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Singularities in the Andreev spectrum of a multiterminal Josephson junction
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The energies of Andreev bound states (ABS) forming in an N -terminal junction are affected by N − 1
independent macroscopic phase differences between superconducting leads and can be regarded as energy
bands in (N − 1)-periodic solids owing to the 2π periodicity in all phases. We investigate the singularities and
peculiarities of the resulting ABS spectrum combining phenomenological and analytical methods and illustrating
with the numerical results. We pay special attention to spin-orbit (SO) effects. We consider Weyl singularities
with a conical spectrum that are situated at zero energy in the absence of SO interaction. We show that the
SO interaction splits the spectrum in spin like a Zeeman field would do. The singularity is preserved while
departing from zero energy. With SO interaction, points of zero energy form an (N − 2)-dimensional manifold
in an (N − 1)-dimensional space of phases, while this dimension is N − 3 in the absence of SO interaction.
Singularities of other types are situated near the superconducting gap edge. In the absence (presence) of SO
interaction, the ABS spectrum at the gap edge is mathematically analogous to that at zero energy in the presence
(absence) of SO interaction. We demonstrate that the gap edge touching (GET) points of the spectrum in principle
form an N − 2 (N − 3) dimensional manifold when the SO interaction is absent (present). Certain symmetry
lines in the Brillouin zone of the phases are exceptions from this rule, and GET there should be considered
separately. We derive and study the effective Hamiltonians for all the singularities under consideration.
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I. INTRODUCTION

Superconducting junctions give rise to many interesting and
unique physical phenomena, this being a base of the numerous
applications in the field of quantum devices. A conventional
Josephson junction with two superconducting leads hosts the
Andreev bound states (ABS), which carry the supercurrent
determined by the difference of macroscopic phases of the
leads [1]. The properties of ABS may be altered by connecting
the superconductors with special materials. For example, the
exchange field in a ferromagnetic junction splits the ABS
energies in spin. This may result in the π state [2]. Recent
studies address topologically protected bound states with
zero energy, called Majorana bound states, that occur in the
1D semiconductor nanowire with spin-orbit (SO) interaction,
Zeeman splitting, and proximity-induced superconducting gap
[3–6]. The presence of Majorana bound states in the junction
may double the period of the current-phase relation [7–9]. The
coexistence of SO interaction and Zeeman effect breaks the
spin-rotation and time-reversal symmetries. With symmetry
broken, the Josephson current is not an odd function of the
phase difference. This is called the anomalous Josephson effect
[10–14].

The Josephson junctions involving various materials have
been mostly investigated in two-terminal setups. There is a
recent interest in multiterminal Josephson junctions [15–17].
Such junctions have been realized, for instance, with crossed
InSb/As nanowires [18], where SO interaction is strong. A
multiterminal Josephson junction with N superconducting
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leads is affected by N − 1 independent phase differences. The
energies of ABS are 2π periodic in all phase differences. The
system of energy levels of ABS can be regarded as a band
structure in N − 1 dimensions. The phase differences play
the role of quasimomenta [16]. The multiterminal junctions
may exhibit topological properties even if the superconducting
leads and the connecting region are not made from topological
or other exotic materials. In the case of two-terminal junctions,
the Andreev levels touch zero energy only when the transmis-
sion coefficient of the normal region is unity and the phase
difference is ϕ = ±π . For the multiterminal junctions, the
Andreev levels can reach zero energy at some isolated points in
(N − 1)-dimensional space of phase differences [15–17]. Such
points are topologically protected being the Weyl singularities
studied theoretically in 3D solids [19].

The energy gap closes at a Weyl point and satisfies a conical
dispersion in the vicinity of the point. The Berry curvature
field is divergent at the Weyl points. They can be regarded
as Dirac monopoles of the Berry curvature field bearing the
topological charge, ±1. A band structure with Weyl points
can be continuously transformed to that without the points if
two Weyl points with opposite topological charge meet each
other to annihilate. In a 3D solid, the SO interaction and the
inversion-symmetry breaking are essential for occurrence of
the stable Weyl point [19–21]. Very recently, angle-resolved
photoemission spectroscopy experiments confirmed the exis-
tence of Weyl points in 3D solids, such as TaAs [22–24], TaP
[25], and NbAs [26].

Riwar et al. [16] demonstrate the presence of Weyl points
in multiterminal short Josephson junctions. In contrast to
solids, the Weyl point does not require SO interaction.
The Andreev levels are Kramers degenerate for the whole
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(N − 1)-dimensional ϕ space. They discuss the transconduc-
tance to detect the Chern number due to the Weyl points
by using one phase as a control parameter to switch the
topological state. To reveal experimental signatures of the
topology associated with Weyl points, the authors of Ref. [16]
propose the following scheme. They consider a 2D band
structure that depends on the two phases, ϕ1 and ϕ2. The
property of this band structure can be tuned by the remaining
phase, ϕ3. The 2D band structure is characterized by a Chern
number that is proportional to the flux of Berry curvature field
through a (ϕ1,ϕ2) 2D plane. The Chern number is changed by 1
any time the plane crosses the position of Weyl singularity. The
Chern number is observed as a quantized transconductance
between the leads 1 and 2, in similarity with the quantum Hall
effect.

Hech et al. [15] and Padurariu et al. [17] also study the
Andreev levels at energies close to zero in a three-terminal
Josephson junction. The authors claim that the zero-energy
states in such junctions may open opportunity for a single
fermion manipulation. In the three-terminal junctions, the
Weyl singularity is generally absent although the energy of
the ABS can pass zero. The authors obtain a condition for
zero-energy ABS and study the density of states in detail.
When SO interaction is present, the energy levels of the ABS
are split in spin.

In this study, we investigate theoretically the singularities
in the ABS spectrum of a four-terminal Josephson junction
taking SO interaction into account. We thus attempt to
formulate the full picture of such singularities combining
phenomenological and analytical methods and illustrating it
with numerical results. The ABS energies are found from
Beenakker’s determinant equation [27] using the scattering
matrix of the junction. Mostly we concentrate on the case of a
short junction where we can disregard the energy dependence
of the scattering matrix. Sometimes the absence of energy
dependence leads to extra degeneracy in the spectrum. To
lift this we take into account the energy dependence by
perturbation theory.

First, we concentrate on Weyl singularities that occur at
E = 0 in the absence of SO interaction. We consider the
behavior of the singularities upon gradual increase of the
strength of SO interaction. We have found that SO interaction
splits the spectrum of ABS in spin, very much like the
Zeeman effect would do. The conical points are departed from
E = 0 to mirror symmetric positive and negative energies.
The Weyl singularities thus remain topologically protected.
A small modification of the scattering matrix by a parameter
changes the position of the mirror symmetric conical points,
not eliminating them. As we show in a numerical illustration,
an annihilation of Weyl points of opposite charge can take place
upon the tuning of the scattering matrix. We derive the effective
Hamiltonian describing the vicinity of the Weyl points. The
cones in the vicinity intersect E = 0 at a 2D surface in a 3D
space of the phases. We prove that this is the general property
of the ABS spectrum in the presence of SO interaction.

Singularities of a different type arise when ABS energies
approaches the gap edge, E = �. Owing to mirror symmetry
of the Andreev spectrum, there is a level with E = −� at the
same position in the space of the phases. We formulate a math-
ematical analogy that permits us to map Weyl singularities

at E = 0 in the presence (absence) of the SO interaction to
singularities at E = � in the absence (presence) of the SO
interaction. Since the ABS energies in the presence of SO
interaction reach zero energy at the 2D surface, we expect the
gap touching point to form 2D surfaces in the absence of SO
interaction. Indeed this can be seen in a concrete numerical
calculation. Employing the same analogy from the fact that
without SO interaction the ABS energies reach zero at isolated
points only, we derive that the gap edge touching (GET) in the
presence of SO interaction generally occurs only at the isolated
point. This implies that even a weak SO interaction removes
the GET. We construct the effective Hamiltonian to describe
this situation. In this case, a weak energy dependence of the
scattering matrix can also become important. An important
peculiarity of the ABS spectrum concerns the vicinity of
symmetry lines in a 3D elementary cell of the space of the
phases. Three of the four superconducting phases are the same
at a symmetry line. Therefore the four-terminal junction at a
symmetry line can be regarded as a two-terminal junction with
unequal number of conduction channels in the two leads. As
mentioned in Ref. [28], for a two-terminal short junction, the
SO interaction is irrelevant to causing spin splitting. Thus the
vicinity of symmetry lines requires a separate consideration.
We derive an effective Hamiltonian to incorporate the details
of the GET in the vicinity of the symmetry lines.

These two types of singular point would reveal the topolog-
ical nature of multiterminal Josephson junctions. It brings a
goal of proposing nanostructures as artificial exotic materials.

The structure of this article is as follows. In Sec. II, we
explain the model for the multiterminal Josephson junction
and the equation to determine the ABS energies. In Sec. III,
we describe the spin splitting of Weyl singularities. Section IV
is devoted to the GET point in general. Here we formulate
and employ the mapping between E = 0 and E = �. We also
concentrate separately on the vicinity of the symmetry lines in
this section. We conclude in the last section.

II. MODEL AND FORMULATION

In this section, we explain the model in use. We consider a
junction connected to N superconducting leads. An example
of a physical system of this sort is given in Fig. 1(a).
All microscopic details of the junction can be incorporated
into the scattering matrix ŝe,h of the electrons and holes
[Fig. 1(b)]. We assume certain numbers Ni of spin-degenerate
transport channels in each lead, so ŝe,h are 2M × 2M matrices,
M = ∑N−1

i=0 Ni . The symmetry of the Bogoliubov–de Gennes
equation implies the relation ŝh(E) = −ĝŝ∗

e (−E)ĝ with ĝ =
−iσ̂y being a matrix realizing a time inversion in spin space. In
addition to this, the requirement of time reversibility implies
ŝe(E) = −ĝŝT

e (E)ĝ. The superconducting leads do not provide
extra potential scattering. They are described by the Andreev
reflection amplitudes for converting electron to hole and hole
to electron that do not change the transport channel index and
are presented by diagonal matrix r̂he,eh = e∓iϕ̂e−iχ̂ , ϕk being a
superconducting phase of a lead corresponding to the channel
k. χk is an energy-dependent phase of Andreev reflection. We
assume the same material for all of the superconducting leads,
so that their order parameters are the same �i = �. In this
case, the energy-dependent phase is the same for all leads and
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FIG. 1. (Color online) (a) Schematics of a four-terminal junc-
tion based on crossing semiconductor nanowires (nanocross) [18].
(b) Scattering model of a multiterminal Josephson junction. The
junction itself is described by the scattering matrix Ŝ. The super-
conducting leads provide Andreev reflection with amplitude r̂AR. We
assume the same order parameter in all superconducting leads while
the phases ϕ0,1,...,N−1 can differ. By virtue of gauge invariance, one of
the phases can be conveniently set to zero.

is given by χ = arccos(E/�). The eigenvectors of the ABS
satisfy �ψ = r̂ehŝhr̂heŝe �ψ . Therefore the energies of the ABS
are determined from [27]

det[ei2χ − S( �ϕ,E)] = 0 (1)

with

S( �ϕ,E) = −ĝs∗( �ϕ,−E)ĝs( �ϕ,E), (2)

s( �ϕ,E) ≡ e−iϕ̂/2ŝe(E)e+iϕ̂/2. (3)

The hat symbol on s and S is omitted for simplification. Note
that S( �ϕ,E) is a unitary matrix.

For numerical calculations, the scattering matrix ŝe is taken
as a random matrix. The SO interaction is taken into account
in ŝe. In the presence (absence) of SO interaction, the random
matrix is a member of a symplectic (orthogonal) ensemble.
We introduce a parameter pSO tuning the strength of SO
interaction [13]. The parameter varies from 0 to 1, providing
a continuous transition between the orthogonal (pSO = 0) and
the symplectic (pSO = 1) ensembles.

Let us discuss the ABS energies in the vicinities of zero
energy, E = 0, and superconducting gap edge, E = �, where
the first term in the determinant in Eq. (1) becomes ei2χ = −1
and +1, respectively. In the absence of SO interaction, the
scattering matrix s( �ϕ,E) commutes with ĝ. Thus,

S( �ϕ,E) = s∗( �ϕ,−E)s( �ϕ,E). (4)

When the SO interaction is present, we can introduce a unitary
matrix u( �ϕ,E) ≡ ĝs( �ϕ,E). Since ĝ is a real matrix,

S( �ϕ,E) = −u∗( �ϕ,−E)u( �ϕ,E). (5)

Let us disregard the energy dependence of scattering matrices.
Suppose that for a sufficiently general unitary matrix v,
there is eigenvector |ψ〉 = v∗v|ψ〉. Such eigenvector would
correspond to an ABS at E = 0 in the presence of SO
interaction and to an ABS at E = � in the absence of SO
interaction. Correspondingly, an eigenvector −|ψ〉 = v∗v|ψ〉
would be an ABS at E = 0 in the absence of SO interaction
and to an ABS at E = � in the presence of SO interaction.
We thus establish a mapping between the situation at E = �

(E = 0) with SO interaction and at E = 0 (E = �) without
SO interaction.

III. WEYL SINGULARITIES AT E ≈ 0

In this section, we concentrate on the Weyl singularities. In
our numerical illustrations, we concentrate on four-terminal
short junctions with a single channel in each lead, Ni = 1 and
M = 4. In this case, the ABS energies are a periodic function
of three independent phases �ϕ ≡ (ϕ1,ϕ2,ϕ3) so we can restrict
ourselves to the Brillouin zone |ϕi | � π for i = 1,2,3. The
time reversibility manifests itself as the inversion symmetry
in this Brillouin zone, E( �ϕ) = E(−�ϕ). To start with, we
demonstrate that in the absence of SO interaction the energy
levels of ABS exhibit the band gap closing points at zero
energy [16]. Next, we continuously change the scattering
matrix increasing the parameter pSO, which is strength of SO
interaction. We demonstrate that the SO interaction splits the
conical spectrum in spin. The conical point departs from E = 0
and the energy levels cross zero energy at the 2D surface rather
than an isolated point. This proves topological protection of the
Weyl singularity. To prove the generality of our conclusions,
we derive an effective Hamiltonian from Eq. (1) that is valid
in the vicinity of the singularity and at weak SO interaction.

A. Energies of the Andreev bound state

We obtain the ABS energies from Eq. (1). The scattering
matrix ŝe is random. In the absence of SO interaction, we chose
the random matrix from the circular orthogonal ensemble and
disregard its energy dependence.

We examine the spectrum for many random matrices. About
6% of them show a gap closing of the ABS energies indicating
the Weyl singularities. The singularities always come in groups
of four. Figure 2(a) gives the positions of singularities for
a random matrix of choice. The time-reversal invariance
guarantees that the singularity at �ϕ(0) ≡ (ϕ(0)

1 ,ϕ
(0)
2 ,ϕ

(0)
3 ) is

accompanied by the singularity of the same topological charge
at −�ϕ(0). Owing to this, the positions of four singularities
and the center of Brillouin zone (0,0,0) are in the same 2D
plane. Figure 2(b) shows the lowest positive energy of the
ABS in this plane. The spectrum is symmetric with respect to
phase inversion �ϕ → −�ϕ. In the origin, this energy reaches
maximum E = �. It drops down to two valleys close to the
edges of the Brillouin zone. A zoom into a valley [Fig. 2(c)]
shows that the energy actually reaches zero in two isolated
points.
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FIG. 2. (Color online) Energies of the ABS in the four-terminal
junction for a particular choice of ŝe. The SO interaction is absent
(pSO = 0). For this choice, there are four Weyl singularities at E = 0.
(a) The positions of the Weyl singularities in the 3D space of the
phases. All four points and the origin lie in the same 2D plane.
(b) The gray-scale plot of the lowest positive ABS energy in the
2D plane shown in (a). Contour lines indicate E/� = 0.2, 0.4, 0.6,
and 0.8. (c) A zoom of the energy landscape (b) in the vicinity
of Weyl singularities. The dots give the singularity positions. The
dashed contour line indicates E/� = 0.025. The solid contour lines
corresponds to E/� in multiples of 0.05. Panels (d) and (e) show
the ABS energies when two of the three phases are fixed to (d) ϕ2 �
0.53π and ϕ3 � −0.42π and (e) ϕ2 � 0.53π and ϕ3 = −0.60π .

In Figs. 2(d) and 2(e), we show the ABS energies versus
ϕ1 at fixed ϕ2,3. In Fig. 2(d), the choice of ϕ2,3 is such that a
singularity is reached at some ϕ1. In Fig. 2(e), the line spanned
by changing ϕ1 passes close to a singularity. We see that the
spectrum is conical near the singularity. For Ni = 1 in all four
leads, they are four positive and four negative ABS energies.
Since the SO interaction is absent, the energies of ABS are
doubly degenerate. In Figs. 2(d) and 2(e), the second ABS
band is close to ±�.

At the same choice of random scattering matrix, we increase
the parameter pSO thereby together continuously increasing
the strength of SO interaction. As we see in Fig. 3(a), the
SO interaction splits the ABS energies in spin. The absence
of time reversibility required for such splitting comes about
nonzero ϕ1,2,3. As in Fig. 2, we plot in Figs. 3(b) and 3(c)
the lowest positive energy of the Andreev states in the plane
that passes through the Weyl singularities. We see in Fig. 3(b)
that the overall energy landscape has not changed significantly
in comparison with Fig. 2(b). However, as seen in Fig. 3(c),
the landscape has changed drastically in the vicinity of the

FIG. 3. (Color online) Energies of the ABS in the same junction
with SO interaction (pSO = 0.3). (a) The ABS energies at ϕ2 � 0.62π

and ϕ3 � −0.38π versus ϕ1 [cf. Fig. 2(d)]. All the levels are split in
spin. The levels pass the position of the singularity at this choice. The
singularity is shifted from zero energy while the spectrum remains
conical at this point. The levels cross zero energy at both sides of
the singularity. (b) The gray-scale plot of the lowest positive ABS
energy in the 2D plane that includes the singularities. Contour lines
are the same as in Fig. 2(b), and the overall energy landscape does not
change significantly. The qualitative change is seen in the zoom view
of (c). Thick solid line indicates zero energy. The dots indicate the
singularities which are now local maxima of the lowest positive ABS
energy. Thin solid contour lines give E/� in multiples of 0.05. The
dashed line indicates E/� = 0.075. (d) The gray-scale plot of the
energy difference between the second and the lowest positive ABS
energies. The contour lines indicate E/� in multiples of 0.05. The
energy difference reaches zero at the positions of singularities.

singularities. The gap is closed at the closed contour encircling
the singularities. The singularities are shifted to nonzero
energy while the spectrum remains conical in the vicinity
of a singularity [Fig. 3(a)]. In Fig. 3(d), we plot the energy
difference between the second and the lowest positive energy
levels and observe that it goes to zero at the position of the
singularities.

The SO interaction changes the position of the Weyl
singularities while preserving their topological charge and
the conical dispersion. When pSO increases gradually, the
four Weyl singularities move in the 3D space of the phases.
Figure 4(a) shows trajectories of their positions for pSO

arranged from pSO = 0 to pSO � 0.462. Solid and dashed
curves give the position of the singularities with positive and
negative charge. For this particular choice of the scattering
matrix, the singularities of the opposite charge get close to
each other upon increasing the SO strength and eventually
annihilate at pSO � 0.462, so the junction is not topological
anymore [Fig. 4(a)].

We compute the energy of the singularity and the plots
result in Fig. 4(b). We see that this energy is zero in the
absence of SO interaction. The energies of the singularities
of different topological charge increase and become different
with increasing pSO. At pSO � 0.3, the energies come close
together merging at the annihilation point pSO � 0,462.
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FIG. 4. (Color online) (a) The trajectories of the positions of
Weyl singularities in a 3D space of the phases upon increasing the
SO strength from pSO = 0 to pSO � 0.462 when the singularities of
the opposite topological charge come together and annihilate. Solid
(dashed) curves give the position of the singularities with positive
(negative) charge. (b) Energies of the singularities with positive
(solid) negative (dashed) topological charge versus pSO. The energies
merge in the annihilation points.

B. Effective Hamiltonian

To prove the generality of the above results, we derive an
effective Hamiltonian for ABS that is valid in the vicinity
of a singularity. When the SO interaction is absent, the
singularity is at E = 0. At the position of the singularity,
�ϕ(0), the scattering matrix S( �ϕ(0),0) should have an eigenvalue
−1. However, S is a rather special matrix: at E = 0 it can
be presented as S = s(0)∗s(0) [cf. Eq. (4)]. Here we introduce
s(0) ≡ s( �ϕ(0),0). We assume nothing about s(0) regarding it as
an arbitrary unitary matrix. This implies that the eigenvalues
of S come in complex-conjugated pairs. If |a〉 is an eigenvector
of S with eigenvalue eiλ, |b〉 ≡ s(0)∗|a∗〉 is an eigenvector
with eigenvalue e−iλ. This implies that the two orthogonal
eigenvectors corresponding to eigenvalue −1,

s(0)∗s(0)|a,b〉 = −|a,b〉. (6)

To obtain the effective Hamiltonian, we project the matrix in
Eq. (1) onto the space spanned by these two eigenvectors. For
small deviations of the phases from ϕ(0), δ �ϕ = �ϕ − �ϕ(0)	1.
We expand the scattering matrix as s( �ϕ) = s(0)eiX(δ �ϕ) ≈
s(0)(1 + iX), where X is a Hermitian matrix proportional to
δ �ϕ. Up to the first order in X and E, we find

S( �ϕ) ≈ s(0)∗s(0) + iX̄; X̄ ≡ s(0)∗s(0)X − s(0)∗X∗s(0), (7)

ei2χ ≈ −1 + i2E/�. (8)

With this, the determinant equation (1) can be presented as an
eigenvalue equation for a 2 × 2 effective Hamiltonian [16],

E = Ĥ ; Ĥ = �

3∑
j=1

Xj
̆j = �

2

(〈a|X̄|a〉 〈a|X̄|b〉
〈b|X̄|a〉 〈b|X̄|b〉

)
,

(9)
where 
̆1,2,3 are the Pauli matrices in the basis of |a〉 and |b〉.
Using the relation |b∗〉 = s(0)|a〉, we prove that 〈b|X̄|b〉 =
−〈a|X̄|a〉 and real parameters X1,2,3 are given simply by
X1 + iX2 = −2〈b|X|a〉 and X3 = −〈a|X|a〉 + 〈b|X|b〉. The
Hamiltonian in Eq. (9) is a case of a Weyl Hamiltonian.

It has opposite eigenvalues, E = ±�
√

X2
1 + X2

2 + X2
3.

Expanding in δϕ, Xi = Xi
mδϕm, we obtain

E = ±�

√∑
k,m

δϕmMmkδϕk; Mmk =
∑

i

Xi
mXi

k. (10)

For 3D space of the phases, the matrix M is positively defined.
We reproduce a conical spectrum of ABS in the vicinity of
the singularity. For N -dimensional space, the matrix M has
N − 3 zero eigenvalues. We stay at zero energy if we depart
from ϕ(0) in these N − 3 directions. Thus, the singularities are
concentrated at an (N − 3)-dimensional manifold.

Let us take into account weak SO interaction, expanding

s( �ϕ(0)) = s(0)ei
∑

α σ̂αKα ( �ϕ(0)) ≈ s(0)

(
1 + i

∑
α

σ̂αKα

)
, (11)

S( �ϕ(0)) = −ĝs∗( �ϕ(0))ĝs( �ϕ(0)) ≈ s(0)∗s(0) + i
∑

α

σ̂αK̄α;

K̄α ≡ s(0)∗s(0)Kα + s(0)∗K∗
αs(0) (12)

with σ̂α being Pauli matrices in spin space, Kα being associated
Hermitian matrices in channel space. We project onto a four-
dimensional space of spins and vectors |a,b〉. We observe that
the structure of matrices K̄α is quite different from X̄. Using
the relations between |a〉 and |b〉, we prove 〈a|K̄α|b〉=0 and
〈a|K̄α|a〉 = 〈b|K̄α|b〉 = −〈a|Kα|a〉 + 〈b|Kα|b〉 ≡ K 0. With
this, the effective Hamiltonian becomes

Ĥ = �

3∑
j=1

Xj
̆j + �σ̂ · K 0. (13)

The BdG symmetry thus guarantees a special structure of this
Hamiltonian where spin and orbital degree of freedom are
totally separated. K 0 plays the role of an effective Zeeman
field that splits the original conical spectrum:

E/� = σK |K 0| ±
√∑

k,m

δϕmMmkδϕk (14)

with σK = ± being the spin projection on the axis of the
effective Zeeman field. The SO interaction does not remove
the conical point but rather shifts it in energy by ±�|K 0|. In
a 3D space, the zero energy is achieved at the 2D surface
of an ellipsoid defined by

∑
k,m δϕmMmkδϕk = |K 0|2. The

singularity is enclosed by the surface. This consideration
shows the generality of our numerical results. The size of the
ellipsoid enclosing a singularity increases with increasing SO
interaction. In Fig. 3(c), we see that the ellipsoids enclosing
each singularity have already merged together at pSO = 0.3.

IV. GAP EDGE TOUCHING

In this section, we consider the ABS in the vicinity of the
superconducting gap edge E ≈ �. We show that the ABS
energies reach the GET in the absence of SO interaction at a
2D surface in the 3D space of the phases. The SO interaction
lifts the GET almost everywhere except particular manifolds:
symmetry lines and isolated points. We investigate these cases
separately and establish effective Hamiltonians.
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A. GET at symmetry lines

To understand the peculiarities of the GET for multiterminal
junctions, let us first consider a two-terminal one with unequal
number channels in the left and right leads, NL < NR.
The estimation of a number of localized Andreev states is
somewhat ambiguous. On one hand, one may argue that there
are only NL such states because only that many states are
sensitive to the superconducting phase difference between two
leads. On the other hand, the full number of Andreev states is
given by (NL + NR)/2 provided the total number of channels
is even. The remaining (NR − NL)/2 states are pinned to the
gap edge with no regard for superconducting phase difference.
In a two-terminal junction, these states are indistinguishable
from the states of the continuous spectrum. This is not a
case of multiterminal junction. We note that a multiterminal
junction in fact becomes a two-terminal one if the leads are
separated into two groups in which superconducting phases are
the same within each group. For instance, in our four-terminal
setup, one can choose ϕ0 = 0 and ϕ1 = ϕ2 = ϕ3 = 0. Such
setting defines a symmetry line in multidimensional space of
the phases. For our example with one channel in each lead, we
find an extra state pinned at the gap edge along the symmetry
line. In distinction from the two-terminal case, this extra state
cannot be attributed to the continuous spectrum since it departs
from the gap edge if we go off the symmetry line.

Since the SO interaction does not work for a short two-
terminal junction [28], the SO splitting is also absent at these
lines. We postpone the discussion of the details of the spectrum
in the vicinity of symmetry lines to Sec. IV D and concentrate
now on the general situation.

B. ABS energies near the gap edge: General

Let us consider GET at a general position in the 3D space
of phases. Let us note the mathematical analogy between the
spectrum at E = 0 and E = �. The spectrum is determined by
properties of the scattering matrix S in Eq. (1). Zero energies
(E = 0) correspond to the eigenvalue of −1 of the matrix
while GET corresponds to the eigenvalue of 1. On the other
hand, as we have seen in Sec. II, in the absence and presence
of SO interaction, we can represent the matrix as S = v∗v
and S = −v∗v, respectively, v being a general unitary matrix.
This establishes a rather unexpected mapping of the spectrum
at E = 0 in the presence (absence) of the SO interaction to
the spectrum at E = � in the absence (presence) of the SO
interaction. We have derived in Sec. III A that the ABS reach
E = 0 at 0D or 2D manifolds in the 3D spaces in the absence
or presence of SO interaction, respectively. This implies that
the GET occurs at 2D and 0D manifolds in the absence and
presence of SO interaction, respectively.

Let us see this in numerical results. In the absence of
SO interaction, the scattering matrix ŝe is chosen randomly
from the circular orthogonal ensemble. Its energy dependence
is disregarded. We examine the spectrum for many random
scattering matrices. The GET is observed for all the matrices.
For a 3D space of the phases, the ABS energy reaches E = �

at a 2D surface. This is illustrated in Fig. 5. We fix ϕ3 and
find the GET points forming a 1D curve. Interestingly, the
curve passes symmetry lines where we indeed expect GET.
For instance, in Fig. 5(a), the curve passes the symmetry line

FIG. 5. (Color online) GET in a four-terminal junction in the
absence of SO interaction. (a) Curve of the GET at fixed ϕ3 = −0.8π

in the 3D space of the phases. Four solid lines are symmetry lines,
where three of the four superconducting phases are equal. (b) Curves
of the GET at ϕ3 = −π (left upper), −0.8π (left middle), −0.6π

(left bottom), −0.4π (right upper), −0.2π (right middle), and 0
(right bottom panels). Dashed curves in right bottom panel indicate
ϕ3 = −0.1π . The black dots give intersection points of the symmetry
lines with the corresponding ϕ1-ϕ2 planes.

ϕ1 = ϕ2 = ϕ3 at (ϕ1,ϕ2) ≈ (−π,−π ) and passes the symmetry
line ϕ1 = ϕ2 = 0(=ϕ0) at (ϕ1,ϕ2) = (0,0). As ϕ3 is tuned
from −π to 0 [Fig. 5(b)], the position of the first passing
is gradually shifted to (ϕ1,ϕ2) ≈ (0,0). At ϕ3 = 0, the curve
approaches two symmetry lines in this plane, ϕ1 = ϕ3 = 0 and
ϕ2 = ϕ3 = 0. For positive ϕ3, the spectrum is obtained from the
inversion symmetry. We see that the GET occurs at a single
connected 2D surface that includes all four symmetry lines.
In principle, there is nothing to forbid a more sophisticated
topology of the surface. However, in the dozen of samples we
have explored, we have found no complex topology.

Figures 6(a) and 6(a′) show the ABS energies with the GET
in the absence of SO interaction. The energies are plotted

FIG. 6. (Color online) Energies of the ABS in a four-terminal
junction. The sample is the same as that in Fig. 5. (a) ABS energies
versus ϕ1 when spin-orbit interaction is absent. ϕ2 and ϕ3 are fixed at
0.3π and 0.5π , respectively. The GET is obtained at ϕ1 � 0.391π .
Panel (a′) and its inset are enlarged views. (b) ABS energies when
spin-orbit interaction is present (pSO = 0.5). The other parameters
and scales of axes are the same as those in upper panels.
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FIG. 7. (Color online) Energies of the ABS in the vicinity of
symmetry lines. The sample is the same as that in Fig. 5. (a) ABS
energies on a line ϕ2 = ϕ3 at ϕ1 = π/2. A strength of spin-orbit
interaction is pSO = 0.5. (b) Enlarged view of panel (a). Arrows
indicate points at the symmetry lines.

versus ϕ1 while ϕ2 and ϕ3 are fixed. The GET is found
at ϕ1 � 0.391π . In the vicinity of the touching point, the
spectrum of ABS energy is parabolic rather than conical. A
mirror symmetry of the ABS energies guarantees the GET at
E = −� at the same position in the 3D space of the phases.
The SO interaction [Figs. 6(b) and 6(b′)] lifts a degeneracy
of the energies in spin. In Fig. 6(b′), one spin-resolved ABS
energy comes very close to the gap edge. However, as seen in
the inset, the touching does not take place in the presence of
SO interaction, confirming our expectation.

In Fig. 7, we illustrate the situation in the vicinity of
symmetry lines. We plot the ABS energies along the line
ϕ1 = π/2. This line crosses the symmetry lines. The crossing
points are indicated by arrows in the figure. We see that at these
points, ϕ2 = ϕ3 = 0,π/2, the GET survives in the presence of
SO interaction. Also, the spin splitting of the lowest ABS
vanishes at this point. Then, this proves that the SO interaction
is irrelevant at the symmetry lines.

C. Effective Hamiltonian in general case

To prove the generality our numerical results concerning
the GET, we derive an effective Hamiltonian for ABS near
E = � taking into account weak SO interaction and energy
dependence of the scattering matrix. We assume no vicinity
of symmetry lines. This specific situation will be considered
separately in the next section.

Let us first neglect SO interaction and energy dependence
of the scattering matrix. For a GET point at �ϕ(0), the matrix
S has to have an eigenvalue 1. We put s( �ϕ(0)) = s(0). This
eigenvalue is double degenerate; if |a〉 is an eigenvector of
S( �ϕ(0)) = s(0)∗s(0) with the eigenvalue 1, |b〉 = s(0)|a∗〉 is also
an eigenvector of S( �ϕ(0)),

s(0)∗s(0)|a,b〉 = |a,b〉. (15)

We project the matrix in Eq. (1) onto the space spanned by
these two eigenvectors. Next we expand the full scattering
matrix in Eq. (1) with respect to the small phase deviation
from ϕ(0), weak SO interaction, and weak energy dependence.
The first-order expansion in X (deviation) and Kα (SO
interaction) is the same as given in Eqs. (7) and (12), respec-
tively. The energy dependence is expanded with a Hermitian

matrix d,

s(0)(E) = s(0)eiEd( �ϕ(0)) ≈ s(0)(1 + iEd), (16)

S( �ϕ(0),�) = s(0)∗(−�)s(0)(�) ≈ s(0)∗s(0) + iD̄;

D̄ ≡ �(s(0)∗s(0)d + s(0)∗d∗s(0)). (17)

The causality of scattering matrix s(E) implies that all
eigenvalue of d are positive.

The first-order correction terms are similar to those for the
Weyl singularity at E ≈ 0. However, since the sign of the
eigenvalue is opposite, the selection rules for matrix elements
representing the deviation and SO interaction are inter-
changed. For small phase deviations, 〈a|X̄|b〉 = 0; 〈a|X̄|a〉 =
−〈b|X̄|b〉 = 〈a|X|a〉 − 〈b|X|b〉 ≡ X3. The expansion of the
weak SO interaction gives three independent vectors in spin
space, K 0 ≡ (〈a|K |a〉 + 〈b|K |b〉) = 〈a|K̄ |a〉 = 〈b|K̄ |b〉 and
K 1 + i K 2 ≡ 2〈b|K |a〉 = 〈b|K̄ |a〉. For weak energy depen-
dence, 〈a|D̄|a〉 = 〈b|D̄|b〉 = 〈a|D|a〉 + 〈b|D|b〉 ≡ D0. No
restriction applies to the off-diagonal matrix elements. So we
define D1 + iD2 ≡ 2〈b|D|a〉 = 〈b|D̄|a〉. The positivity of d

implies D0 �
√

D2
1 + D2

2.
To deviate an effective Hamiltonian, we introduce the

energy deviation from the edge ε = 1 − |E|/�. Up to first
order in

√
ε, we obtain ei2χ ≈ 1 ± i

√
8ε. Summarizing all

these, we obtain that the spectrum is defined by the following
eigenvalue equation,

Ĥ =
√

2ε; Ĥ = X3
̆3 +
2∑

j=0

σ̂ · K j 
̆j +
2∑

j=0

Dj
̆j . (18)

Here 
̆0 ≡ 1̆. The full analysis of this Hamiltonian is involved.
Here, we discuss several simple cases. Let us first neglect both
SO interaction and energy dependence. The eigenvalues of
the Hamiltonian are in this case simply ±|X3|. The negative
eigenvalue does not lead to any localized state. The positive
eigenvalue provides ε = X2

3/2 and since X3 is linear in phase
deviation this defines a parabolic spectrum touching the gap
edge at X3 = 0. We see that the GET requires one condition
X3 = 0 to be fulfilled in distinction from the three conditions
Xj = 0 required for the Weyl singularity. This is why the
manifold of the GET point in an N -dimensional space of
phases generally has dimension N − 1 in the absence of SO
interaction and energy dependence of the scattering matrix.

If we take energy dependence into account, the eigenvalues
are given by D0 ±

√
X2

3 + D2
1 + D2

2. The plot of eigenvalues
and spectrum is given in Fig. 8(a). We see that the energy
dependence modifies the GET in a rather complex way. The
spectrum in the vicinity of the GET line forms two bands.
While one of the bands never touches the edge, the other band
exists only in the vicinity of the line and merges with the
continuous spectrum upon increasing X3.

Let us neglect now the energy dependence and take into
account SO interaction. When K j terms are taken into account,
the four eigenvalues of Ĥ are

±
√

X2
3+L±2

√
(K 0 · K 1)2+(K 0 · K 2)2+|X3 K 0−K 1×K 2|2

(19)
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FIG. 8. (Color online) Fine structure of GET. X3 gives the dis-
tance from the GET. (a) The effect of energy dependence. We set
D0 = 0.3 and

√
D2

1 + D2
2 = 0.1. (b) The effect of SO interaction.

K 0 is parallel to e3. We set K0 = 0.1 and
√

|K 1|2 + |K 2|2 = 0.2.
Directions of the vectors are chosen randomly. (c) The combined
effect of the energy dependence and SO interaction. Dj and K j are
the same as those in (a) and (b), respectively. (d) Weyl singularity
near the gap edge. We put X1 = X2 = 0 and D0 = 0.3.

with L = |K 0|2 + |K 1|2 + |K 2|2. Two positive eigenvalues
define two spin-split bands that never touch the edge [Fig. 8(b)]
unless a special condition discussed below is fulfilled. The
minimal energy distance to the gap edge is not achieved at
X3 = 0 but rather is shifted depending on the parameters of
the SO interaction.

If the energy-dependent terms and the spin-splitting are
the same order of magnitude, the picture of the GET can be-
come complex. For instance for an example given in Fig. 8(c),
there are only three bands, one existing only in the vicinity of
the gap edge line.

Let us now discuss a special condition of the GET in the
presence of sufficiently strong SO interaction. To analyze
this, let us derive an effective Hamiltonian with strong SO
interaction assuming a GET point to be present at �ϕ(0).
Strong SO interaction guarantees that only two spin-dependent
eigenvectors are important instead of the four as in the previous
consideration. The two eigenvectors |a〉 and |b〉 = u(0)|a∗〉
satisfy

−u(0)∗u(0)|a,b〉 = |a,b〉 (20)

with u(0) ≡ u( �ϕ(0)). The problem is thus mathematically equiv-
alent to our consideration of the Weyl singularity in Sec. III B.
The first-order expansion in X (deviation) and �d (energy
dependence) results in correction terms X̄ ≡ −u(0)∗u(0)X +
u(0)∗X∗u(0) and D̄ ≡ −�(u(0)∗u(0)d + u(0)∗d∗u(0)), respec-
tively. We prove the selection rules for elements of matrices X̄

and D̄; 〈a|D̄|b〉 = 0. The effective Hamiltonian thus reads

Ĥ =
3∑

j=1

Xj
̆j + D0
̆0, (21)

with X1 + iX2 ≡ 〈b|X̄|a〉 = 2〈b|X|a〉, X3 ≡ 〈a|X̄|a〉 =
−〈b|X̄|b〉 = 〈a|X|a〉 − 〈b|X|b〉, and D0 ≡ 〈a|D̄|a〉 =
〈b|D̄|b〉 = 〈a|D|a〉 + 〈b|D|b〉 � 0. We keep here the
energy-dependent term ∝D0 that is absent in the Hamiltonian
(9). We have just found a Weyl singularity with a conical point
near the gap edge. The conical point requires three conditions

to be fulfilled Xj = 0. Therefore we expect the points to
form an (N − 3)-dimensional manifold in the N -dimensional
spaces. The energy-dependent term shifts the energy of the
conical point from the gap edge similarly to the effect of
the SO interaction in Eq. (13) [Fig. 8(d)]. We have tried to
find these singularities in our numerical simulation. So far,
we have found none. The reason for this is not completely
clear for us. We hypothesize that the probability of finding a
random scattering matrix with such singularity is low because
the GET point in the presence of SO interaction tends to stick
to the symmetry line.

D. The vicinity of a symmetry line

Let us consider an effective Hamiltonian in the vicinity of
symmetry lines. The SO interaction is assumed to be strong.
We concentrate on a four-terminal junction. At the symmetry
lines, three of the four superconducting phases are equal. The
electron scattering matrix can be presented in a block structure,

ŝe =
(

r1 t13

t31 r3

)
. (22)

We assume that there are N3 channels in three leads having the
same phase and N1 channels in the other lead. r3 is a 2N3 ×
2N3 reflection matrix for three leads having the same phase. r1

is that of the other lead, t13 and t31 are the transmission matrices
between the three leads and the other lead, and their dimensions
are 2N1 × 2N3, 2N3 × 2N1, correspondingly. At the symmetry
line, we have 2(N3 − N1) independent vectors satisfying
t13|ψ〉 = 0. These states are disconnected from the other lead.
Their energies are precisely at the gap edge, therefore

−ĝs(0)∗ĝs(0)

(
0

|ψ〉
)

=
(

0
|ψ〉

)
(23)

is satisfied. Similarly to previous considerations, these
eigenvectors can be arranged into N3 − N1 conjugated pairs:
if |a〉 is an eigenvector, |b〉 ≡ ĝr∗

3 |a∗〉 is also an orthogonal
eigenvector. Note that r3 is a unitary matrix.

To derive the effective Hamiltonian, we project Eq. (1)
onto the subspace of these eigenvectors. The consideration
can be done for arbitrary dimension, but for the sake of
comprehensibility, we concentrate on this situation with a
single channel in each lead. In this case, N3 = 3 and N1 = 1
and we project onto four orthogonal states |a〉,|b〉,|ã〉,|b̃〉.
For a small phase deviation from the symmetry line, S( �ϕ) ≈
S( �ϕ(0)) + δS. The matrix element (δS)αβ can be represented as

(0,〈α|)TδS

(
0

|β〉
)

= i〈α|r†3r3δ̂ + δ̂r
†
3r3 − 2r

†
3 δ̂r3|β〉 ≡ i2X̄αβ .

(24)
Here, δ̂ is the diagonal matrix of the phase deviations.
Note that we use 〈α|t†13t13|β〉 = 0 to arrive at this. A matrix
representation of this correction term X̄αβ for the four bases
gives a Hamiltonian in the vicinity of the symmetry line:

Ĥ = X̄ =
(

σ̂ · hab −ih0 + σ̂ · h
ih0 + σ̂ · h σ̂ · hãb̃

)
. (25)

Here, we use rT
3 = −ĝr3ĝ. The parameters in block di-

agonal components are defined as hab,1 + ihab,2 ≡ X̄ab =
2〈a|δ̂|b〉, hab,3 ≡ X̄aa = −X̄bb = 〈a|δ̂|a〉 − 〈b|δ̂|b〉, and the
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FIG. 9. (Color online) Fine structure of GET in the vicinity of
a symmetry line with strong SO interaction. δ ≡ |hab| = |hãb̃| =√

h2
0 + |h|2 is linear to a phase deviation from the line. (a) Neglecting

energy dependence. (b) The effect of energy dependence. We set√
DabDãb̃ = 0.3 and

√
D2

0 + |D|2 = 0.1.

same way for hãb̃. Those in off-diagonal components
are h3 + ih0 ≡ X̄ãa = −X̄∗

b̃b
= 〈ã|δ̂|a〉 − 〈b|δ̂|b̃〉, and h1 +

ih2 ≡ X̄b̃a = X̄∗
ãb = 〈b̃|δ̂|a〉. The eigenvalues of Ĥ are

±
√

h2
0+L′±

√
(h+ · h−)2/4+(h · h+)2+|h0h++h×h−|2

(26)
with L′ = (|h|2 + |hab|2 + |hãb̃|2)/2 and h± = hab ± hãb̃.
This is similar to Eq. (19); however, in the case under
consideration, all elements of the effective Hamiltonian are
proportional to the phase deviations. This results in a linear
splitting of fourfold-degenerate eigenvalue and two bands
touching the gap edge at the symmetry line [Fig. 9(a)].

The energy dependence is taken into account the same way
as in Sec. IV C. This gives a correction term in the Hamiltonian
that importantly does not vanish at δ̂ → 0,

Ĥ = X̄ +
(

Dab D0 − iσ̂ · D
D0 + iσ̂ · D Dãb̃

)
(27)

with Dab = 〈a|D|a〉 + 〈b|D|b〉 and the same for Dãb̃,
D0 + iD3 = 〈ã|D|a〉 + 〈b|D|b̃〉, and D2 − iD1 = 〈b|D|ã〉 −
〈b̃|D|a〉. Here, DabDãb̃ � D2

0 + |D|2 due to the
causality. This guarantees the positive eigenvalues at
the symmetry lines, δ̂ = 0, given by (Dab + Dãb̃)/2 ±√

(Dab − Dãb̃)2/4 + D2
0 + |D|2. The eigenvalues are doubly

degenerate. The deviation from the symmetry line gives rise to
a linear splitting of the eigenvalues at further increase δ̂. The
eigenvalues approach a linear asymptotics given by Eq. (26).
We illustrate the spectrum in Fig. 9(b).

V. CONCLUSIONS AND DISCUSSION

We have studied the singularities and peculiarities in the
ABS spectrum of a Josephson junction connected to N

superconducting leads. The ABS energies in such junctions
depend on N − 1 independent superconducting phase differ-
ences, E(ϕ1,ϕ2, . . . ,ϕN−1) being a periodic function of all
phases. Therefore, they can be regarded as energy bands
in the (N − 1)-dimensional periodic solid, if one associates
ϕj with quasimomenta. We have concentrated on the singu-
larities related to topological properties and use numerical
illustrations of the spectrum and as well as derive effective
Hamiltonians to describe the vicinity of the singularities. The
illustrations are made for a four-terminal short junction. In
this case, the energies of ABS correspond to the bands in a
3D solid. The ABS energies are calculated from Beenakker’s
determinant equation using a scattering matrix.

We reveal the singularities in the vicinity of zero energy
and near the gap edge. We establish a mathematical analogy
between the spectrum at E = 0 and E = �.

First, we have considered Weyl singularities near zero
energy. When the SO interaction is absent, the singularities are
found at E = 0 accompanying a conical spectrum. The Weyl
singularities occur at isolated 0D points in the 3D space of the
phases. The SO interaction splits the singular points to mirror
symmetric positive and negative energies in spin. A small
modification of scattering matrix only shifts the position of the
Weyl singular points but does not eliminate those since they
are topologically protected. In the presence of SO interaction,
zero-energy points in the vicinity of Weyl singularities form a
2D manifold in the 3D space of the phases. This 2D manifold
encircles the singular point. To prove our numerical results,
we have derived an effective Hamiltonian that is valid in
the vicinity of the singularity and at weak SO interaction.
Eigenvalues of the Hamiltonian reproduce a conical singularity
in the spectrum. They reach zero at an ellipsoid enclosing the
singular point.

Exploiting the mentioned analogy between the ABS at
E = 0 and E = �, we have investigated the spectrum in the
vicinity of the gap edge. The analogy implies that the GET
occurs at a 2D surface in the 3D space in the absence of
SO interaction and at isolated points in the presence of SO
interaction. Thus, the SO interaction generally lifts the GET
except for specific situations. We have established effective
Hamiltonians for two specific cases: symmetry lines and
isolated points. We have also taken into consideration a weak
energy dependence of the scattering matrix relevant for fine
structure of GET. The effective Hamiltonians derived prove the
generality of our numerical results. For the GET in a strong
SO interaction, the Hamiltonian indicates a Weyl singularity
with a conical spectrum. The singularity is shifted from the
edge by the energy-dependent term similar to the effect of SO
interaction at E ≈ 0. However, we do not find the isolated
GET point in our numerical simulations.

At a symmetry line, since three of the four phases are equal,
the four-terminal junction can be regarded as a two-terminal
junction with unequal channel numbers in the leads. Then, only
a single ABS is sensitive to the phase differences while the
other sticks to the gap edge. We have also derived an effective
Hamiltonian in the vicinity of the symmetry lines. The energy
dependence of the scattering matrix lifts the GET and adds
another Andreev state, which is localized in the vicinity of the
symmetry line.

Our study provides numerical and analytical evidence for
the Weyl points in multiterminal Josephson junctions. These
points are different from Weyl singular points predicted and
recently found in 3D solids, such as TaAs [22–24], TaP [25],
and NbAs [26]. In the 3D solids, the absence of inversion
symmetry in the material and removing the spin degeneracy
are essential for a stable Weyl point. However, a multiterminal
Josephson junction shows stable Weyl points even though the
ABS energies are not spin-split. Our study thus facilitates
an alternative method of realization of Weyl fermions in
condensed matter.

The Weyl points in multiterminal Josephson junctions
should provide positive and negative topological charges in
the space of the phases. The charges are sources of the
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Berry curvature fields. Riwar et al. [16] have proposed an
experimental setup to detect the Chern number by measuring
the quantized transconductance, in similarity with the quantum
Hall effect. In their scheme, the Chern number is defined as the
integral of the Berry curvature field on a 2D plane in the space.
Physically, the integration is achieved by sweeping the phases
by applying finite bias voltages to the superconducting leads.
Riwar et al. considered a situation without SO interaction
where the Weyl singular points appear always at E = 0
and are doubly degenerate with respect to spin. Then the
lowest positive (and the highest negative) levels of the ABS
are relevant to the Chern number. Near the Weyl point, the
quantization of transconductance may be sensitive to the
temperature of the junction owing to the undesired thermal
activation of a quasiparticle in the lowest subband. In this
paper, we take into account the SO interaction and consider
Weyl singularities of two types. Although the SO interaction
shifts the conical point from E = 0, it does not influence
the Chern number arising from the singularity. Therefore,

the topological charge may be still detected by measuring
the quantized transconductance. The same applies to the
singularity at the gap edge. The SO shift of the singular point
from the Fermi energy implies that the probability of undesired
thermal activation of a quasiparticle state near the point of
the singularity is small at sufficiently low temperatures; this
facilitates the observation of the topological effect.
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