be also
immediately appreciated from the d dependence of the former.
Our second step consists, therefore, in finding the density-
response function χ of the single-layer system from that of
the array of those layers χ̃ . This can be conveniently done by
virtue of the matrix relation [11]

χ (q,ω) = χ̃(q,ω)[1 + C(q)χ̃ (q,ω)]−1, (3)
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FIG. 1. (Color online) Schematics of 2D material under an ex-
ternal field. (a) Q2D single-layer geometry and (b) 3D supercell
geometry.

where the elements of the matrix C are given by

CGg,G′g′(q) = Fgg′(|G + q|)δGG′ ,

Fgg′(p) = 4π (p2 − gg′)
pd(p2 + g2)(p2 + g′2)

× cos

[
(g + g′)d

2

]
(1 − e−pd ). (4)

In particular, χ calculated by Eqs. (3) and (4) is free
of the spurious interlayer interaction, which is present
in χ̃ .

By the use of Eqs. (3) and (4), we find χ in the 3D reciprocal-
space representation. Then, by the inverse Fourier transform
to the mixed representation and using Eq. (1), we obtain the
permittivity ε(q,ω). The latter is plotted in the right panels of
Figs. 2 and 3.

A striking feature in Fig. 3, right panel, is that ε(q,ω = 0)
is negative and, since Im ε(q,ω � 0) � 0, the permittiv-
ity of graphene does not satisfy the Kramers-Kronig
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FIG. 2. (Color online) Left: 3D permittivity of the array of
graphene layers. Right: Permittivity of a single graphene layer. The
wave vector q = 0.049 a.u. is below the critical value qc ≈ 0.118 a.u.
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FIG. 3. (Color online) Left: 3D permittivity of the array of
graphene layers. Right: Permittivity of a single graphene layer. The
wave vector q = 0.152 a.u. is above the critical value qc ≈ 0.118 a.u.

relations [2]

Re R(ω) = R(∞) + 2

π
P

∫ ∞

0

ω′ Im R(ω′)
ω′2 − ω2

dω′,

(5)

Im R(ω) = −2ω

π
P

∫ ∞

0

Re R(ω′) − R(∞)

ω′2 − ω2
dω′,

where P denotes the principal value of the integrals, with
R(ω) = ε(q,ω). This fact is further illustrated in Fig. 4, where
the real part of ε(q,ω) is compared with the KK transform of
its imaginary part: The two functions coincide at q < qc (left
panel), but they are largely different at q > qc (right panel). We
found the critical wave vector for graphene to be qc ≈ 0.118
a.u. (0.223 Å−1) [18]. On the other hand, it can be seen in
Figs. 2 and 3, left panels, that the array system has a positive
static permittivity, which cannot be otherwise for a 3D periodic
system within RPA [5].

Since the KK relations are not satisfied by ε(q,ω), the latter
must have a singularity in the complex ω upper half plane. The
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FIG. 4. (Color online) Real and imaginary parts of the permittiv-
ity of single-layer graphene. The real part obtained from the imaginary
part by the use of the KK relation is plotted separately. Left: q < qc,
the KK relation holds. Right: q > qc, the KK relation does not hold.
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singularity can only be a pole at ω = ωs , satisfying

1

ε(q,ωs)
= 0. (6)

Considering that (a) 1/ε(q,ω) is a real continuous function on
the positive imaginary axis of the ω plane, (b) 1/ε(q,ω = 0) <

0 for q > qc, and (c) 1/ε(q,ω = i∞) = 1, we conclude that,
at q > qc, there exists a point ωs on the positive imaginary
axis of the ω plane which satisfies Eq. (6). To find this point,
we write, by virtue of Cauchy’s integral formula,

1

ε(q,iu)
− 1 = 1

2πi

∫ ∞

−∞

1
ε(q,ω′) − 1

ω′ − iu
dω′. (7)

Expanding the complex inverse permittivity in the right-hand
side of Eq. (7) via its real and imaginary parts and using the
parity properties of those functions, we can write

1

ε(q,iu)
= 1 + 1

π

∫ ∞

0
u

Re 1
ε(q,ω′) − 1

ω′2 + u2
dω′

+ 1

π

∫ ∞

0
ω′ Im 1

ε(q,ω′)

ω′2 + u2
dω′. (8)

Further, the equality of the second term on the right-hand side
to the third one can be easily proven with the use of the KK
relations for 1/ε(q,ω). We then have

1

ε(q,iu)
= 1 + 2

π

∫ ∞

0
ω′ Im 1

ε(q,ω′)

ω′2 + u2
dω′. (9)

We use Eq. (9) to calculate the inverse permittivity on the
positive imaginary ω axis from our results for it on the real
axis. In Fig. 5, this is plotted for the two wave vectors, below
and above the critical value.

Above the critical wave vector, the inverse permittivity
crosses zero (indicated by a circle in Fig. 5), which does not
happen below the critical wave vector. In Ref. [19], Sec. I,
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FIG. 5. (Color online) Inverse permittivity of a single graphene
layer as a function of the imaginary frequency. At q < qc (black
dashed curve), there is no zero (the permittivity is analytic in the upper
complex ω plane). At q > qc (red solid curve), the inverse permittivity
has a zero (indicated by a circle). Accordingly, the permittivity has a
pole at this frequency.
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FIG. 6. (Color online) The permittivity of an array of graphene
layers as a function of the imaginary frequency. The horizontal dashed
lines show the values of ε3D at which, by Eq. (11), the permittivity
of single-layer graphene may become singular. This never happens at
q < qc (black dashed curve), while this happens at q > qc (red solid
curve).

we compare our results with the analytical ones known in the
low-q regime [20,21].

We can gain further insight into the situation by using the
approximate analytical relation between the Q2D permittivity
of a single layer and the 3D permittivity of the array of those
layers,

1

ε(q,ω)
= 1 + 1

2

1
1[

1
ε3D(q,ω;d) −1

]
qd

+ 1
eqd−1

, (10)

rather than with the “exact” numerical solution of Eqs. (3)
and (4). Equation (10), derived in Ref. [14], is a good
approximation at q far from the critical value from both sides,
as we demonstrate below in Fig. 7. Solving Eq. (10) with
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FIG. 7. (Color online) The permittivity of single-layer graphene
calculated with the “exact” numerical procedure using Eqs. (3), (4),
and (1), and the approximate analytical Eq. (10). Upper panels: The
wave vector is well below (left) and above (right) the critical value
qc ≈ 0.118 a.u. Lower panels: The wave vector is slightly below (left)
and above (right) qc.
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FIG. 8. (Color online) The permittivity of 2D hexagonal boron
nitride below (left) and above (right) the critical wave vector qc ≈
0.323 a.u.

respect to ε3D, we find that 1/ε is zero if

ε3D(q,ω; d) = 1 − 2

qd

(
eqd − 1

eqd + 1

)
. (11)

In Fig. 6, we plot ε3D(q,ω; d) along the positive imaginary
ω. Although ε3D(q,ω; d) is analytic in the upper complex ω

plane at all values of q, it gives rise to a zero in 1/ε (a pole
in ε) when condition (11) is met. In Fig. 6 this is shown as an
intersection, in the case of q > qc, with the straight horizontal
line representing the right-hand side of Eq. (11).

Figure 7 is presented in support of the fact that the
permittivity obtained through the “exact” numerical procedure
via Eqs. (3), (4), and (1) can be accurately approximated by the
simple analytical formula of Eq. (10), if q is sufficiently below
or above the critical wave vector (upper panels). On the con-
trary, the same comparison done for the wave vector slightly
below and above the critical value (lower panels) reveals the
complete inapplicability of the approximate formula (10) in
the vicinity of the critical wave vector. Moreover, a giant
increase in the absolute value of the permittivity occurs close
to the critical wave vector.

Graphene is known to be a semimetal, possessing a
remarkable property of Dirac’s cones touching in the K point
of its band structure [22]. A natural question arises whether the
negative static permittivity and the violation of KK relations
in graphene are in any way related to the Dirac’s cones in this
material. To answer this, in Fig. 8 we present results for the
permittivity of hexagonal boron nitride (h-BN), known to be
an insulator [23]. Similar to graphene, above a critical wave
vector qc ≈ 0.323 a.u. (0.610 Å−1) (right panel of Fig. 8),
the permittivity of BN does not satisfy the KK relations,
while having a negative static limit. Furthermore, in Ref. [19],
Sec. II, we demonstrate that a simple local model of a metallic
slab in vacuum supports negative static permittivity at larger
wave vectors. This shows that negative static permittivity and
the breakdown of KK relations is a rather general property
common to Q2D systems.

Importantly, in perfect 3D crystals, negative static permit-
tivity is only possible due to the dynamic xc effects in the

electronic response [5]. Since our results for Q2D crystals are
obtained within the RPA, i.e., neglecting the xc effects, and
the occurrence of negative static permittivity is possible, the
situation is fundamentally different with Q2D crystals: This
is the finite but microscopic thickness of the crystal, which is
also the break of the periodicity in one dimension, that makes
negative static permittivity possible. Nonetheless, static and
dynamic many-body effects play an important part in Q2D
crystals [24,25], which have not been accounted for in the
present study. In Ref. [19], Sec. III, we show that the inclusion
of the xc kernel fxc on the level of the adiabatic time-dependent
local-density approximation (ATDLDA) [17,26,27] does not
lead to a significant change in the results. The inclusion of
the same effects within TDDFT with more elaborate fxc, e.g.,
following the schemes known in the 3D case [28,29], presents
a challenge in the case of Q2D systems. Furthermore, for Q2D
crystals supported on substrates, the interaction with the latter
strongly influences the excitation processes [30], which is also
a demanding problem to be addressed in the future.

For an accurate interpretation of the results, it is necessary
to keep in mind the exact meaning of the permittivity (1) of a
Q2D crystal. This definition is given in two steps [11]: First,
the 2D conductivity σ ext

2D with respect to the external field is
introduced,

j2D(q,ω) = σ ext
2D (q,ω)Eext(q,ω), (12)

where Eext(q,ω) is uniform in the z direction external electric
field, and j2D(q,ω) is the 3D current density integrated in the
z direction and averaged over the unit cell in the xy plane.
Second, the permittivity of a Q2D crystal is defined by the
relation

1

ε(q,ω)
= 1 + 2πq

iω
σ ext

2D (q,ω), (13)

rigorously valid for a strictly 2D system. The final justification
of Eq. (13) is that, with this definition, the usual formula for
the energy dissipation,

Q(q,ω) = − ω

4πq
|Eext(q,ω)|2 Im

1

ε(q,ω),
(14)

holds for a Q2D crystal exactly. However, as detailed in
Ref. [11], the Q2D permittivity cannot be attributed the mean-
ing of the coefficient of proportionality between the external
and the total fields, and hence Eq. (14) cannot be rewritten in
terms of Etot and Im ε. We note that these complications call
for particular caution in the consideration of negative static
permittivity in the context of 2D superconductivity [4,5]. The
behavior of the total field along the z direction in graphene is
further discussed in Ref. [19], Sec. IV.

In conclusion, we have established the violation of
Kramers-Kronig relations by the wave vector and frequency-
dependent permittivity of quasi-two-dimensional graphene
and boron nitride above a critical magnitude of the wave
vector, and static permittivity was found to be negative in
this case. The mechanism for negative static permittivity
was shown to be conceptually different from that in the 3D
case: It is due to the system finite microscopic thickness
rather than to the exchange-correlation effects. Our findings
suggest the fundamental differences between the screening
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and the electronic excitation processes in quasi-2D crystals as
compared with both 3D and purely 2D systems. It is, however,
discussed that further work is required to consider the present
results in the context of 2D superconductivity.
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