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Ground state degeneracy of interacting spinless fermions
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We propose an eigenoperator scheme to study the lattice model of interacting spinless fermions at half filling
and show that this model possesses a hidden form of reflection positivity in its Majorana fermion representation.
Based on this observation, we prove rigourously that the ground state of this model is either unique or doubly
degenerate if the lattice size N is even, and is always doubly degenerate if N is odd. This proof holds in all
dimensions with arbitrary lattice structures.
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Introduction. As a fundamental model of strongly corre-
lated systems, interacting spinless fermions have been studied
for many decades. Interest in the investigation on this system
has revived recently in connection with the study of the quan-
tum critical behavior of Dirac fermions [1–4] and Majorana
fermions in topological superconductors [5,6]. The spinless
fermion model provides a minimal realization of lattice Dirac
fermions coupled to the Ising order parameter, whose quantum
critical behavior at low energy can be described by the
effective Gross-Neveu-Yukawa theory [7–10]. This model is
used to mimic the charge dynamics of the extended Hubbard
model in the strong-coupling limit [11–13], and to solve some
puzzling phenomenona related to the electronic structure of
cuprates and organic superconductors, for example, the phase
separation, the incommensurate charge-density wave [14],
the stripe order [15,16], and the nematic phase [11]. It is
also introduced to describe the spin-polarized electrons in
ferromagnetic materials, for example, in the study of the
Verwey transition of magnetite (Fe3O4) [17] and some Mn-
based Heusler alloys [18], and the many-body localization
effect [19,20]. On frustrated lattices this system shows exotic
phenomenon, such as the charge fractionalization [21] and the
time-reversal symmetry breaking [22]. In one dimension, the
spinless fermion model with nearest-neighbor interactions is
equivalent to the anisotropic Heisenberg spin chain and can be
rigorously solved using the Bethe ansatz.

The model of interacting spinless fermions considered in
this Rapid Communication is defined on a bipartite lattice,

H = HK + HV , (1)

HK =
∑

ij

2tij (c†i cj + H.c.),

(2)
HV =

∑

ij

Vij (2ni − 1)(2nj − 1),

where ni = c
†
i ci , {tij } are the real nearest-neighbor hopping

coefficients for fermions, and {Vij } stand for interactions
between different sites. Vij � 0 if i and j belong to different
sublattices, and Vij � 0 if i and j belong to the same sublattice.
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If Vij �= 0, we say that there is a bond between i and j . We
assume the lattice to be connected in which there is a connected
path of bonds between every pair of sites. This Hamiltonian is
defined at the half filling. It possesses a particle-hole symmetry.

The above Hamiltonian looks simple. But it is not exactly
soluble except in one dimension. In this work, we present a
rigorous proof for two theorems on the ground state degeneracy
of this model. We will show that the ground state is doubly
degenerate when the lattice size N is odd and at most doubly
degenerate when N is even. Our proof is based on the
observation of a hidden symmetry of reflection positivity
in the Hamiltonian. It starts by introducing the Majorana
fermion representation for the fermion operators to convert
Eq. (1) into an interacting model of Majorana fermions. In this
representation, each fermion is represented by two Majorana
fermions. The Hamiltonian is reflection symmetric under the
exchange of these two kinds of Majorana fermions. Under
the framework of eigenoperators, we show that this symmetry
puts strong constraint on the sign structure of the ground state
wave function and can be used to determine the number of
degeneracy for the ground states.

The method of reflection positivity was first developed in
quantum field theory. It has found many applications in both
classical and quantum statistical physics [23–25]. In 1989,
Lieb proved that the ground state of the Hubbard model is
unique by utilizing a Perron-Frobenius-type argument based
on the spin-reflection positivity of the system [26]. His work
extended the proof for the uniqueness of the ground state from
an antiferromagnetic Heisenberg model [27] to an interacting
fermion system and led to a more general application of
reflection positivity in the flux phase problem [28], frustrated
Heisenberg antiferromagnets [29], and other quantum lattice
models [30]. The spin-reflection positivity is intimately con-
nected with the sign rule of the ground state wave function,
which can be used to understand the minus sign problem
caused by the fermion characteristic of electrons in quantum
Monte Carlo simulations [30]. The reflection positivity for
Majorana fermions was first studied in Refs. [31] and applied
to a Majorana fermion model with topological order in
Refs. [32,33].

Majorana representation. A spinless fermion can be de-
composed as two Majorana fermions. To define ci = (γ (1)

i +
iγ

(2)
i )/2 on one sublattice, and ci = (γ (2)

i + iγ
(1)
i )/2 on the

other sublattice, we can rewrite Eq. (1) as a two-component
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Majorana fermion model

HK =
∑

ij

tij
(
iγ

(1)
i γ

(1)
j − iγ

(2)
i γ

(2)
j

)
,

HV = −
∑

ij

Vij

(
iγ

(1)
i γ

(1)
j

)(−iγ
(2)
i γ

(2)
j

)
,

where γ
(σ )
i (σ = 1,2) are Majorana fermion operators at site

i. We have made the substitution Vij → −Vij for the coupling
constants between different sublattices, thus all Vij � 0.

Majorana fermion operators are self-conjugate operators.
To discuss the degeneracy of ground states, it is more conve-
nient to use the formulation of eigenoperators rather than that
of eigenvectors. This is because in the eigenvector formulation,
the total degrees of freedom for Majorana fermions have to
be doubled for odd N . This doubling of degrees of freedom
can be avoided in the eigenoperator representation since at
each lattice site i, (1,γ

(1)
i ,γ

(2)
i ,iγ

(1)
i γ

(2)
i ) form a complete

orthonormal basis set for any operators defined at this site.
The direct product of these operators over all lattice sites
form a complete basis set for all operators defined on the
lattice.

Using the eigenvectors of the Hamiltonian, it is easy to
construct eigenoperators O in each sector distinguished by
symmetry, which satisfy the following operator eigenequation:

HO = OH = EO, (3)

where E is the eigenenergy. In the subspace spanned by n

degenerate eigenvectors of H with eigenvalue E, say �E =
{|�a〉,a = 1, . . . ,n}, O can be written as a superposition of n2

linear independent operators {|�a〉〈�b|}, where both |�a〉 and
|�b〉 belong to �E . Thus for each energy level with distinct
good quantum numbers, the degeneracy of eigenvectors is
equal to the square root of the degeneracy of the corresponding
eigenoperators. Moreover, each eigenoperator can always be
symmetrized (or antisymmetrized) to be a Hermitian operator
O† = O.

The Hamiltonian preserves the parity (even or odd) of
the number of γ (σ ) fermions. Thus the eigenoperators can
be diagonalized into four blocks according to the parities of
γ (1) and γ (2) fermions. Operators in each parity sector can be
expanded using the basis operators defined by

�(1)
α = i[m/2]γ

(1)
i1

· · · γ (1)
im

, (4)

�(2)
α = (−i)[m/2]γ

(2)
i1

· · · γ (2)
im

, (5)

where α = (i1, . . . ,im) denotes the configuration of Majorana
fermions. [m/2] = m/2 or (m − 1)/2 if m is even or odd.
We say �(σ )

α is even or odd, if α contains an even or odd
number of Majorana fermions. The operators such defined
are Hermitian and form a complete orthonormal basis set
of operators. Moreover, the Hamiltonian commutes with the
following two parity operators:

�(1) = i[N/2]γ
(1)
1 · · · γ (1)

N , (6)

�(2) = (−i)[N/2]γ
(2)
1 · · · γ (2)

N . (7)

�(1) commutes or anticommutes with �(2) for even or odd N .

An eigenoperator can be expanded using the basis operators
as

O =
∑

αβ

�αβ�(1)
α �

(2)
β . (8)

In the even-even sector, {�αβ} is a Hermitian matrix satisfying
the following eigenequation:

K� + �K −
∑

ij

VijLij�Lij = E�, (9)

where K and Lij are Hermitian matrices defined by

Lij,α′α = Tr
[
�

(1)
α′ iγ

(1)
i γ

(1)
j �(1)

α

]
, (10)

Kα′α =
∑

ij

tijLij,α′α. (11)

The real part of � represents the symmetric part of the operator
under the reflection operation, while the imaginary part stands
for the antisymmetric part. The eigenenergy is given by

E(�) = 2Tr(K�2) −
∑

ij

Vij Tr(�Lij�Lij ), (12)

if the eigenoperator � is normalized, Tr(�2) = 1.
Below we discuss the degeneracy of the ground states. For

clarity, we consider the cases of odd and even lattice size
separately.

Odd lattice size system. In the case N is odd, the parity
operator �(σ ) contains an odd number of Majorana fermions.
It defines a transformation between two sectors with opposite
parities for the γ (σ ) fermions. For any given eigenoperator in
the even-even sector O, �(1)O generates an operator in the
odd-even sector. Similarly, operators in the even-odd and odd-
odd sectors can be generated by applying �(2) and �(1)�(2) to
O, respectively. Since both �(1) and �(2) commute with the
Hamiltonian, it is simple to show that all these four operators
are degenerate eigenoperators of H . Thus if the ground state
eigenoperator is n-fold degenerate in the even-even parity
sector, then the total degeneracy of the eigenoperators is 4n

and the ground state degeneracy is 2
√

n. This leads to the
following theorem:

Theorem 1. For the model defined by Eq. (1), the ground
state is doubly degenerate if N is odd.

To prove this theorem, we only need to show that the ground
state is nondegenerate, i.e., n = 1, in the even-even parity
sector. This can be done in three steps: (1) To show that among
all degenerate ground states in the even-even parity sector
there always exists an eigenfunction � which is semipositive
definite. (2) To show that all the basis states in the even-even
parity sector are connected if the whole lattice is connected by
the hopping or interacting terms. This means that � must be
a full-rank matrix. (3) To show that the ground state is unique
in this parity sector.

Proof. Let us assume � to be a Hermitian matrix that
represents an eigenoperator of the Hamiltonian, satisfying
Eq. (9). By diagonalizing it using a unitary matrix U , � =
U
U †, we can define a trial wave function |�| = U |
|U †

by setting the diagonal matrix 
 to its absolute value. |�| is
semipositive definite as defined. From Eq. (12), it is simple to
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show that

E(|�|) � E(�), (13)

if not all Vij are vanished. Thus if � is a ground state
eigenoperator, so is |�|.

With � given then, now let us consider the semipositive
matrix R = |�| − �, which is also a multiple of a ground
state and satisfies (9). We denote � as the ensemble of all
vectors v that satisfy Rv = 0. For a given v in �, by applying
v† and v to both sides of the eigenequations, it can be shown
that RLijv = RLT

ij v = 0 for all connected bonds, hence Lijv

and LT
ij v are also in �. Note that v corresponds to an operator

r(v) = ∑
α=even vα�(σ )

α in the even-parity sector. The actions
of Lijv and LT

ij v are equivalent to multiplying r(v) by �
(σ )
ij =

iγ
(σ )
i γ

(σ )
j from its right- and left-hand side, respectively. As the

lattice is connected, all basis operators �(σ )
α in the even-parity

sector can be generated from the product of a set of �
(σ )
ij on

connected bonds. �
(σ )
ij itself is also a basis operator. If r(v) is

nonzero, one can always convert it into the unity operator by
applying successively the basis operators to it, from either the
left- or right-hand side. This is because {�(σ )

ij ,�(σ )
α } = 0 if i ∈ α

and j /∈ α. Thus for any given α with vα �= 0 and (i ∈ α, j /∈
α), one can remove this term from r(v) by the transformation
r(v) → �

(σ )
ij r(v)�(σ )

ij + r(v). Repeating this step by step, we
can reduce r(v) to a single basis operator with a constant
coefficient, which in turn can be further reduced to a unity
operator by multiplying its inverse. Thus starting from any
given v �= 0 in �, one can generate all other vectors in �. This
implies that � = ±|�| and � is positive definite.

If there are two normalized ground states, �1 and �2 with
�1 �= ±�2, then for any real constant p, �p = �1 + p�2 is
also a ground state. It is simple to verify that there exists a p

for which �p is neither positive nor negative semidefinite.
This contradicts the assertion that �p = ±|�p|. Thus the
ground state eigenoperator is unique in the even-even parity
sector. �

When N is odd, the ground state can be set as the
eigenstate of � = �(1)�(2) with the eigenvalues, ±1. But the
eigenoperators of � do not preserve the parity of Majorana
fermions.

Even lattice size system. In the case N is even, both �(1)

and �(2) are good quantum numbers and the eigen-states
can be classified by their eigenvalues. As �(σ ) (σ = 1,2)
preserves the parity of γ (σ ) fermions and the square of its
eigenvalue is always equal to 1, the eigenoperator in each
subspace should commute with �(σ ). The basis operator �(σ )

α

commutes or anticommtes with �(σ ), when it is even or odd.
The operators in the even-odd, odd-even, or odd-odd parity
sectors anticommute with at least one of the operators in
�(1) and �(2), and thus cannot be the eigenoperators of the
Hamiltonian. Thus we can discuss the ground states using
only the even-even parity sector.

In the even-even parity sector, the eigenoperators can
be block diagonalized according to the eigenvalues of �(1)

and �(2) into four blocks. The basis operators are now
defined by �(σ,±)

α = cα,±[1 ± �(σ )]�(σ )
α and the eigenequation

becomes

Kμ�μν + �μνK
ν −

∑

ij

VijL
μ

ij�μνL
ν
ij = E�μν, (14)

where cα,± is a normalization constant, �μν with μ = ± and
ν = ± represent the eigenoperators, and

L
μ

ij,α′α = Tr
[
�

(1,μ)
α′ iγ

(1)
i γ

(1)
j �(1,μ)

α

]
, (15)

K
μ

α′α =
∑

ij

tijL
μ

ij,α′α. (16)

Theorem 2. For the model defined by Eq. (1), there are at
most two linear independent ground states labeled by �(1) =
�(2) = ±1 when N is even.

To prove this theorem, again we only need to consider the
even-even parity sector. But the ground state can now fall into
any of the four blocks characterized by the eigenvalues of �(1)

and �(2). Following the same steps presented in the proof of
Theorem 1, it is straightforward to show that the lowest energy
state is unique in each of the �(1) = �(2) = ±1 blocks. If we
can further show that the ground state does not lie in the blocks
with �(1) �= �(2), the theorem is then proven. Below we give
such a proof.

Proof. From the symmetry between the two kinds of
fermions, it is straightforward to show that the lowest
energy state of �(1) = −�(2) = 1 is degenerate with that
of �(2) = −�(1) = 1. Moreover, if �+− = W is the lowest
energy eigenfuncton in the �(1) = −�(2) = 1 block, then
the corresponding eigenfunction in the �(1) = −�(2) = 1
block is given by �−+ = W †. By taking the singular value
decomposition for W = U
V †, we can introduce two trial
wave functions �++ = U
U † and �−− = V 
V † defined in
the �(1) = �(2) = ±1 blocks, respectively. Here U and V are
two unitary matrices and 
 is a positive semidefinite diagonal
matrix.

Using Eq. (14), it can be shown that

E(�+−) + E(�−+) � E(�++) + E(�−−), (17)

where the equality holds if and only if 
U †L(+)
ij U =


V †L(−)
ij V on all bonds with Vij > 0. This means that if �+−

is a ground state, so are �++ and �−−. Since the ground state
in the �(1) = �(2) = 1 is unique, 
 should be strictly positive.
Thus we have

U †L(+)
ij U = V †L(−)

ij V (18)

for all Vij > 0. Since �(σ ) can always be constructed from a
product of (iγ σ

i γ σ
j ) on a set of connected bonds, this equation

implies that U †U = −V †V , which is clearly not valid. Thus
the ground state exists only in the �(1) = �(2) = ±1 blocks
and is at most twofold degenerate. The degeneracy occurs if
and only if these two states are degenerate. �

Thus for even N , the ground state is either unique or
doubly degenerate. The degeneracy happens if the Hamiltonian
is invariant under a symmetry transformation T but �(σ ) is
odd under this transformation, i.e., T �(σ )T † = −�(σ ). Some
examples in which the ground state is doubly degenerate are
the following:

(1) A system defined on a L1 × L2 × · · · × Ln lattice with
translational invariance (the periodic boundary condition is
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implicitly assumed) along the first dimension (not necessary to
be invariant along any other dimension), if L1 is even and L2 ×
· · · × Ln is odd, then the ground state is twofold degenerate.

(2) A system of N = 4m − 2 (m is a positive integer)
which is invariant under a one-to-one correspondence mapping
between half of the lattice sites with the other half ones, the
ground state is twofold degenerate. This includes the systems
with center reflection or mirror reflection symmetries.

Discussion and summary. The above two theorems can be
extended to other interacting fermion models. For example, the
Hamiltonian can be extended to include a staggered magnetic
field

Hstagg = −
∑

i

hi(2ni − 1), (19)

where hi � 0 on one sublattice and hi � 0 on the other
sublattice. It is simple to show that the full Hamiltonian
still preserves the reflection positivity. But the different parity
sectors of Majorana fermions are mixed by this newly added
term. In particular, the even-even sector is mixed with the
odd-odd sector, and the even-odd sector is mixed with the
odd-even sector. In this case, it can be shown that the ground
state is always unique, no matter whether the lattice size is even
or odd. (A detailed proof on this is given in the Supplemental
Material [34]). The relative phase of the wave function between
the two mixed sectors is determined by the sign structure of hi .

Theorem 2 can be also extended to apply to the Hubbard
model on a bipartite lattice at half filling. To do this, we need
to first convert the Hubbard model into an interacting spinless
fermion model by regarding the up and down spin electrons as
spinless fermions but defined on different sublattices. Thus in
the language of spinless fermions, the lattice size is doubled.
If A and B are the two sublattices in the original lattice, then
there are four sublattices in the corresponding spinless fermion

system. They can be denoted as A-up, A-down, B-up and
B-down sublattices, respectively. If we group A-up and B-
down as one sublattice and A-down and B-up as another in
the new bipartite lattice, the Hubbard model is just a spinless
fermion model as defined by Eq. (1). Only some of the hopping
and interacting terms are absent. But this does not affect the
lattice connectivity. Direct application of Theorem 2 to the
Hubbard model indicates that the ground state is at most doubly
degenerate, consistent with the theorem proven by Lieb [26].

The reflection positivity of the Hamiltonian determines the
sign structure of the ground state wave function. In Refs. [1–3],
it was shown that there is no minus sign problem in the
quantum Monte Carlo simulations for the model defined by
Eq. (1) at half filling. It can be shown that the minus sign
problem is inherently connected with the reflection positivity.
In particular, it can be shown that this system is minus sign
free using two inequalities proven by Jaffe and Janssens
for the interacting fermions with reflection positivity in the
Majorana representation [35], consistent with the claim made
in Refs. [1,3]. A detailed discussion on this will be published
separately [36].

To summarize, we prove two theorems on the ground state
degeneracy for a spinless fermion model with short-range
interactions. The proof is based on reflection positivity of
Majorana fermions, which can also be applied to other
interacting systems with non-Abelian statistics, such as models
with parafermions [37]. It is also interesting to generalize this
work to systems with more than two species of Majorana
fermions, such as SU (N ) or O(2N ) fermion models.
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