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Simulation of warm dense matter requires computational methods that capture both quantum and classical
behavior efficiently under high-temperature, high-density conditions. Currently, density functional theory
molecular dynamics is used to model electrons and ions, but this method’s computational cost skyrockets
as temperatures and densities increase. We propose finite-temperature potential functional theory as an
in-principle-exact alternative that suffers no such drawback. We derive an orbital-free free energy approximation
through a coupling-constant formalism. Our density approximation and its associated free energy approximation
demonstrate the method’s accuracy and efficiency.
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Warm dense matter (WDM) is a highly energetic phase
of matter with characteristics of both solids and plasmas [1].
The high temperatures and pressures necessary for creation of
WDM are present in the centers of giant planets and on the
path to ignition of inertial confinement fusion capsules [2,3].
The high cost of experiments in this region of phase space
has led to renewed interest and great progress in its theoretical
treatment [4–6]. Traditional plasma and condensed matter the-
oretical approaches exhibit serious shortcomings [1], leading
to the WDM regime’s characterization as the “malfunction
junction.” Since both quantum and classical effects are crucial
to accurate WDM simulations [7], density functional theory
(DFT) molecular dynamics has been used with increasing
frequency [8]. This method relies on Kohn-Sham (KS) DFT,
which simplifies solving the interacting problem of interest
by mapping it onto a non-interacting system [9,10]. While
the agreement between these calculations and experimental
results is excellent [11,12], the calculations remain incredibly
expensive [13,14]. The computational bottleneck in these
calculations is the solution of the KS equations, a step that
becomes increasingly expensive as temperatures and fractional
occupations rise. In fact, the cost exhibits nearly exponential
scaling with temperature due to the KS cycle including many
states at WDM temperatures [15].

A solution to this problem is orbital-free DFT [16],
which avoids this costly step using noninteracting kinetic
energy approximations that depend directly on the elec-
tronic density. Because the kinetic energy is such a large
fraction of the total energy, however, these approximations
must be highly accurate to be of practical use. Though
much progress has been made for WDM [17–19], approx-
imations are complicated by temperature effects. The KS
kentropy, the free energy consisting of the noninteracting
kinetic energy and entropy, must be approximated directly,
greatly complicating the production of useful, efficient
approximations.

At zero temperature, potential functional theory (PFT)
is a promising approach to the electronic structure prob-
lem [20,21]. It is also orbital-free, but skirts the troublesome
issue of separately approximating the KS kinetic energy. PFT’s
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coupling-constant formalism automatically generates a highly
accurate kinetic energy potential functional approximation
(PFA) for any density PFA [20]. In this way, one needs
only find a sufficiently accurate density approximation [22].
Approximations to the noninteracting density have been
derived in various semiclassical [22–24], and stochastic
approaches [25]. Most closely related to this work is the
pioneering path-integral formalism of Yang [26,27] which
goes beyond the gradient expansion at finite temperature. An
advantage of PFT is that it generates leading corrections to
zero-temperature local approximations [22], which become
exact in the well-known Lieb limit [28]. Finite-temperature
Thomas-Fermi theory [29,30] becomes relatively exact for
nonzero temperatures under similar scaling [31]. In this way,
our method provides a pathway to systematic improvements
to approximations, something generally missing from DFT
approaches.

The particular scaling conditions under which TF becomes
exact for all temperatures is related to the breakdown of purely
quantum or classical behavior as both temperatures and parti-
cle numbers increase [1]. The importance of both these effects
in the WDM regime underlies its theoretical complexity [32].
It is useful to represent the influences of temperature and
density with a single electron degeneracy parameter defined
by � = τ/μ, which depends on the system temperature τ

and temperature-dependent chemical potential μ. Then, the
WDM regime can be defined as where � ≈ 1. At these
conditions, KS-DFT is hugely expensive, while traditional
plasma methods miss critical electronic structure features. In
Fig. 1, density oscillations still present at WDM conditions are
neglected by the smooth, classical TF approximation and its
conventional gradient correction (GEA2) but are captured by
our method.

In this Rapid Communication, we (i) derive PFT for
thermal ensembles, (ii) give an explicit equation for the
kentropy relying solely on the temperature-dependent density,
(iii) derive and implement a highly accurate density approx-
imation in one dimension to illustrate our general result, and
(iv) perform (orbital-free) PFT calculations in the WDM
regime. Our method generates highly accurate approxima-
tions, skirts the need for separate kentropy approximations,
provides a road map for systematic improvement, and con-
verges rapidly as temperatures increase while maintaining
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FIG. 1. (Color online) Shortcomings of the TF approximation in
the WDM regime: Total density of five particles in the potential
v(x) = −2 sin2(πx/10) within a box (of size 10 a.u.) at � = τ/μ =
0.93. Compare the exact density (solid black curve) with our PFA
(dashed red curve) derived in Eq. (11), which is basically on top of
the exact result. On the other hand, the TF approximation (dotted
green curve) and conventional (second-order) gradient expansion
(short-dashed blue, GEA2) capture the general qualitative features
but completely miss the quantum oscillations. We also show the
corresponding exact density at zero temperature (light blue shaded
area), with its pronounced oscillations that smooth as temperatures
rise.

accuracy at low temperatures. It also bridges low and high
temperature methods and so is uniquely suited to WDM.

At nonzero temperature, the energy is replaced by the
grand canonical potential as the quantity of interest. The grand
canonical Hamiltonian is written

�̂ = Ĥ − τ Ŝ − μN̂, (1)

where Ĥ , Ŝ, and N̂ are the Hamiltonian, entropy, and
particle-number operators. In electronic structure theory, we
typically deal with nonrelativistic electrons within the Born-
Oppenheimer approximation. The electronic Hamiltonian (in
atomic units here and thereafter) reads

Ĥ = T̂ + V̂ee + V̂ , (2)

where T̂ denotes the kinetic energy operator, V̂ee the inter-
electronic repulsion, and v(r) the static external potential in
which the electrons move. (We suppress spin for simplicity
of notation.) In his seminal work [33], Mermin established
thermal DFT. Eschrig defined a well-behaved domain for den-
sities, showed the differentiability of the universal functional,
and extended thermal DFT to include spin [34]. More recently,
several exact conditions were derived [32,35].

Dual to thermal DFT, we write the grand canonical potential
in terms of potential functionals (denoted by square brackets):

�τ

v−μ = F τ [v] +
∫

d3rnτ [v](r)(v(r) − μ). (3)

Here, F τ [v]=F τ [�̂0
v−μ]=T [�̂0

v−μ]+Vee[�̂0
v−μ] − τS[�̂0

v−μ]
denotes the universal functional in terms of the
equilibrium statistical operator �̂0

v−μ, which captures all
system-independent behavior in thermal DFT.

In practice, approximating this expression would require
two separate approximate potential functionals, one for the

universal finite-temperature functional and one for the density:

�̆τ

v−μ = F̆ τ [v] +
∫

d3rn̆τ [v](r)(v(r) − μ). (4)

However, we can generate an approximation (denoted by
a breve above the approximated quantity) to the universal
functional that corresponds to any chosen density approx-
imation. In analogy to the zero-temperature case [20], we
introduce a coupling constant λ in the one-body potential,
vλ(r) = (1 − λ)v0(r) + λv(r), where v0 is some reference
potential. Via the Hellmann-Feynman theorem, we rewrite the
grand potential,

�τ

v−μ = �τ

0 +
∫ 1

0
dλ

∫
d3rnτ [vλ](r)�v(r), (5)

where �v(r) = v(r) − v0(r) and �τ

0 is the reference sys-
tem grand potential. Setting v0 = 0 and defining n̄τ [v](r) =∫ 1

0 dλ nτ [vλ](r), we now write the exact finite-temperature
universal functional in terms of the density written as a
potential functional:

F τ [v] =
∫

d3r{n̄τ [v](r) − nτ [v](r)}v(r). (6)

This defines an approximate functional F̆ τ [v] corresponding to
the chosen density approximation n̆τ and is the generalization
of PFT to thermal ensembles. The coupling-constant approach
differentiates the present formalism from previous ground
breaking work in Refs. [27] and [36].

Practical use of this formula as written would require
sufficiently accurate approximations to the interacting electron
density. These are likely unavailable, so we instead apply it
to the noninteracting electrons of the KS system. In DFT,
the KS system is a clever way of approximating the exact
F τ by mapping the interacting system to a noninteracting
system with the same electronic density and temperature.
This determines the one-body KS potential and corresponding
chemical potential. Through this mapping, the noninteracting,
finite-temperature universal density functional is defined [35]

F̃ τ

S [n] := min
�̂→n

Kτ [�̂] = Kτ
[
�̂τ

s [n]
] = K̃τ

s [n] . (7)

The noninteracting kentropy K̃S[n] = T̃S[n] − τ S̃S[n] gener-
ates the KS equations and the KS orbitals, and tildes denote
density functionals. The orbitals are implicit functionals of
the density via the KS equations, and the average density
is constructed by Fermi-weighted summing of the orbitals.
Solution of these equations at every time step is the most
costly step of DFT molecular dynamics.

The KS potential is defined [20,21]

vS(r) = v(r) + ṽH

[
nτ

S[vS]
]
(r) + ṽXC

[
nτ

S[vS]
]
(r) , (8)

where, in contrast to KS-DFT, the density is posed as
a potential functional. All many-body interactions among
the electrons are captured in the usual KS-DFT sense,
via the (traditionally defined) Hartree and XC potentials [37].
The difference from a usual KS-DFT calculation is that Eq. (8)
in conjunction with an approximation to the noninteracting
density bypasses the hugely expensive iterative solution of
the KS equations for WDM. Choosing a potential functional
approximation to the noninteracting density automatically
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generates an approximated KS potential, as illustrated in
the Supplemental Material [38]. Once the self-consistent KS
potential is determined, the KS kentropy is computed from

Kτ

S [vS] =
∫

d3r
{
n̄τ

S(r) − nτ

S[vS](r)
}
vS(r), (9)

which is the analog of Eq. (6) for KS electrons. Again, Eq. (9)
defines a coupling-constant approximation K̆τ

S [vS] when evalu-
ated on any chosen approximation to the noninteracting density
n̆τ

S. Finally, the grand potential expressed in terms of KS
quantities [35],

�τ

v−μ = Kτ

S [vS] + Ũ
[
nτ

S[vS]
] + F̃ τ

xc

[
nτ

S[vS]
]

+
∫

d3rnτ [vS](r)(v(r) − μ), (10)

can be evaluated via Eq. (9). Through this result, we leverage
the body of time-proven XC approximations and eliminate the
need to construct separate approximations to the KS kentropy
for use in orbital-free (and thereby computationally inexpen-
sive) schemes. Only an approximation to the noninteracting
density is required. A general, systematic, nonempirical route
to improved kentropy approximations is now available.

To illustrate the significance of our main result in Eq. (9),
we consider a simple, yet useful, numerical demonstration:
Noninteracting, spinless fermions in an arbitrary potential
v(x) confined to a box of size L obeying vanishing Dirichlet
boundary conditions. (In a practical realization, this would
be the self-consistent KS potential of the given many-body
problem.) A starting point for deriving an approximation to the
noninteracting density at finite temperature is the semiclassical
propagator, which can be written as a convolution of the zero-
temperature propagator with a factor carrying all temperature
dependence [36]. From the propagator, we extract the density
via an inverse Laplace transformation. Recently, a highly
accurate PFA to the density was derived for this model using
the path integral formalism and semiclassical techniques [39].
Here we extend this result to finite temperature and obtain:

n̆τ

S(x) = lim
x ′→x

4∑
α=1

∞∑
j=0

γ̆ τ

S (x,x ′; α,j ) , (11)

a PFA to the density at a given temperature and chemical
potential, where

γ̆ τ

S (x,x ′; α,j ) = τ sin �α
μ(x,x ′; j )csch

[
πτT α

μ (x,x ′; j )
]

(−1)α+1
√

kμ(x)kμ(x ′)
. (12)

Here we define generalized classical phases �1
μ(x,x ′; j ) =

θ−
μ (x,x ′) + 2jθμ(L), �2

μ(x,x ′; j ) = θ+
μ (x,x ′) + 2jθμ(L),

�3
μ(x,x ′; j ) = θ−

μ (x,x ′) − 2(j + 1)θμ(L), �4
μ(x,x ′; j ) =

θ+
μ (x,x ′) − 2(j + 1)θμ(L) and generalized classical traveling

times T α
μ (x,x ′; j ) = d�α

μ(x,x ′; j )/dμ. Furthermore,
θ±(x,x ′) = θ (x) ± θ (x ′), where θμ(x) = ∫ x

0 dy kμ(y)
and kμ(x) = √

2(μ − v(x)) at a given chemical potential μ,
which is determined by normalization of the density.

The physical interpretation of our result in Eq. (11) is
instructive: For a given chemical potential there are infinitely
many classical paths that contribute to the total density. The
paths are classified into four primitives (identified by α) onto

which an integral number of periods (labelled by j ) is added.
The first primitive is special, in that it yields the TF density.
However, higher-order terms in j do not yield the conventional
gradient expansion. All other primitives and additional periods
carry phase information about reflections from the boundaries,
producing quantum density oscillations that greatly improve
upon the TF result [39]. For more details, we refer to Ref. [39].

Our result in Eq. (11) can be evaluated numerically for a
given temperature by truncating the infinite sum at an upper
limit at which the sum has converged. Importantly for WDM
applications, the higher the temperature, the lower the upper
limit required for convergence of the sum. In fact, in the WDM
regime only the leading term (j = 1) in the sum needs to be
kept. Similar results have also been recently found at zero
temperature [39,40], so this may be a universal feature due to
the approximation’s semiclassical nature.

However, the stationary phase approximation used to
derive Eq. (11) yields the TF density at zero temper-
ature as the leading term, i.e., limx ′→x γ̆ τ

S (x,x ′; 1,0) =
kμ(x)/π = n̆0

TF(x), instead of the finite-temperature TF density
n̆τ

TF(x) = √
τ/(2π ) F−1/2(z), where Fν(z) = ∫ ∞

0 da aν[1 +
exp(a − z)]−1 and z = k2

μ(x)/2τ . We fix this problem with an
ad-hoc correction and ensure the correct boundary conditions.
To do so, we replace the density from the first primitive
limx ′→x γ̆ τ

S (x,x ′; 1,0) with a Gaussian interpolation of n̆0
TF(x)

and n̆τ

TF(x). In this way, we cope with the density approaching
the high-temperature limit (under which TF theory becomes
exact) differently in two distinct regions, the interior of the
box and the edge regions near the walls. These two distinct
boundary layers have different asymptotic expansions in the
high-temperature limit. The size of the edge-region boundary
layers shrinks as the limit is approached. Our Gaussian
interpolation is a crude version of the asymptotic matching
used in boundary-layer theory [41].

In Fig. 1, we plot a typical density of five particles in the
WDM regime (� ≈ 1) in the potential v(x) = −2 sin2(πx/10)
within a ten-unit box, along with approximate densities. The
black curve is the exact result, the red dashed curve is our
approximation, the green dotted curve is the TF density, and
the short-dashed blue curve is the second-order gradient-
corrected TF [36] density with the second-order gradient
correction (GEA2) given by −∂2

x v(x)/
√

512πτ 3F−5/2(z) −
5(∂xv)2/

√
8192πτ 5F−7/2(z). In addition, the light-blue shaded

area denotes the corresponding density at zero temperature.
Quantum oscillations in the density persist in the WDM
regime, and TF theory completely fails to capture them. On the
other hand, our PFA—derived to include quantum effects—is
able to describe them properly and is therefore highly accurate.
This mimics the results for cold densities seen in Fig. 1 of
Ref. [22].

Next, we demonstrate the accuracy of our approach for
kentropies. For our example, Eq. (9) simplifies to

K̆τ

S [v] = Kτ

S,0 +
∫

dx
{

˘̄nτ

S(x) − n̆τ

S[v](x)
}
v(x). (13)

In this case the reference potential is not zero but
an infinite square well. Hence, a kentropic contribution
Kτ

S,0 = T τ

S,0 − τSτ

S,0 of the reference system appears, which
we compute exactly. The kinetic energy of the infinite
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TABLE I. Residual kentropy of five particles in the same potential
as in Fig. 1. We list the error of the conventional TF approach, its
gradient correction GEA2, and of our PFA [given in Eq. (13)] far
below and above where WDM is typically encountered.

Error × 102

� Kτ

S,0 �Kτ

S TF GEA2 PFA

0.16 3.94 0.462 6.39 8.93 −0.32
0.31 3.87 0.461 7.16 9.85 −0.28
0.47 3.76 0.459 7.91 10.11 −0.31
0.62 3.64 0.456 8.39 10.01 −0.29
0.78 3.50 0.452 8.61 9.78 −0.30
0.93 3.34 0.448 8.65 9.52 −0.37
1.09 3.16 0.444 8.58 9.24 −0.50
1.40 2.77 0.435 8.21 8.63 −0.87
1.71 2.36 0.425 7.69 7.99 −1.27
2.02 1.92 0.414 7.13 7.35 −1.61
2.48 1.25 0.396 6.34 6.46 −1.86
2.94 0.58 0.378 5.64 5.69 −1.80
3.41 −0.10 0.360 5.04 5.04 −1.45
4.03 −0.99 0.338 4.37 4.33 −0.63

square well is T τ

S,0 = ∑N
j f τ

j εj,0, and the entropy is Sτ

S,0 =
−∑

j f τ

j ln(f τ

j ) + (1 − f τ

j ) ln(1 − f τ

j ), with f τ

j = 1/(1.0 +
exp [(εj,0 − μ0)/τ ]) denoting Fermi functions and εj,0 and
μ0 the j th eigenvalue and chemical potential. We avoid
temperature-dependent KS eigenvalues [32] by choosing a
purely noninteracting reference system, not a KS system
associated with a specific interacting system. Evaluating
Eq. (13) for the same potential as in Fig. 1 yields the results
in Table I. We measure the error of TF theory, its gradient
correction, and our PFA with respect to the residual kentropy
�Kτ

S = Kτ

S − Kτ

S,0, because this is the only approximated
piece of the kentropy. From cold temperatures up to the
WDM regime (� ≈ 1), our PFA yields kentropies that are
significantly more accurate than either TF theory or the
gradient expansion, improving them by roughly an order of
magnitude. In fact, the gradient correction worsens the results,
though it may improve them in other systems. In any case, the
gradient correction is small, while our PFA yields dramatic
improvements. Far beyond the WDM regime, the entropic
contribution dominates, and the errors of all methods become
comparable. In Table I, N is fixed as temperature increases. If
instead N scales with increasing temperature, the system will
approach a Lieb-like limit and TF accuracy is less than one
percent for � > 2.

We can better understand the advantage of our PFA over
the conventional TF approach by analyzing both in real space.
We compute residual kentropic densities [the integrand of
Eq. (13)] for the example in Fig. 1. As illustrated in Fig. 2, the
TF approach (dotted green curve) and its gradient correction
(short-dashed blue) only reproduce the qualitative trends of
the exact result (black curve). Errors due to an overestimation
in the interior are balanced by underestimation in the outer
regions of the system. Our PFA, on the other hand, not only
yields accurate integrated kentropies (area under the curve
in Fig. 2), but is also highly accurate in real space. As
such, and unlike TF, our PFA does not rely on cancellation
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FIG. 2. (Color online) Residual kentropic density of five parti-
cles in the same potential as in Fig. 1 in the WDM regime. Our PFA
(solid red curve) derived in Eq. (11) is on top of the exact result (solid
black curve). TF (dotted green curve) and its gradient correction
(short-dashed blue, GEA2), on the other hand, follow the general
trend as expected but miss quantitative details.

of errors in the kentropy density for its accurate kentropy
values.

The finite-temperature PFA approach outlined here of-
fers several advantages over other methods, particularly for
WDM, where solution of the KS equations for numerous
occupied states becomes especially daunting. We retain the
advantages of the KS system while avoiding the costly,
repetitive solution of eigenvalue problems by isolating a piece
of the kentropy to approximate through the coupling-constant
formalism. Combined with our density approximation, this
improves approximate kentropies by up to an order of
magnitude in the WDM regime and produces highly accurate
kentropic densities. This accuracy relies on inclusion of
quantum oscillations beyond the minor corrections of the
conventional gradient expansion. The density approximation
derived in this paper is computationally efficient because
only the leading term is needed for convergence at WDM
temperatures.

The path integral method used to derive this approxima-
tion [39] invites use of successful zero-temperature approx-
imations to the propagator, and it is a promising approach
for extension to three dimensional systems. Furthermore,
combining finite-temperature PFT with semiclassical methods
offers prospects for a systematic route to exchange energy ap-
proximations, instead of relying on existing, zero-temperature
density functional approximations. Work in this direction
is currently in development. With these advantages, finite-
temperature PFT is poised to bridge the “malfunction junction”
of WDM by providing computationally efficient, semiclassical
methods at high temperatures and densities.
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