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The structure, thermodynamics, and band gaps in graphene/graphene, boron nitride/boron nitride, and
graphene/boron nitride bilayers are determined using several different corrections to first-principles approaches to
account for the dispersion interactions. While the density functional dispersion correction, van der Waals density
functional, meta–generalized gradient approximation, and adiabatic fluctuation-dissipation theorem methods
(ACFDT-RPA) all lead to qualitatively similar predictions, the best accuracy is obtained through the application
of the computationally expensive ACFDT-RPA method. We present an accurate ACFDT-RPA-based method
to determine bilayer structure, generalized stacking-fault energy (GSFE), and band gaps as a function of the
relative translation states of the two layers. The GSFE data clearly identify all of the stable and metastable
bilayer translations as well as the barriers between them. This is key for predicting the sliding, formation, and
adhesion energies for homo- and hetero-bilayers, as well as for the determination of defects in such multilayer
van der Waals systems. These, in turn, provide an accurate approach for determining and manipulating the spatial
variation of electronic structure.
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I. INTRODUCTION

Bilayer systems, such as homo-bilayer graphene (G/G),
homo-bilayer boron nitride (BN/BN), and hetero-bilayer
graphene/boron nitride (G/BN), show promise for applica-
tions in electronic nanodevices. Bilayer graphene has been
employed in field-effect transistors and optoelectronics for
its negligible effective mass [1,2] and unique quantum Hall
effect [3–6]. Boron nitride has a large band gap and provides
an atomically flat surface, which makes it an appealing
substrate for nanodevices [7,8]. Hetero-bilayer G/BN devices
possess a favorable band-gap opening, higher carrier mobility,
and an improved ON/OFF ratio, compared with conventional
silicon-based graphene devices [8,9]. Building bilayer devices
inevitably involves mechanical processes such as rotation
and translation of one layer relative to the other. This has
substantial influence on the performance and quality of such
devices [10,11]. For example, rotation between the layers in
bilayer graphene commonly occurs by design or default. Such
rotation gives rise to structural moiré patterns which directly
affect the electronic properties of bilayers [12,13]. In this
report, we focus primarily on the structural and mechanical
aspects of bilayers, including the influence on bilayer energy,
interlayer spacing, and band gap in the G/G and BN/BN
homo-bilayers, and the G/BN hetero-bilayer.

The generalized stacking-fault energy (GSFE) is the differ-
ence of energy (per area) between the ground-state structure
and the uniformly disregistered structure (disregistry refers
to the relative displacement of one layer with respect to the
other) [14]. The GSFE landscape provides information on
the preferred directions of disregistry as well as the barriers
between the metastable disregistry states. The relaxed bilayer
structure is a compromise between the GSFE, that tends
to keep the layers registered, and the elastic strain energy
required to do so. We note that the GSFE is a local property; it
describes the mechanical response at any local position within

the bilayer structure. As such, the GSFE plays a key role in
determining bilayer structure under any kind of deformation
(homogeneous or inhomogeneous, flat or curved). While this
is obviously important for hetero-bilayers, where the layers
have different lattice constant (leading to the formation of
misfit dislocations), it also applies to homo-bilayers. As in the
case of twist grain boundaries in bulk materials [15,16], the
GSFE plays a fundamental role in determining the structure,
energetics, and properties of homo-bilayers where one layer
is rotated with respect to the other [17]. The mechanically
relaxed bilayer structure must be determined before local
electronic and optical properties can be reliably determined.
Therefore, accurate determination of the GSFE is necessary
in order to predict the structure and the mechanical, electrical,
and/or optical properties of flat, curved, misfitting, and twisted
bilayers.

The calculation of GSFEs has been reported for a few
bilayer systems. While these earlier studies provide important
information and insight, two major issues remain that prevent
the general application of these GSFEs to accurately determine
the structure and properties of bilayers (discussed above).

First, the effect of interlayer spacing on GSFEs has not
been fully accounted for. In both hetero-bilayer and twisted
homo-bilayer systems, the interlayer spacing varies through
the layer—especially near the dislocation cores. In other
applications, the interlayer spacing varies with application of
stress/strain in the bilayer plane of the bilayer (Poisson effect)
or normal to this plane (e.g., at contacts or during friction
experiments [18]). In most of the existing studies GSFEs
were obtained at fixed interlayer spacing [19,20]. However,
in a few recent GSFE calculations, the interlayer spacing was
fully relaxed (normal to the bilayer plane) for each disregistry
state [21,22]. While this is an important step, a complete
description of GSFE should include interlayer spacing as
a variable (rather than a parameter predetermined). Recent
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results in bulk materials show that the GSFE is sensitive to
this variable [23,24]. Although ideally the GSFE obtained for
fully relaxed interlayer spacing corresponds to the case of
freestanding bilayers, the GSFE at different strains (normal
to the bilayer plane) is critical for describing bilayer under
mechanical load and local structures within bilayers (such as
near dislocation cores).

Second, conventional DFT does not account for the disper-
sion interactions which dominate interlayer interactions in van
der Waals solids [25,26]. This can be easily understood from
the fact that dispersion interactions arise from instantaneous
polarization multipoles, which involve dynamic correlations
not captured by conventional density functionals [27]. Thus,
reliable GSFE landscapes based on conventional DFT cannot
be directly applied to van der Waals bilayer systems. Many
approaches have been suggested to correct this shortcoming.
The Grimme’s density functional dispersion correction (DFT-
D2) adds a semiempirical term to the conventional Kohn-
Sham (KS) energy to account for dispersion interactions [28],
while the nonlocal van der Waals density functionals (vdW-
DF2) captures the long-range van der Waals interactions
without relying on empirical input [29,30]. Recently, the
meta–generalized gradient approximation (MGGA-MS2) was
shown to capture much of the intermediate-range van der
Waals interactions we are interested in here [31–33]. The
adiabatic-connection fluctuation-dissipation theorem within
the random phase approximation (ACFDT-RPA) has been
shown to provide a reliable description of dispersion inter-
actions [34–36]. Although DFT-D2 (or similar approaches) is
computationally much less costly than ACFDT-RPA, it has yet
to be demonstrated whether this approach can be used to give
quantitatively reliable GSFEs. While the ACFDT-RPA should
be considered a benchmark against which such calculations
can be compared, the considerable computational resources
required for such calculation makes it extremely difficult to
obtain the GSFE using ACFDT-RPA.

In this paper, we describe the development of an approach to
obtain bilayer GSFEs that address the shortcomings of earlier
studies, i.e., to obtain GSFEs that are both accurate and general.
We present calculations of the GSFE landscapes and the energy
versus interlayer spacing for G/G, BN/BN, and G/BN bilayer
systems based on four different correction methods, i.e.,
DFT-D2, vdW-DF2, MGGA-MS2, and ACFDT-RPA. While
ACFDT-RPA has been shown to be more accurate than the
other approaches, we perform such a comparison to determine
whether these less computationally costly approaches yield
the qualitatively correct GSFE and to determine whether the
quantitative differences are sufficient to justify the additional
cost. In short, we find that, while one of the methods leads to
qualitatively incorrect results (e.g., incorrect ordering of the
energies of several high-symmetry disregistry states), the other
methods lead to significant quantitative errors (with respect to
the more accurate ACFDT-RPA results and each other). Next,
we proceed to the determination of accurate GSFE landscapes
and interlayer spacing based on ACFDT-RPA calculations.
We propose an analytical symmetry-respecting description of
these landscapes that can be accurately parametrized with a
small number of ACFDT-RPA calculations. This leads to a de-
scription of the bilayer GSFE and its dependence on interlayer
spacing that is suitable for use in multiscale methodologies

for determining the structure and properties of strained and
dislocated bilayer systems. The effectiveness of this function
is validated by detailed comparison of these analytical GSFE
landscapes and first-principles results. Finally, we show an
example of how to apply this approach to determine how shifts
(disregistry) between the layers affect properties; in this case
we focus on the band gap.

II. COMPUTATIONAL DETAILS

We examined the efficacy of several competing DFT
methods for determination of the GSFE and the relaxed
interlayer spacing as a function of disregistry. DFT-D2 simply
adds a semiempirical term to the KS energy to account for
the missing long-range interactions. DFT-D2 provides better
results than conventional density functionals with little added
computational cost. Unlike conventional functionals in the
local density approximation (LDA) or generalized gradient
approximation (GGA), the total exchange-correlation energy
in vdW-DF2 is separated into semilocal and nonlocal terms.
The semilocal term limits the gradient corrections to the
exchange term and a nonlocal term captures the correlation
that involves the electrodynamic coupling [29,37,38]. The
semilocal MGGA functional adds the kinetic energy density
of the occupied orbitals as input, whereas conventional GGA
uses only the density and the corresponding gradient as
input [32]. Because the kinetic energy density enables the
MGGA functional to capture the intermediate-range van
der Waals interaction, and the MGGA functional should be
suitable for studying weakly bonded layered materials [39,40].
The ACFDT-RPA is derived from the adiabatic-connection
fluctuation-dissipation theorem within a direct random phase
approximation [34]. Such calculations involve two distinct
parts. The correlation energy is described by

Ec = 1

2π

∫ ∞

0
dw Tr{ln [1 − χ0(iw)v] + χ0(iw)v}, (1)

where Tr indicates the trace, χ0 is the independent particle
response function, and v is the Coulomb kernel. The exchange
energy Ex is calculated within the Hartree-Fock approach.
Both parts are evaluated using the Perdew-Burke-Ernzerhof
(PBE) orbital to find the total ground-state energy E = Ex +
Ec. Previous research [35,36,41] suggests that ACFDT-RPA
should provide the most accurate description of the dispersion
interactions. However, this method requires substantially more
computational resources than the other methods, described
above.

All of the calculations were performed using the KS orbitals
from an initial calculation with the PBE functional [42],
followed by application of the correction methods. The calcu-
lations were performed using the Vienna ab initio simulation
package (VASP) [43–46] with the projector-augmented wave
method [47,48]. The detailed calculation parameters for all
the correction methods are summarized in Table I. The cutoff
energy (Ecut) and k meshes were optimized to ensure that the
energy converges to within 1 meV. We explicitly assume that
each layer in the bilayer is flat and that the two layers are
parallel to one another in all of the calculations.

155438-2



VAN DER WAALS BILAYER ENERGETICS: GENERALIZED . . . PHYSICAL REVIEW B 92, 155438 (2015)

TABLE I. The parameters used in the bilayer calculations for each correction method.

G/G BN/BN G/BN

Method Ecut (eV) k mesh Ecut (eV) k mesh Ecut (eV) k mesh

DFT-D2 500 36 × 24 × 1 700 24 × 14 × 2 720 24 × 14 × 2
vdW-DF2 680 20 × 12 × 3 800 20 × 12 × 2 780 20 × 12 × 2
MGGA-MS2 800 20 × 12 × 3 640 24 × 14 × 2 420 20 × 12 × 2
ACFDT-RPA exchange 540 16 × 16 × 2 540 16 × 16 × 2 540 16 × 16 × 2
ACFDT-RPA correlation 400 12 × 12 × 1 420 12 × 12 × 1 440 12 × 12 × 1

III. COMPARISON OF COMPUTATIONAL METHODS

We first calculated the in-plane lattice parameter a0 and
the equilibrium interlayer spacing d0 using all four correction
methods described above. (Note that for the G/BN case, we
strain the two layers to match lattice parameters and minimize
the energy with respect to the matched lattice parameter.) For
the cases where ACFDT-RPA was used, a0 was optimized
using the standard PBE functional while d0 was optimized
using the ACFDT-RPA method. These calculations were
first performed based on the experimentally observed layer
registry [51,54]; referring to Fig. 1, these are AB for G/G, AA′

for BN/BN, and AB for G/BN. The values of a0 and d0 obtained
are summarized in Table II. All the methods reproduce the

(a) G/G [1100]a0

[1
12

0]
a 0

/3

AB SP AA
(b) BN/BN-1

A’B AB’AA’
(c) BN/BN-2

SP AAAB
(d) G/BN

AB’ AAAB

FIG. 1. (Color online) Schematic representation of several high-
symmetry configurations of (a) G/G, (b) BN/BN-1, (c) BN/BN-2,
and (d) G/BN. The three figures for each bilayer correspond to
different disregistry states (disregistries resulting from the relative
displacements of the layers along the [11̄00] direction). The black,
blue, and red circles represent C, N, and B atoms, respectively. The
larger, open circles connected by dashed lines represent atoms in the
lower layer and the smaller solid circles connected by solid lines
represent atoms in the upper layer.

experimentally measured in-plane lattice parameters (a0) to
within better than 1%. However, the equilibrium interlayer
spacings (d0) show a variation of approximately 10% between
the methods for all three bilayer systems. In each case, d0 is
underestimated by DFT-D2 and overestimated by vdW-DF2
and MGGA-MS2, as compared with the experimental values.
In contrast, the values of d0 obtained using ACFDT-RPA are
in excellent agreement (to within 0.1 Å) with the experimental
results for all three bilayer systems [49,51,53].

We also calculated the n ⊗ n component of the elastic con-
stant tensor Cnn,0 (n is the bilayer normal; conventionally this
is C33) and the cohesive energy per area γcoh in the equilibrium
structure (i.e., the first images on the left in Fig. 1). These
quantities are defined as Cnn,0 = (d0/A)[d2E2L(δ)/dδ2]δ=d0

and γcoh = [E2L(∞) − E2L(d0)]/A, where E2L(δ) is the total
energy of the bilayer as a function of interlayer spacing δ, and
A is the area of each layer in the bilayer. The cohesive energy
here refers to the binding energy of the two layers (rather than
the energy of binding atoms); this can also be thought of as
the cleavage or adhesion energy. The values of Cnn,0 and γcoh

are listed in Table II.
Next, we investigated the GSFE and the relaxed interlayer

spacing versus disregistry along the high-symmetry [11̄00]
(armchair) direction as shown in Fig. 2 and Fig. 3, respectively.
The corresponding high-symmetry configurations are shown
in Fig. 1. For each disregistry, the interlayer spacing was
allowed to relax (i.e., we minimized the energy with respect to
interlayer spacing at fixed disregistry). For G/G and G/BN, all
of the high-symmetry configurations can be transformed into
one another by the translation of one layer with respect to the
other. However, for BN/BN, some high-symmetry configura-
tions (e.g., AB and AA′) cannot be related by translation; in
addition to the stable configuration AA′ [associated with the
minimum in Fig. 2(b)], a nonequivalent stable (metastable)
configuration AB exists [associated with the minimum in
Fig. 2(c)] corresponding to a 60◦ rotation of one layer of AA′

with respect to the other about an axis going through a pair
of atoms (normal to the layer). The set of disregistry states
generated from AA′ is labeled BN/BN-1 [see Fig. 1(b)]; the
set of disregistry states generated by AB is labeled BN/BN-2
[Fig. 1(c)].

For G/G and G/BN, all four correction methods indicate
that the stable structure is AB. Note that the apparent local
minimum in the G/BN GSFE curve along [11̄00] [Fig. 2(d)]
between the AB′ and AA states is a saddle point. For BN/BN,
the DFT-D2 correction predicts that the stable structure
corresponds to the AB state (in BN/BN-2) rather than the
AA′ state (in BN/BN-1); this contradicts the results from the
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TABLE II. The in-plane lattice parameter a0 (Å), the equilibrium interlayer spacing d0 (Å), the n ⊗ n component of the equilibrium elastic
constant tensor Cnn,0 (GPa), and the cohesive energy per area γcoh (mJ/m2) for bilayer G/G, BN/BN, and G/BN as determined using the four
correction methods and from experimental data. Each calculation was performed for the experimentally observed registry state, i.e., AB for
G/G, AA′ for BN/BN, and AB for G/BN (see Fig. 1).

G/G BN/BN G/BN

Method a0 d0 Cnn,0 γcoh a0 d0 Cnn,0 γcoh a0 d0 Cnn,0 γcoh

DFT-D2 2.46 3.25 38 308.9 2.51 3.12 55 402.5 2.49 3.14 44 373.8
vdW-DF2 2.47 3.55 30 297.3 2.52 3.51 24 291.6 2.50 3.51 36 298.9
MGGA-MS2 2.45 3.59 12 47.86 2.50 3.51 17 58.48 2.48 3.49 12 63.56
ACFDT-RPA 2.46a 3.39 30 558.5 2.50a 3.34 46 222.7 2.49a 3.32 33 345.4
Experimental data 2.46 [49]b 3.34 [49]b 36.5 ± 1.0 [50]b 2.50 [51]b 3.33 [51]b 32 ± 3 [52]b 3.32 [53]c

aThese data were obtained using the standard PBE functional.
bThese experimental data were obtained for bulk materials (graphite or hexagonal boron nitride) rather than bilayer structures.
cThese experimental data were obtained for heterostructures.

calculations using all of the other methods. The experimental
observation suggests that AA′ stacking is favored in bulk
hexagonal boron nitride [51]. Recent calculations based on
local second-order Møller-Plesset perturbation theory also
show that AA′ is the most stable state [20]. We therefore
conclude that the DFT-D2 correction does not yield the correct
equilibrium stacking in BN/BN. The other three methods show
the same order of stacking energies for BN/BN: AA′ and
AB are the most and second most stable states, respectively.
The energy difference between these two states is very small
(1.1–2.6 mJ/m2), which explains why both the AB and AA′

polytypes have been observed in experiments [51]. In addition,
our calculations also show that the AB′ state is metastable, with
an energy 8.4–20.2 mJ/m2 higher than that of the AA′ state.
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FIG. 2. (Color online) The GSFE versus disregistry along the
[11̄00] direction for (a) G/G, (b) BN/BN-1, (c) BN/BN-2, and (d)
G/BN. For BN/BN-1 and BN/BN-2, the reference configuration was
set to be AA′ (BN/BN-1).

Figure 3 shows the relaxed interlayer spacing as a function
of disregistry along the [11̄00] direction for all four correction
methods. The main features of the relaxed interlayer spacing
curves mimic those of the corresponding GSFE curves; i.e., the
positions of minima, maxima, and saddle points in the relaxed
interlayer spacing curves are also the positions of minima,
maxima, and saddle points in the GSFE curves. The obser-
vation of significant differences in the values of the relaxed
interlayer spacing with different correction methods suggests,
not surprisingly, that dispersion interactions are particularly
important in determining the relaxed interlayer spacing.

We now draw conclusions from the results in this section.
First, since the ACFDT-RPA has been widely shown to
reproduce the experimental bulk properties measured for many
materials [35], including layered systems [55], we use it as the
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FIG. 3. (Color online) The relaxed interlayer spacing versus dis-
registry along the [11̄00] direction for (a) G/G, (b) BN/BN-1, (c)
BN/BN-2, and (d) G/BN.
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benchmark for our bilayer studies. We find that, while all of
the other methods yield similar qualitative results (see Fig. 2
and Fig. 3), all have serious deficiencies. DFT-D2 predicts a
BN/BN stacking order that is inconsistent with experimental
observations [51]. MGGA-MS2 yields unphysically small
bilayer cohesive energies [56]. Using the ACFDT-RPA as
the reference, the error in the GSFE profile barrier (i.e., the
energy difference between the saddle point and the ground
state) is 7%–70% for DFT-D2, 39%–58% for vdW-DF2, and
44%–65% for MGGA-MS2 (the error ranges represent the
different bilayer systems). Therefore, while several of the more
computationally efficient alternatives to the ACFDT-RPA yield
qualitatively reasonable behavior, they cannot be depended on
to yield quantitatively reliable GSFE and relaxed interlayer
spacing for van der Waals bilayer systems. Based on these
conclusions, we focus on determining accurate GSFE and
relaxed interlayer spacing landscapes based on the ACFDT-
RPA. This requires developing an approach that reduces the
extremely high computational cost inherent to the ACFDT-
RPA approach while retaining the requisite accuracy. This is
achieved through the use of the bilayer symmetry and a flexible
fitting procedure.

IV. THE GSFE AND RELAXED INTERLAYER
SPACING LANDSCAPES

Since ACFDT-RPA is the most accurate method for
determining the GSFE and the relaxed interlayer spacing
curves along the [11̄00] direction and its result cannot be

quantitatively reproduced by other less costly methods for
such calculations, we view it as the only reliable choice for the
determination of the full GSFE and relaxed interlayer spacing
landscapes. However, performing ACFDT-RPA calculations
of these landscapes is too computationally costly to apply
over a fine three-dimensional grid of translations. Therefore,
we adopted the following strategy. First, we determine the
landscapes using the simplest (and least computationally
costly) correction method, DFT-D2, the results of which are
inaccurate but show the same qualitative trends as the other
(more costly) methods. Second, we construct an analytical
function to describe these landscapes that respects the struc-
tural symmetry. Third, we demonstrate that this function can
describe the full landscape with sufficient accuracy with fitting
to only a small set of data. Fourth, we obtain the same small set
of data using the ACFDT-RPA method. Finally, we generate
the GSFE and the relaxed interlayer spacing landscapes by
fitting the function to the ACFDT-RPA data for G/G, BN/BN,
and G/BN.

The upper panels of Fig. 4 and Fig. 5 show the GSFE
and relaxed interlayer spacing landscapes for G/G, BN/BN-
1, and G/BN obtained using the DFT-D2 (see Supplemental
Material [57] for additional results). These landscapes exhibit
the same general features (plane-groups: p6mm for G/G and
BN/BN-2, and p3m1 for BN/BN-1 and G/BN) except for scale.
The GSFE γ and relaxed interlayer spacing d landscapes can
be fitted to a symmetry-respecting function F (φ,ψ), where φ

and ψ are the disregistries along [1̄1̄20] (zigzag) and [11̄00]
(armchair), respectively:

F (φ,ψ) = c0 + c1

[
cos

2π

a0

(
φ + ψ√

3

)
+ cos

2π

a0

(
φ − ψ√
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)
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4πψ√
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√
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√
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(
2φ + 2ψ√

3

)
+ sin

8πψ√
3a0

]
, (2)

where c0–c5 are constants to be determined by fitting for
each bilayer material system. The constant c0 = −3(c1 + c2 +
c3) + F0, where F0 is the excess energy per area (in reference
to the ground state) at (φ,ψ) = 0 when F refers to the GSFE
γ , and F0 is the relaxed interlayer spacing at (φ,ψ) = 0 when
F is the relaxed interlayer spacing d. This function is the
same as that proposed by Xiang et al. [58]. While it has the
flexibility to describe a landscape with either p3m1 or p6mm
symmetry, in cases where the symmetry is p6mm (i.e., G/G
and BN/BN-2) the number of independent parameters can be
reduced from five to three; i.e., c4 = √

3c1 and c5 = −√
3c3.

For the systems with landscapes of p3m1 symmetry
(BN/BN-1 and G/BN), there are only five independent
parameters in the function, so five independent data points

should suffice to fit this function for each landscape. For the
systems for which the landscapes possess p6mm symmetry,
i.e., G/G and BN/BN-2, only three independent data points
are needed. In order to validate this approach, we fitted the
parameters to six or four nonequivalent data points obtained
by DFT-D2 for each landscape (of either GSFE or relaxed
interlayer spacing); an extra point was added to improve the
fitting quality. The positions of these points were chosen as
indicated by the white stars in Fig. 4. The fitted GSFE and
relaxed interlayer spacing landscapes are shown in the lower
panels of Fig. 4 and Fig. 5, respectively (the fitting parameters
are reported in the Supplemental Material [57]). Comparison
of these fits with the results of direct calculations (upper panels
of Fig. 4 and Fig. 5) shows that excellent agreement is obtained

155438-5



ZHOU, HAN, DAI, SUN, AND SROLOVITZ PHYSICAL REVIEW B 92, 155438 (2015)

a 0

3a0

(a)

(b)

(c)

(d)

(e)

(f)

0

20

40

60

80

100
110

mJ/m2

FIG. 4. (Color online) The GSFE landscapes determined using the DFT-D2 method for (a) G/G, (c) BN/BN-1, and (e) G/BN. All the
energies are obtained by relaxing the interlayer spacing. These images are contour plots constructed using the calculation data at the location
of the white dots and stars. The best fits of the function form of Eq. (2) to the six/four data points at the positions labeled by the white stars in
(a), (c), and (e) are shown in (b), (d), and (f), respectively.

over the entire disregistry landscape. This demonstrates the
validity and accuracy of the proposed function and fitting
procedure.

Given the excellent fits that Eq. (2) provides for the GSFE
and relaxed interlayer spacing landscapes based on six or
four DFT-D2 data points, we employed the same approach to
generate the GSFE and relaxed interlayer spacing landscapes
based on the same limited set of data points obtained using
the ACFDT-RPA approach. The resultant GSFE and relaxed
interlayer spacing landscapes are shown in Fig. 6 and Fig. 7,
respectively. The parameters in Eq. (2) obtained using the
ACFDT-RPA method are reported in Table III.

There are two minima in the GSFE landscapes of G/G
and BN/BN-2 within one period of disregistry; they have
exactly the same energy (i.e., the ground-state energy) and the
corresponding structures are equivalent. The structure created
by displacing the upper layer of the AB configuration with
respect to the lower layer [see Fig. 1(a) and 1(c)] in the
〈11̄00〉 direction by a0/

√
3 is equivalent to that created by

inverting the stacking order of the AB configuration (i.e.,
the BA configuration). For BN/BN-1, there is one global

minimum and one local minimum corresponding to the stable
AA′ and metastable AB′ states, respectively [see Fig. 1(b)].
The local minimum corresponds to an intrinsic stacking fault.
The G/BN GSFE landscape exhibits only one minimum; i.e.,
AB is the only stable state in G/BN and there are no metastable
states.

The vector that connects the nearest neighboring global
and/or local minima in the GSFE landscape can be interpreted
as the Burgers vector of an interlayer dislocation in the bilayer
system (this Burgers vector lies in the bilayer plane). For
G/G, BN/BN-1, and BN/BN-2, these are partial dislocations
with Burgers vector a0

3 〈11̄00〉, implying that dislocation
dissociations of the type a0

3 [1̄1̄20] → a0
3 [01̄10] + a0

3 [1̄010]
can occur and generate a stacking fault region between
the two partials. For G/G and BN/BN-2, the stacking fault
structure (corresponding to the BA state) is equivalent to
the unfaulted structure (corresponding to the AB state) as
shown in Fig. 1. (Note that, since the AB and BA states have
the same energy, there is no stacking-fault energy, yet the
dislocation corresponding to a0

3 〈11̄00〉 should be viewed as a
partial dislocation in the sense that this translation is not a

a 0

3a0

(a)

(b)

(c)

(d)

(e)

(f)

3.1

3.2

3.3

3.4

3.5
Å

FIG. 5. (Color online) The relaxed interlayer spacing landscapes determined using the DFT-D2 method for (a) G/G, (c) BN/BN-1, and (e)
G/BN corresponding to the GSFE landscapes in Fig. 4. The best fits of the functional form of Eq. (2) to the six/four data points at the positions
labeled by the white stars in panels (a), (c), and (e) of Fig. 4 are shown in (b), (d), and (f), respectively.
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a 0

3a0

(c) BN/BN-2 (d) G/BN

(b) BN/BN-1(a) G/G

0 20 40 60 70
mJ/m2

FIG. 6. (Color online) The GSFE landscapes derived from fitting
six or four data points (indicated by white stars) obtained from
ACFDT-RPA for (a) G/G, (b) BN/BN-1, (c) BN/BN-2, and (d) G/BN
to the function form of Eq. (2).

full translation vector of the lattice.) In the G/BN case, there
is only a single minimum within one disregistry period. The
vector connecting the nearest neighboring minima is a0

3 〈1̄1̄20〉,
corresponding to a full dislocation in this bilayer system (i.e.,
no dissociation is possible).

The layers in a bilayer can slide relative to one another; for
different bilayer systems, the preferred sliding directions are
different. Such information is also contained in the GSFE land-
scape. The preferred sliding directions for G/G and BN/BN-2
are 〈11̄00〉. The associated energy barriers are symmetric for
forward and backward sliding; the barriers are 7.9 mJ/m2 and
15.7 mJ/m2 for G/G and BN/BN-2, respectively. For BN/BN-
1, the preferred sliding direction is also 〈11̄00〉, but because
of the existence of the stacking fault (corresponding to the
metastable AB′ state) the barriers are asymmetric; the forward-
sliding (AA′ → AB′) and backward-sliding (AB′ → AA′)
barriers are 25.2 mJ/m2 and 4.1 mJ/m2, respectively. Finally,
for G/BN, sliding occurs in the 〈11̄20〉 direction with a barrier

a 0

3a0

(a) G/G (b) BN/BN-1

(c) BN/BN-2 (d) G/BN

3.3 3.4 3.5 3.6 3.65
Å

FIG. 7. (Color online) The relaxed interlayer spacing landscapes
derived from fitting six or four data points obtained from ACFDT-RPA
for (a) G/G, (b) BN/BN-1, (c) BN/BN-2, and (d) G/BN to the function
form of Eq. (2).

TABLE III. The parameters in the fits of Eq. (2) to the ACFDT-
RPA data. The units for c0–c5 are mJ/m2 and Å in the fits to the data
of GSFE and relaxed interlayer spacing, respectively.

Parameter G/G BN/BN-1 BN/BN-2 G/BN

GSFE, γ

c0 21.336 31.584 28.454 39.222
c1 −6.127 −9.935 −7.160 −11.96
c2 −1.128 −0.918 −0.496 −0.748
c3 0.143 0.325 −0.339 −0.366
c4

√
3c1 −7.848

√
3c1 1.640

c5 −√
3c3 0.670 −√

3c3 0.201
Relaxed interlayer spacing, d

c0 3.47889 3.44998 3.42584 3.45362
c1 −0.02648 −0.03667 −0.03375 −0.04510
c2 −0.00352 −0.00333 0.00250 0.00000
c3 0.00037 0.00334 −0.00236 0.00056
c4

√
3c1 −0.03752

√
3c1 0.00866

c5 −√
3c3 0.00481 −√

3c3 0.00096

of 51.1 mJ/m2. In practice, sliding is likely to occur via the
motion of dislocations rather than rigid sliding of one entire
layer. The resistance to sliding should be the Peierls barrier for
dislocation motion which, in such systems, is expected to be
very low because the dislocation core widths in van der Waals
bilayer systems are very large [59]. The rigid sliding case can
be thought of as providing the theoretical upper bound on the
true sliding resistance.

V. THREE-DIMENSIONAL GSFE

The conventional definition of GSFE is the stacking-fault
energy as a function of disregistry at the relaxed interlayer
spacing for each disregistry state. However, the out-of-plane
separation is also an interesting variable; it is important for
evaluating how individual layers are assembled or decreed,
for evaluating the ease of intercalating atoms/molecules
between the layers of a bilayer, or for understanding the
elastic distortion of the bilayer upon introduction of defects.
The stacking-fault energy is sensitive to strain [23,24]. To
enable the application of first-principles input for bilayer
deformation more general than pure sliding, we extended the
two-dimensional GSFE to three dimensions, i.e., γ (φ,ψ) →
�(φ,ψ,δ), where δ is the variable interlayer spacing.

� is the excess energy per area relative to the equilibrium
configuration (i.e., AB for G/G, AA′ for BN/BN, or AB for
G/BN). We propose a simple form for the dependence of �

on δ,

�(φ,ψ,δ) = A exp (−αδ) − B

(
d

δ

)4

+ γcoh, (3)

where A, B, and α are functions of φ and ψ and d(φ,ψ)
is the relaxed interlayer spacing. The first term in Eq. (3)
is of the Morse-potential type, an empirical description of
the short-range repulsion. The second term guarantees that
the energy converges to the functional form expected for the
long-range part of the van der Waals interaction. The power in
the van der Waals term (δ−4) results from the double integral of
the classical r−6 interatomic form to account for the interaction
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between two layers. We note that the power law for graphite
has been reported [41] to be δ−4.2 for 3 Å � δ � 9 Å and for
large δ the dominant term is δ−3. Here, given the empirical
nature of this fit, we focus on the more widely applicable δ−4

form for bilayer materials.
There are four δ-independent functions in Eq. (3), i.e., A,

B, α, and d. d as a function of φ and ψ were reported above.
Focusing on the behavior of � in the vicinity of the relaxed
interlayer spacing d(φ,ψ), we can determine A, B, and α from
the three conditions

�(φ,ψ,δ)

∣∣∣∣
δ=d(φ,ψ)

= γ (φ,ψ),

∂�(φ,ψ,δ)

∂δ

∣∣∣∣
δ=d(φ,ψ)

= 0,

∂2�(φ,ψ,δ)

∂δ2

∣∣∣∣
δ=d(φ,ψ)

= Cnn(φ,ψ)

d(φ,ψ)
≡ κ(φ,ψ), (4)

where Cnn(φ,ψ) is the n ⊗ n component of the elastic constant
tensor at each (φ,ψ) disregistry state. In principle, A, B, and α

in Eq. (3) can be determined by Eq. (4) if the functions γ (φ,ψ),
d(φ,ψ), and Cnn(φ,ψ) are known. γ (φ,ψ) and d(φ,ψ) have
been obtained by fitting Eq. (2) to the ACFDT-RPA results
in Sec. IV. However, the accurate ACFDT-RPA calculation of
Cnn(φ,ψ) was considered to computationally costly for direct
calculation. Our strategy to limit such computation is to ignore
the φ dependence and ψ dependence of ∂2�/∂δ2 and instead
use κ = κ0 ≡ Cnn,0/d0 evaluated at the equilibrium registry
(φ = 0,ψ = 0). In this way, Eq. (4) becomes

α = {−[κ0d
2 − 20(γ − γcoh)]

−
√

[κ0d2 − 20(γ − γcoh)]2 + 64κ0d2(γ − γcoh)}/
[8d(γ − γcoh)],

A = [4(γ − γcoh) exp (αd)]/(4 − αd),

B = [αd(γ − γcoh)]/(4 − αd). (5)

Based on Eq. (3) and Eq. (5), extension of the GSFE to three
dimensions requires only one additional material parameter
κ0 = Cnn(φ = 0,ψ = 0)/d0 = Cnn,0/d0.

In order to validate the simple form of Eq. (3) and to
ensure that the assumption κ(φ,ψ) = κ0 is reasonable, we
compare the G/G bilayer data directly calculated by DFT-D2
for a set of (φ,ψ,δ) and the � hypersurface constructed
according to Eq. (3) with the fitted γ (φ,ψ) and d(φ,ψ).
First, we examine the behavior of �(φ′,ψ ′,δ), where (φ′,ψ ′)
correspond to the AB, AA, and SP states (see Fig. 8). Overall,
the � versus δ curves show the correct behavior, especially
near the minimum for all three registries. The agreement is
especially good near the minima δ = d(φ′,ψ ′), where the fit
was performed. Slight deviations between the calculations and
the fit are observed only for the AA state [corresponding to
a maximum in γ (φ,ψ)]; however, this is of little significance
since this corresponds to the most unstable disregistry (i.e.,
one which would likely never be observed in equilibrium or in
dynamic processes). Next, we examine �(φ,ψ,δ′) for several
interlayer spacings near the minimum in δ; see the comparison
of these fit forms with those obtained directly from the DFT-D2
calculations in Fig. 9. The upper panels of this figure show the

FIG. 8. (Color online) The plot of �(φ′,ψ ′,δ) based on the DFT-
D2 calculations of G/G. The curves are constructed according to
Eq. (3) with the fitted γ (φ,ψ) and d(φ,ψ); the points denote the raw
data directly obtained by DFT-D2 calculations. (φ′,ψ ′) is taken to be
associated with AB (φ′ = 0,ψ ′ = 0), AA (φ′ = 0,ψ ′ = a0/

√
3), and

SP (φ′ = 0,ψ ′ = 5
√

3a0/6) disregistry states.

DFT-D2 calculations (first row) and fit landscapes (second
row) and the lower panel of Fig. 9 shows the same comparison
along [11̄00]. These results shows that the fitted � profile
[Eq. (3)] agrees well with the direct calculation data except
near the peak in γ (φ,ψ); the minimum at AB and the saddle
point at SP are accurately determined. The deviation near
the peak can be understood from the constraints employed
in fitting. The first constraint in Eq. (4) on the �(φ,ψ,δ)
is that, for each state (φ,ψ), the interlayer spacing δ is at
its equilibrium value d(φ,ψ); i.e., �(φ,ψ,δ) is exactly equal
to γ (φ,ψ). Naturally, the deviation between the fitted form
of �(φ,ψ,δ) and the DFT-D2 results arises with increasing
deviation of the interlayer spacing from where the fitting was
done, i.e., d(φ,ψ). Indeed, we find that the fit is excellent for
the AA state near δ = 1.02d0 [close to equilibrium spacing
for AA; Fig. 9(i)] and gets worse as the spacing decreases
from d0 [Fig. 9(h)] to 0.962d0 [Fig. 9(g)]. Also, the third
constraint in Eq. (4) and the assumption that κ(φ,ψ) = κ0

guarantee that the deviation of the fitted � profile from the
DFT results is always small near the stable state (AB state).
As the result of mechanical deformation, the local structure
will be dominated by the stable state (which we reproduce by
design) and the path between stable and/or metastable states;
Fig. 9 shows that we properly reproduce the energy associated
with all states between these (including the saddle-point
state).

Given the function Eq. (3) works so well as δ varies
around d(φ,ψ) based on the DFT-D2 data, we employed
the same strategy with input data obtained from the ACFDT-
RPA calculations to make accurate three-dimensional GSFE
predictions. The �(φ,ψ,δ′) surfaces fitted to the ACFDT-RPA
data are shown in Fig. 10, where δ′/d0 = 0.95, 1, 1.05, and
1.15, each for G/G, BN/BN-1, and G/BN bilayer systems. The
� hypersurfaces obtained here are accurate in the sense that
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FIG. 9. (Color online) The G/G �(φ,ψ,δ′) surfaces obtained directly from the DFT-D2 data at (a) δ′/d0 = 0.962, (b) δ′/d0 = 1, and
(c) δ′/d0 = 1.02, and those derived from Eq. (3) parametrized by the data at (d) δ′/d0 = 0.962, (e) δ′/d0 = 1, and (f) δ′/d0 = 1.02. The
corresponding � profiles along [11̄00] are shown in (g), (h), and (i).

they are parametrized via the accurate ACFDT-RPA data; they
are expected to be valid at least near the minimum interlayer
spacings and be reasonable at all interlayer spacings accessible

to experiments (e.g., elastic deformation, bilayer formation and
decohesion, interlayer sliding [60], and bilayer-dislocation-
core distortion [59]).
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mJ/m2
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(e) (f) (g) (h)

(i) (j) (k) (l)
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δ /d0 = 1 δ /d0 = 1.05 δ /d0 = 1.15

FIG. 10. (Color online) The �(φ,ψ,δ′) surfaces for G/G (a–d), BN/BN-1 (e–h), BN/BN-2 (i–l), and G/BN (m–p) derived from Eq. (3) and
parametrized by the ACFDT-RPA data at δ′/d0 = 0.95, 1, 1.05, and 1.1.
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In summary, the three-dimensional generalized stacking-
fault energy is

�(γ,d; δ) = A(γ,d)e−α(γ,d)δ − B(γ,d)

(
d

δ

)4

+ γcoh, (6)

where, of course, γ and d are functions of φ and ψ . In this way,
the complete three-dimensional GSFE can be written using
this function where A(γ,d), B(γ,d), and α(γ,d) are given in
Eq. (5), and γ (φ,ψ) and d(φ,ψ) are given explicitly in Eq. (2)
with parameters from Table III. The remaining parameters in
Eq. (5) are γcoh and κ0 ≡ Cnn,0/d0 which may be obtained
directly from Table II.

VI. BAND-GAP LANDSCAPES

Finally, just in order to exemplify how the disregistry states
determine the local properties of bilayers, we present the
calculation of the band gap as a function of disregistry.

The electronic band structure of a bilayer system can
be modified by changing the disregistry of one layer with
respect to the other. The presence of defects such as interlayer
dislocations and twist boundaries can locally produce such
variation in disregistry and thus induce spatial variation in the
band structure on a length scale that can be manipulated by, for
example, changing twist angle between layers or by choosing
van der Waals layers which are misfitting with respect to one
another (hetero-bilayers). It has been proposed that spatial
variations in the band gap can be used to funnel excitons
into local band-gap minimum regions; this mechanism can be
used for solar energy harvesting and electroluminescence [61].
Local variations in band gap should be observable using
scanning tunneling spectroscopy (STS); macroscopic changes
in band structure with layer rotation in bilayer graphene
has been observed via Raman spectroscopy (and explained
theoretically) [62,63]. The implementation of such band-gap
engineering relies on knowledge of the spatial variation of
disregistry (φ(r),ψ(r)) and the band gap versus disregistry
landscape Eg(φ,ψ). The disregistry distribution (φ(r),ψ(r))
associated with interlayer twist or misfit dislocations can
be obtained by minimizing the total energy including the
interlayer bonding energy γ (φ,ψ) and elastic strain energy
(e.g., using the Peierls-Nabarro model [16]). Here, we report
the band-gap landscapes Eg(φ,ψ) for G/G, BN/BN, and G/BN
bilayer systems.

The two steps in the calculation of Eg(φ,ψ) for each bilayer
system are (1) determining the relaxed interlayer spacing
versus disregistry d(φ,ψ) and (2) determining the band gap as
a function of disregistry at the appropriate interlayer spacing.

The first step was reported above using the ACFDT-
RPA method. It is noted that the reasonable band gap can
be obtained on the premise that the disregistry structure
(particularly relaxed interlayer spacing) is correct. The fitting
scheme proposed above enables us to obtain the reliable
disregistry structure based on the ACFDT-RPA approach;
without such strategy, it is impossible to obtain the reliable
band gap even if the band-gap calculation method is absolutely
accurate.

For the second step, we determine the band gap by
combining the results of conventional LDA functional and
HSE hybrid functional [64]. Since calculations using the LDA

(a)
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5500 5550 5600 5650 5700

5500 5550 5600 5650 5700

(c) BN/BN-2 (d) G/BN

40 45 50 55 60

FIG. 11. (Color online) The band-gap (meV) landscapes for (a)
G/G, (b) BN/BN-1, (c) BN/BN-2, and (d) G/BN. Note that the LDA
results in (b) and (c) were shifted by 1470 meV and the LDA results
in (d) by 5 meV to be consistent with HSE calculations.

are computationally efficient, we map out the entire band-gap
landscapes via an LDA functional. However, it is well known
that the band gaps of semiconductors and insulators are
commonly underestimated using LDA [65] (such systematic
error is attributed to the fact that in the LDA the energy versus
number of charges is convex rather than linear [66]). It has been
shown that hybrid functionals, such as HSE, can effectively
avoid this problem [66] and, indeed, HSE yields a reliable band
gap for many semiconductors [67]. However, it is impractical
to produce the entire band-gap landscapes using HSE since
such calculation are computationally costly. Our strategy is
to shift the LDA results by a constant value determined from
the data for a few disregistry states produced by HSE (see
Supplemental Material [57] for details).

Figure 11 shows the band-gap landscapes for G/G, BN/BN-
1, BN/BN-2, and G/BN. For G/G [Fig. 11(a)], the band
gap vanishes at the equilibrium AB registry state; this is
consistent with the well-known result that the ground-state
bilayer graphene is metallic [68]. Although the band gap can
be opened up to 400 meV as the unstable AA state is reached,
this state can never be accessed in any local position of a G/G
bilayer or during a realistic mechanical process. The maximum
band gap that might be actually achieved is about 200 meV,
corresponding to the SP state, since the SP state may locally
exist in the core of a bilayer dislocation. For G/BN [Fig. 11(d)],
the variation of band gap with the change of disregistry is very
small (only 30 meV). It shows that Eg(unstable AA state) >

Eg(unstable AB′ state) > Eg(stable AB state); such order is
consistent with the results of earlier study [7] (although in
the earlier study the relaxed interlayer spacing was obtained
by LDA rather than ACFDT-RPA). In general, BN/BN has
much larger band gap than G/G and G/BN. For BN/BN-1
[Fig. 11(b)], the maximum band gap is about 5.8 eV, which
occurs at the stable AA′ registry state. Beyond the AA′ state,
the variation of band gap is mild with the change of disregistry
(including the metastable AB′ state). The minimum band gap
occurs near the saddle point (about 5.5 eV). The situation
of BN/BN-2 is quite similar to that of BN/BN-1, i.e., the
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maximum and minimum band gaps correspond to the stable
state and the saddle point, respectively, and they are also at
the same scale as the band gaps of the respective states in
BN/BN-1.

Figure 11 shows the band-gap landscapes for G/G, BN/BN-
1, BN/BN-2, and G/BN. For G/G [Fig. 11(a)], the band gap
vanishes at the equilibrium AB registry state; this is consistent
with the well-known result that the ground state of bilayer
graphene is metallic [68]. Although the band gap can be as
wide as 400 meV at the most unstable disregistry (the AA
state), this state will likely never be accessed anywhere in
the G/G bilayer (including at dislocation cores) or during
realistic mechanical processes (e.g., sliding). We suspect that
the maximum band gap that will be observable in spots in
a G/G bilayer may be ∼200 meV, corresponding to the SP
state, since the saddle-point configuration may exist within
the core of a bilayer dislocation. For G/BN [Fig. 11(d)], the
variation of band gap with the change of disregistry is very
small (only 30 meV). It shows that Eg(unstable AA state) >

Eg(unstable AB′ state) > Eg(stable AB state); this order is
consistent with the results of an earlier study [7] (although
in the earlier study the relaxed interlayer spacing was obtained
by LDA rather than ACFDT-RPA). In general, BN/BN has
a much larger band gap than G/G and G/BN. For BN/BN-1
[Fig. 11(b)], the maximum band gap is ∼5.8 eV, which occurs
at the stable AA′ registry state. Beyond the AA′ state, the
variation of the band gap with disregistry is small (including
the metastable AB′ state). The minimum band gap occurs near
the saddle point (∼5.5 eV). The situation for BN/BN-2 is quite
similar to that of BN/BN-1; i.e., the maximum and minimum
band gaps (and their magnitude) correspond to the stable
state and the saddle point in both BN/BN-1 and BN/BN-2,
respectively.

VII. DISCUSSION AND CONCLUSIONS

The structure, energy, and band structure of G/G, BN/BN,
and G/BN bilayers are functions of the disregistry between
the layers. An accurate determination of the bilayer structure
and energy depends sensitively on the manner in which the
dispersion interactions are treated. We found that, while many
of the corrections methods employed today for the determi-
nation of these interactions can lead to qualitatively correct
trends in the bilayer energy and the relaxed interlayer spacing
with disregistry, only the ACFDT-RPA method (among all of
the methods tested) leads to reliable quantitative predictions.
Unfortunately, the computational cost for the ACFDT-RPA
method is high. This makes its routine application in situations
where a large number of calculations are required prohibitive.
Such a case is the determination of the energy as a function of
disregistry and interlayer spacing—our focus in this report.

In order to overcome the difficulty associated with this high
computational cost, we adopted the following strategy. First,
we calculated the relaxed interlayer spacing and energy as
a function of disregistry using the computationally efficient
DFT-D2 method and demonstrated that these results could
be accurately fitted to an empirical function that respects the
bilayer symmetry. We also demonstrated that this fit can be
obtained with excellent accuracy based on a small number of
disregistries. Using this validated fitting approach, we then

obtained the requisite data for fitting the bilayer energy and
interlayer spacing functions using the accurate ACFDT-RPA
method. This approach allowed us to accurately determine
the entire energy and relaxed interlayer spacing landscapes
at reasonable computational cost. These landscapes provide
an accurate prediction of not only the equilibrium bilayer
structural state, but also the metastable states and the barriers
between these states. Such barriers are upper bounds on the
resistance to layer sliding.

The bilayer energy as a function of disregistry (the general-
ized stacking-fault energy) is important for the determination
of defect structures in bilayers. For example, edge dislocations
are intrinsic features in many hetero-bilayer systems, such
as G/BN, where they can account for the mismatch in
lattice constants. The extended dislocation core structure of
such hetero-bilayer structures is sensitive to the generalized
stacking-fault energy. With only the generalized stacking-fault
energy and the elastic constants of the individual layers as
input, a generalized Peierls-Nabarro model [58,69,70] can be
formulated to predict detailed dislocation structure.

Equally interesting is the case where the two layers in
a homo- or hetero-bilayer structure are rotated with respect
to one another. Such twisted bilayers have been described
as a moiré structures, although the actual structure will be
considerably different and more appropriately described as
composed of a two-dimensional periodic array of screw
dislocations, at least at small twist angles. This structure
too can be predicted using the same type of generalized
Peierls-Nabarro model [16,58,69,70].

Using the relaxed interlayer spacing and energy results,
we also calculated the band-gap landscapes by correction
scheme: correct the band gap produced by LDA functional
according to the fewer data obtained by HSE functional.
These results show that the band gap varies in the range
of 0–0.4 eV in G/G, 5.5–5.8 eV (5%) in BN/BN, and
0.04–0.07 eV (100%) in G/BN. This implies that in both
homo-bilayer systems, where the two layers are rotated relative
to each other, and hetero-bilayer systems with or without
rotation, the band gap will vary from region to region through
the bilayer. Such a variation should be directly observable
using scanning tunneling spectroscopy. For the case of homo-
bilayer rotation, this will lead to a two-dimensional periodic
band structure with the periodicity determined by the twist
angle [71]. These periodic variations in band structure can
lead to an electronic metamaterial behavior that can be used
to engineer excitonic behavior to tailor properties. The present
band gap and generalized stacking-fault energy provide the
basis for future prediction of defect structure and electronic
behavior of homo- and hetero-structured van der Waals layered
systems.
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