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Rippling and crumpling in disordered free-standing graphene
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Graphene is a famous realization of an elastic crystalline two-dimensional (2D) membrane. Thermal
fluctuations of a 2D membrane tend to destroy the long-range order in the system. Such fluctuations are stabilized
by strong anharmonicity effects, which preserve thermodynamic stability. The anharmonic effects demonstrate
critical behavior on scales larger than the Ginzburg scale. In particular, a clean suspended flake of graphene
shows a power-law increase of the bending rigidity with the system size, � ∝ Lη, due to anharmonic interaction
between the in-plane and out-of-plane (flexural) phonon modes. We demonstrate that random fluctuations of the
membrane curvature caused by static disorder may change dramatically the scaling of the bending rigidity and
lead to a nonmonotonous dependence of � on L. We derive coupled renormalization-group equations describing
the combined flow of � and effective disorder strength b, find a critical curve b(�) separating flat and crumpled
phases, and explore the behavior of disorder in the flat phase. Deep in the flat phase, disorder decays in a power-law
way at scales larger than the Ginzburg length, which therefore sets a characteristic size for the ripples—static
out-of-plane deformations observed experimentally in suspended graphene. We find that in the limit L → ∞
ripples are characterized by an anomalous exponent 2η in contrast to dynamical fluctuations governed by η. For
sufficiently strong disorder, there exists an intermediate range of spatial scales where ripples decay much slower,
with exponent η/4. In the near-critical regime, disorder first increases with L, then reaches a maximum and
starts to decrease. In this case, the membrane shows fractal properties implying a multiple folding starting from a
certain length scale L1 and finally flattens at a much larger scale L2 (which diverges at criticality). We conclude
the paper by a comparison of our results with available experimental data on graphene ripples.
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I. INTRODUCTION

Graphene, a single monolayer of graphite [1–3], has
attracted enormous interest in the last decade (for review, see
Refs. [4–10]). From the fundamental point of view, this interest
is largely motivated by the quasirelativistic character of its
spectrum: charge carriers in graphene are two-dimensional
(2D) massless Dirac fermions. This leads to a variety of
remarkable phenomena. In particular, graphene is a unique
example of a system where essentially quantum phenomena
such as the quantum Hall effect can be observed up to the room
temperature [11]. In view of applications, the technological
breakthrough in the fabrication of flat monolayer 2D crystals
offers new opportunities in future nanoelectronics. Remark-
ably, suspended graphene demonstrates extremely high room-
temperature mobility [12–23] as high as 1.2 × 105 cm2/Vs
and therefore is considered as the most perspective candidate
for carbon-based nanoelectronics.

The elastic properties of graphene are also quite amazing.
Free-standing graphene is an outstanding example of an
elastic crystalline two-dimensional (2D) membrane with a
high bending rigidity � � 1 eV. The most important feature
distinguishing such a membrane from conventional 2D semi-
conductor systems is the existence of a specific type of out-
of-plane phonon modes, the so-called flexural phonons [24].
In the harmonic approximation, the energy of the out-of-plane
deformation reads

E = 1

2

∫
dx[ρḣ2 + �(�h)2], (1)

where h(x) is the out-of-plane distortion and ρ is the mass
density per unit square. From Eq. (1), we find the frequency
of the flexural phonons:

ωq = Dq2, (2)

where D = √
�/ρ. Hence, in contrast to in-plane acoustic

phonons, whose frequency scales as q, the flexural mode
is very soft and, consequently, the out-of-plane thermal
fluctuations of h(r) are very large. As a consequence, flexural
phonons serve as a very effective scattering mechanism for
electrons (for discussion of different aspects of electron-
phonon scattering in graphene, see Refs. [25–45]).

A remarkable property of flexural phonons is the impor-
tance of anharmonic effects. In particular, the golden-rule
calculation of scattering rate on the deformation potential cre-
ated by flexural phonons leads, in the harmonic approximation
and with electrostatic screening taken into account, to values
of the electrical conductivity that are two to three orders of
magnitude lower than experimentally observed. This drastic
discrepancy implies the existence of a certain mechanism that
strongly suppresses out-of-plane modes. As was demonstrated
in Ref. [42], taking into account the anharmonic interaction
between flexural and in-plane phonons dramatically reduces
the electron-phonon scattering, yielding values of the electrical
conductivity that are in good agreement with the experimental
findings of Ref. [14]. Hence a comparison of theoretical results
with transport measurements demonstrates that anharmonic
effects are extremely important in suspended graphene.
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Suppression of scattering because of anharmonicity is
very favorable for fabrication of ultrahigh-mobility graphene
structures. Further, the anharmonicity governs lattice ther-
mal transport in suspended graphene, which is currently
a subject of intense experimental [46–48] and theoretical
research (see, e.g., Ref. [49] and references therein). Moreover,
anharmonicity plays a key role for the fundamental issue of
the thermodynamic stability of graphene membrane. Indeed,
due to the softness of flexural-phonon modes they might be
expected to be very efficient in inducing strong thermal out-of-
plane fluctuations and thus destroying the membrane [50,51]
by driving it into the so-called crumpled phase [24]. This
question was intensively discussed in the literature more than
two decades ago [24,52–68] in connection with biological
membranes, polymerized layers, and some inorganic surfaces.
The interest to this topic has been renewed more recently
[69–76] after discovery of graphene.

It was found [52–58] that anharmonic coupling of in-
plane and out-of-plane phonons stabilizes the membrane for
sufficiently low temperatures T , so that the membrane is in the
flat phase at relatively low T and undergoes the crumpling tran-
sition with increasing T . The main dimensionless parameter
characterizing the state of the 2D membrane is the ratio of the
bending rigidity � to the temperature. For graphene, this ratio
for room temperature is quite large, �/T � 30. This reflects
the remarkable rigidity of graphene and implies that graphene
remains in the flat phase up to temperatures several times
higher than the room temperature. Moreover, the interaction
between flexural and in-plane phonons leads to a power-law
renormalization of the bending rigidity [57,59,65]:

� → �(q) ∝ q−η, for q → 0, (3)

with a certain critical index η. Physically, the increase of the
bending rigidity, Eq. (3), is a manifestation of the tendency of
the membrane towards the flat phase.

The development of a controllable analytical treatment
of the renormalization of the bending rigidity and of the
crumpling transition is not an easy task. The central problem
is the absence of a small parameter that would control the
analysis in the physically relevant case of a membrane with
dimension D = 2 embedded into the space with dimension
d = 3. For a membrane with arbitrary D and d, a systematic
treatment turns out to be possible in two cases: for 4 − D =
ε � 1 and for dc = d − D � 1. In both limits, there exists
a small parameter that controls calculations: ε in the first
case, and 1/dc in the second case. In particular, a theory of
crumpling transition for D = 2 and dc � 1 was developed in
Refs. [55,58], while a renormalization-group (RG) treatment
of the membrane elastic coefficients in the limit ε � 1 was first
discussed in Refs. [54,57]. The value of the critical exponent
η characterizing the flat phase was found to be

η � 2

dc

(4)

for D = 2 and dc � 1 [55,58], and

η � 12ε

24 + dc

(5)

for ε � 1 [57].

The scaling of the bending rigidity exactly at the crumpling
transition point is characterized by another critical exponent
ηcr. This exponent determines the fractal (Hausdorff) dimen-
sion of the membrane at criticality, DH = 2D/(4 − D − ηcr).
It turns out that for D = 2 and dc � 1, the exponent ηcr

coincides with η, Eq. (4), in the leading order in 1/dc. On
the other hand, in the vicinity of D = 4 the exponent ηcr was
found to be essentially different from η, Eq. (5), and scaling
as ε3, see Refs. [59,60].

Further approximate calculation schemes (that become
controllable for dc � 1) have been developed, such as the
self-consistent screening approximation (SCSA) [65] and the
“nonperturbative renormalization group” [69]. After extrapo-
lation to the physical dimensionality, the corresponding results
yield η = 0.821 and η = 0.849, respectively. Clearly, the
extrapolation is not controlled parametrically; the scattering
between the above values may serve as a rough estimate of their
accuracy. Numerical simulations of the problem gave values
η = 0.60 ± 0.10 and 0.72 ± 0.04 (see Refs. [63] and [68],
respectively).

In the present paper, we explore the interplay of the
static disorder and anharmonicities in a graphene mem-
brane. Some aspects of such a problem have been discussed
in the literature in the general context of the membrane
physics [61,62,64,66,67]. In particular, it was concluded in
Refs. [61,62,66] that for D = 4 − ε with small ε the flat phase
is stable with respect to various types of disorder. On the other
hand, it was argued in Ref. [64] that, in the leading order in
1/dc, a flat phase of a 2D membrane is destroyed already by an
infinitely small impurity-induced disorder (in-plane quenched
random deformations). The later result, if applicable in the
physical case d = 3, would imply an instability of the graphene
membrane with respect to an arbitrarily weak disorder. The
authors of Ref. [64] speculated that high-order terms with
respect to 1/dc might cure such an instability. In Ref. [67], the
influence of randomness on the flat phase was treated within
the SCSA, with a focus on a long-range disorder.

Although the effects of disorder in the flat phase (both
for D = 4 − ε and D = 2) were discussed in a number
of publications, the problem of crumpling transition in a
disordered membrane still remains a challenge. This problem
has a close relation to the formation of ripples which are
the static out-of-plane random deformations of membrane.
In other words, ripples look like frozen flexural phonons.
In graphene, such deformations with a height 3–10 Å and
a typical spatial scale about several hundred angstroms
were observed in a number of experiments [17,23,77–85].
While several recent theoretical papers discussed graphene
ripples [30,40,71,72,85], the development of a systematic
theory of their formation (which would explain the mechanism
of rippling and predict key parameters of the emerging
structure) remains a challenging problem.

In the present work, we study the crumpling transition and
the rippling in graphene with a static quenched disorder. We
perform a detailed RG analysis for the out-of-plane (“random
curvature”) disorder model. Previously, the RG treatment
of disorder in membranes [61,62,66] has been performed
only for dimensionality D = 4 − ε, which cannot be directly
employed to the physical graphene samples. We assume that
the membrane dimensionality D is equal (or close) to 2 and
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use the 1/dc expansion, which allows us to control the theory
and to derive coupled RG equations describing a combined
flow of � and effective strength b of the out-of-plane disorder.
In this way, we establish the phase diagram by determining a
critical curve b(�) separating the flat and crumpled phases.
We demonstrate that, even deep in the flat phase, random
fluctuation of membrane tension caused by the static disorder
may strongly change the critical behavior of the bending
rigidity. We discuss in detail the behavior of disorder in the
flat phase.

Far from the critical curve, i.e., deep in the flat phase,
disorder decays in a power-law way at scales larger than the
Ginzburg length, which therefore sets a characteristic size for
the ripples (static frozen out-of-plane deformations observed
experimentally in suspended graphene). We find that in the
limit L → ∞ static and dynamic correlation functions of
∇h behave as L−2η and L−η, respectively. Hence, ripples
are characterized by the anomalous exponent 2η in contrast
to dynamical fluctuations governed by η. Furthermore, we
show that, for sufficiently strong disorder, there exists an
intermediate range of spatial scales where ripples decay much
slower, with exponent η/4. One of the remarkable results is
that the RG flow of coupling constants may be essentially
nonmonotonous. Specifically, for sufficiently strong disorder
(close to the critical curve), the bending rigidity decreases at
the first stage of the renormalization, reaches its minimum, and
then starts to grow. In this near-critical regime, the disorder
also changes in a nonmonotonous fashion: it first increases
very slowly (logarithmically) with the spatial scale L, then
reaches a maximum at a certain scale Lr and, finally, decreases
according to a power law at larger scales. In this case, the
membrane shows fractal properties, which imply its multiple
folding starting form a certain length scale L1 and flattens at a
much larger scale L2.

We also briefly discuss an in-plane disorder and show that
it is irrelevant in the RG sense, unless its correlation function
is highly singular at small momenta, i.e., unless it is too
long-ranged. Thus the above conclusions remain valid also in
the presence of in-plane disorder. The in-plane disorder may,
however, affect essentially the bare value of the out-of-plane
disorder at the atomic scales, which serves as a starting point
for the RG analysis.

We conclude the paper by a comparison of our results
with available experimental data on graphene ripples. While
the main focus of the paper is on graphene, the developed
theory is quite general and is expected to be applicable to
other crystalline membranes as well. These include biological
membranes like those of red blood cells [86], oxidized graphite
or graphene [87], graphane [88], molybdenum disulphide [89],
and boron nitride [90] membranes. Further examples may
likely emerge in near future, in view of current active works
on engineering of 2D materials and structures.

II. FORMULATION OF THE PROBLEM AND
MEAN-FIELD ANALYSIS

To begin with, we note that the energy of membrane
consists of kinetic and elastic contributions. In this paper,
we treat the problem semiclassically (see Appendix A for a
discussion of the region of applicability of the quasiclassical

FIG. 1. (Color online) A membrane with dimension D is embed-
ded into a space with dimension d. A point on the membrane surface
is labeled by a d-dimensional vector R which depends on vector x
belonging to an arbitrary D-dimensional reference plane.

approximation). The kinetic energy depends on momenta only.
Within the semiclassical approximation, the phonon momenta
can thus be integrated out from the very beginning. In what
follows, we neglect the kinetic term (see Refs. [73,74,76] for
a discussion of some effects related to this term) and focus on
the study of the elastic terms.

We start from the clean case and consider a general Landau-
Ginzburg form of the elastic free energy [54]:

F =
∫

dDx

[
w

2
(∂α∂αR)2 − t

2
(∂αR∂αR)

+u(∂αR∂βR)2 + v(∂αR∂αR)2

]
. (6)

Here, D is the dimension of the membrane, d is the dimension
of the embedding space, and α,β = 1, . . . ,D. In principle,
Eq. (6) allows one to describe both the flat and crumpled
phases of the membrane. In the latter case, one should
include an additional term that prevents self-intersections.
In this paper, we focus on the flat phase, so that we omit
this term. The d-dimensional vector R depends on the point
of the D-dimensional reference space, x = (x1, . . . ,xD), i.e.,
R = R(x) (see Fig. 1). Equation (6) can be obtained by the
following considerations. First, the translational invariance
implies that the free energy depends on R via the derivatives
∂αR only. Second, the rotational invariance requires that the
energy should be scalar with respect to both the embedding (R)
space and the reference (x) space. Finally, keeping the leading
terms in the expansion in the field ∂αR and in gradients yields
Eq. (6).

Following Ref. [54], we first consider the mean-field
approximation, which amounts to the linear ansatz

R = ξ0x.

This yields the free energy of Landau type,

F ∝ −ξ 2
0 t + 2ξ 4

0 (u + Dv). (7)

Next, we find ξ0 by minimization of the free energy (7):

∂F/∂ξ0 = 0 ⇒ ξ 2
0 =

{ t
4(u+Dv) , for t > 0,

0, for t < 0.
(8)

The case with ξ 2
0 > 0 corresponds to the flat phase, while

for ξ 2
0 = 0 the manifold R(x) shrinks to a point R = 0, which

implies that the membrane is crumpled. (Taking self-avoidance
into account would lead to a finite radius of the crumpled
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membrane [54].) Assuming (in spirit of Landau theory of phase
transitions) that t ∝ Tc − T , we find that ξ 2

0 ∝ Tc − T . Hence,
the model Eq. (6) shows a crumpling transition at T = Tc

already within the mean-field approximation.
We assume now that the system is in the flat phase T < Tc

and take into account thermal fluctuations around the mean-
field solution. For this purpose, we write

R = ξ0r, (9)

where

r = x + u + h (10)

and vectors

u = (u1, . . . ,uD), h = (h1, . . . ,hd−D)

represent in-plane and out-of-plane displacements, respec-
tively. Substituting Eq. (9) into Eq. (6) and choosing for ξ0

the mean-field solution Eq. (8), we find

F =
∫

dDx
{�

2
(�r)2 + μ

4
[∂αr∂βr − δαβ]2

+ λ

8
[∂γ r∂γ r − D]2

}
. (11)

Here,

� = wξ 2
0 (12)

is the bending rigidity and

μ = 4uξ 4
0 and λ = 8vξ 4

0

are the in-plane elastic constants. We see that these constants
as well as � turn to zero at the transition point: μ,λ ∝ (Tc −
T )2, � ∝ Tc − T .

Next, we use the parametrization (10) and rewrite Eq. (11)
in terms of u and h. We assume that the spatial derivatives
of fields are small, |∂αh| � 1, |∂αu| � 1, so that one can
neglect terms ∂αu∂βu compared to ∂αu in the second and third
contributions to energy (11). Further, one may neglect the term
�(�u)2 compared to μ(∂αuβ)2 and λ(∂αuα)2 provided that the
characteristic length scale of the variation of the membrane
displacement, q−1, is sufficiently large:

q � min

(√
μ

�
,

√
λ

�

)
. (13)

Under these assumptions, one can rewrite Eq. (11) for the
membrane energy in the standard textbook form [24]:

F =
∫

dDx

[
�

2
(�h)2 + μu2

ij + λ

2
u2

ii

]
, (14)

where

uαβ = 1
2 (∂αr∂βr − δαβ) ≈ 1

2 (∂αuβ + ∂βuα + ∂αh∂βh) (15)

is the deformation tensor.
The following comment is in order here. The question about

the range of applicability of the simplified model, Eq. (14), is
in fact somewhat more subtle than one might conclude from
the above discussion. The point is that the elastic constants μ,
λ, and � are strongly renormalized due to anharmonicity and
the critical fluctuations that it induces. This effect is becoming

prominent for q � q∗, where q∗ is the inverse Ginzburg scale,
see Eq. (41) below. At such scales, the criterion (13) for
neglecting the �(�u)2 term should be modified. In particular,
for D = 2, the screening by critical fluctuations reduces
μ and λ to the value ∼T/�q ∼ �2q2/T (see Sec. III B).
Hence, q drops out from the estimate (13) and instead we
get the condition � � T . As will be demonstrated below,
the crumpling transition corresponds to � ∼ d2

c T , where
dc = d − D. Hence, the simplified model (14) is sufficient
for a description of the crumpling transition provided that
dc � 1. On the other hand, it is exactly the latter condition
that we will use to develop a controllable RG treatment for
the theory (14). Therefore neglecting the �(�u)2 term and
thus restricting ourselves with the free energy (14) is fully
consistent with the subsequent RG analysis.

Let us now introduce a quenched disorder into the
model (14). We will mainly focus on the out-of-plane (random
curvature) disorder in this paper [61,66]. Our motivations for
analyzing the effect of this type of disorder are twofold. First,
we will show that the random-curvature disorder influences
the RG flow (and thus the crumpling transition) in an essential
way. This should be contrasted with the in-plane disorder,
which is RG-irrelevant (unless its correlation function is highly
singular at low momenta), as will be shown below. Second,
such disorder induces static out-of-plane deformations and is
thus directly related to the effect of rippling.

The free energy including the random-curvature disorder
reads [61]

F (u,h) =
∫

dDx

[
�

2
(�h + β)2 + μu2

ij + λ

2
u2

ii

]
. (16)

Here, β = β(x) is a random vector with a Gaussian distribution

P (β) = Z−1
β exp

(
− 1

2b

∫
β2(x)dDx

)
, (17)

where b is the disorder strength and Zβ is a normalization
factor. In order to study the membrane properties in a
systematic way, one should take into account the fluctuations,
thus going beyond the mean-field approximation.

III. BEYOND MEAN FIELD

In this section, we develop an RG treatment of a disordered
membrane. Previously, the curvature disorder was treated
within the RG approach [66] only in dimensionality D =
4 − ε. We will see below that the structure of the RG near
D = 2 is crucially different from the case D = 4 − ε. A
lowest-order perturbative treatment of the curvature disorder in
physical dimension D = 2 was briefly discussed in Ref. [61].
However, this consideration is only applicable for short
distances (smaller than then the Ginzburg length), whereas
the most interesting physics (captured by the RG) develops on
larger scales.

Our analysis is based on an expansion around the ordered
(flat-membrane) phase, and thus bears analogy to a σ -model
treatment of conventional critical phenomena. In full similarity
with the σ models, D = 2 is the logarithmic dimension for
the present problem (which manifests in �/T becoming
dimensionless in this case), so that our analysis will be
appropriate at or near D = 2. This is highly favorable, since
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D = 2 is exactly the physical dimension of a membrane. To
keep the theory under control, we will also assume a large
dimensionality of the embedding space, dc � 1.

A. Renormalization of stretching parameter ξ

Above, we rescaled the coordinates with the scaling factor
ξ0, which minimizes the free energy within the mean-field
approximation. Beyond mean field, one should take into
account critical fluctuations. Such fluctuations change the
optimal scaling factor. To consider this effect, we modify
Eq. (10) as follows:

r = ξx + u + h. (18)

Equation (18) represents a new rescaling of coordinates.
The mean-field approximation corresponds to ξ = 1. Below,
we find that ξ flows away from the mean-field value due to the
fluctuations. Substituting Eq. (18) into Eq. (11) and using the
same approximations that were done in the course of derivation
of Eq. (15), we arrive at the following expression for the free
energy:

F = DLD(μ + λD/2)

4

[
(ξ 2 − 1)2

+ 2(ξ 2 − 1)

D

∫
dDx
LD

∂αh∂αh
]

+ F (ũ,h), (19)

where F (ũ,h) is given by Eq. (16) with u replaced by ũ = ξu.
Since the product ∂αh∂αh in Eq. (19) is averaged over the

whole volume of the membrane, its fluctuations are negligibly
small in the limit L → ∞. Hence one can replace

∂αh∂αh → 〈∂αh∂αh〉,
where 〈· · · 〉 stands for averaging with the statistical factor
exp[−F (ũ,h)/T ]. Minimizing the thus obtained energy with
respect to ξ , we find that the optimal value of ξ deviates from
the mean-field value ξ = 1 due to the fluctuations,

ξ 2 = 1 − 1

D
〈∂αh∂αh〉. (20)

In order to calculate 〈∂αh∂αh〉, we notice that F (ũ,h) contains
linear, quadratic, cubic, and quartic terms with respect to
variables h and u. In this section, we neglect cubic and quartic
terms, thus neglecting anharmonicity. The anharmonicity-
related effects will be included in the next section in the
framework of the RG formalism. In the harmonic approxima-
tion, the u-dependent terms in the free energy do not couple
with the h-dependent ones and, therefore, can be integrated out
from the very beginning. The h-dependent part of the energy
in the harmonic approximation is given by

∫
dDx �(�h +

β)2/2. An averaging over fluctuation of h and over disorder
yields

〈∂αh∂αh〉 = dc

(
T

�
+ b

) ∫
dDq

(2π )D
1

q2
. (21)

For D = 2, the integral diverges logarithmically. We will see
below that D = 2 is the lower critical dimension of the theory
in the limit of infinite dimensionality of the embedding space
d → ∞. The special role of D = 2 is not unexpected, since
the theory that we are developing is based on an expansion

near the ordered phase (ξ > 0) and thus bears analogy with σ

models (cf. Ref. [55]). Also, this role of D = 2 can be foreseen
already after a brief inspection of the free energy (16) and (17),
since both coupling constants T/κ and b have a dimensionality
of LD−2 and thus become dimensionless in 2D.

In the vicinity of the logarithmic dimension D = 2, an
RG formalism can be developed in the conventional way.
Introducing an infrared cutoff k, making a change of variables

ξ̃ 2 = ξ 2k2−D, (22)

and using Eqs. (20) and (21), we find an RG equation that
determines a flow of the stretching parameter ξ with the spatial
scale k−1,

dξ̃ 2

d�
= (D − 2)ξ̃ 2 − d̃c

4π

(
T

�
+ b

)
, (23)

where � = ln (km/k) and

d̃c = dc

(4π )(D−2)/2�(D/2 + 1)
. (24)

Exactly at D = 2, Eq. (23) simplifies to

dξ 2

d�
= − dc

4π

(
T

�
+ b

)
, D = 2. (25)

The renormalization of ξ is terminated by k = 1/L. The first
and second terms in the r.h.s. of Eq. (25) describe contributions
of dynamic fluctuations (flexural phonons) and of static
deformations (ripples), respectively. Equation (25) predicts
that ξ becomes zero at a finite system size. In other words,
a 2D membrane should be crumpled in the thermodynamic
limit due to both dynamic and static deformations. While this
conclusion is reminiscent of the Mermin-Wagner theorem [50]
that forbids a long-range order in 2D systems, it turns out to be
wrong (which is a manifestation of the fact that the Mermin-
Wagner theorem is not applicable to the problem under
consideration [55]). Specifically, inclusion of anharmonicity
leads to renormalization of � and b and restores the ordered
(flat) phase in 2D for a finite dimensionality of the embedding
space, d < ∞.

We are now going to derive RG equations describing the
renormalization of elastic constants and disorder. We will see
that at sufficiently large spatial scales, μ and λ are screened to
values independent on the bare ones. The effective theory at
such scales is thus determined by three running couplings: the
stretching parameter (“field renormalization”) ξ , the bending
rigidity (“stiffness”) �, and the effective disorder strength b.
We start from a discussion of renormalization of � in the clean
case (b = 0) in Sec. III B and then derive the full set of RG
equations for a disordered membrane in Sec. III C.

B. Renormalization of the bending rigidity in the clean case

We start from the clean-membrane free energy F (ũ,h).
Since the theory is quadratic with respect to longitudinal modes
u, they can be integrated out [52,65]. The stretching parameter
ξ enters F (ũ,h) via ũ = ξu only, and evidently drops out after
changing variables u → ξu in the functional integral over u.

Hence we arrive at a free energy that depends on h vectors
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FIG. 2. (Top) h4-interaction vertex for generic D (left) and for
D = 2 (right). (Bottom) One-loop diagrams describing renormaliza-
tion of the interaction and of the propagator in a clean membrane.

only [65]:

F

T
= �

2T

∫
(dk)k4|hk|2 + 1

4dc

∫
(dkdk′dq)Rq(k,k′)

× (hk+qh−k)(h−k′−qhk′). (26)

Here and below we use a short-hand notation (dk) =
dDk/(2π )D. The kernel of quartic interaction between trans-
verse modes (see Fig. 2) can be cast in the form (see
Appendix B)

Rq(k,k′) = N k2
⊥k

′2
⊥

D − 1
+ M

[
(k⊥k

′
⊥)2 − k2

⊥k
′2
⊥

D − 1

]
. (27)

Here,

k⊥ = P̂ k = k − q(kq)

q2
,

where P̂ is the projection operator related to the transferred
momentum q,

Pαβ = δαβ − qαqβ/q2, (28)

and

N = μ(2μ + Dλ)

(2μ + λ)T
, M = μ

T
. (29)

Hence for a generic dimensionality D of the membrane,
there are two coupling constants, N and M, controlling the
interaction strength. An important exception is the case D = 2
where the constant M drops out from the theory because the
term in the square brackets in Eq. (27) turns to zero. Hence,
for D = 2, the interaction reads

RD=2
q (k,k′) = 2μ(μ + λ)

(2μ + λ)

[k × q]2

q2

[k′ × q]2

q2
. (30)

The bare propagator (which is exact in the absence of
interaction, N = M = 0) is given by〈

hα
kh

β

−k′
〉 = (2π )Dδ(k − k′)δαβG0

k, (31)

where

G0
k = T

�k4
. (32)

The interaction coupling constants get screened in analogy
with conventional charges in a media with a finite polarizabil-
ity. Evaluating the polarization operator to the one-loop order
[which is nothing but the random phase approximation (RPA)],
we find the screened couplings

Nq = N
1 + N (D + 1)�q

, (33)

Mq = M
1 + 2M�q

. (34)

Thus the coupling constants N and M become q-dependent
and are screened independently of each other. There is,
however, an invariant subspace of the elastic coefficients,

λ = − 2μ

D + 2
, (35)

where the coupling constants stay equal up to a numerical
coefficient:

Nq = 2Mq

D + 1
. (36)

The polarization operator �q reads

�q = 1

D2 − 1

∫
(dk)k4

⊥G0
kG

0
q−k. (37)

Using (32), we get

�q = AD

T 2

�2q4−D
, (38)

where

AD = �
(

D
2

)
�

(
4−D

2

)
π (D−1)/222D+1�

(
D+1

2

) . (39)

For D = 2, we get A2 = 1/16π.

It follows from Eq. (38) that for any D < 4 the polarization
operator increases according to a power law with decreasing q.
Hence, as seen from Eqs. (33) and (34), for sufficiently small q,
couplings N and M become independent of their bare values
and inversely proportional to the polarization operator:

Nq ≈ 1

(D + 1)�q
, Mq ≈ 1

2�q
. (40)

For the invariant subspace (35), Eq. (40) holds for q � q∗,
where

q∗ ∼
(

μT

�2

)1/(4−D)

(41)

is the inverse Ginzburg length, which separates the normal
region (q > q∗) from the critical one (q < q∗). For the case
when bare couplings N and M are essentially different, there
are two different scales q∗

N and q∗
M at which they become
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screened according to Eq. (40). For simplicity, we will assume
that the bare values are of the same order, N ∼ M, so that
q∗
N ∼ q∗

M ∼ q∗. For a 2D membrane this question does not
even arise, since the coupling M is simply absent.

We are now ready to evaluate the renormalization of the
bending rigidity by (screened) interaction. The renormalized
propagator of the h field is given by

Gk = T

�k4 + �k
, (42)

where the one-loop self-energy reads

�k = 2T

dc

∫
(dq)

Nq + (D − 2)Mq

D − 1
k4
⊥G0(k − q). (43)

For q � q∗, the effective screened interaction [Nq + (D −
2)Mq]/(D − 1) that enters Eq. (43) becomes

Nq + (D − 2)Mq

D − 1
≈ D

2(D + 1)�q
. (44)

Let us now substitute Eq. (44) into Eq. (43) and consider the
behavior of �k at low momenta k � q∗. Using Eq. (38) for the
polarization operator, we find that the integral in Eq. (43) scales
as k4 ln(1/k). This implies a logarithmic renormalization of the
bending rigidity:

δ�(k) � D�

dc(D + 1)AD

∫ q∗

0
(dq)

k4
⊥q4−D

k4|k − q|4

� η� ln

(
q∗

k

)
, (45)

where we neglected the contribution from q > q∗ which is
convergent for k → 0 and is therefore small. The constant η

can be expressed as

η = 1

dc

D

D + 1

[
B(D,η0)η0

A(D,η0)

]
η0→0

, (46)

with integrals A(D,η) and B(D,η) as defined in Appendix C.
The functions A(D,η) and B(D,η) will be used below for
comparison with SCSA [65]. Note that A(D,0) = AD.

For a sufficiently large spatial scale k−1, the correction (45)
ceases to be small and gets promoted to a RG equation,

d�

d�
= η�, (47)

where � = ln(q∗/k). We thus see that η is the anomalous
dimension of the bending rigidity. Using Eqs. (C1) and (C2),
we find

η = D(D − 1)2D

√
πdc

�
(

D+1
2

)
�

(
D
2

)
�

(
2 − D

2

)
�

(
2 + D

2

) . (48)

It is worth pointing out that, at variance with Eq. (21), the
integral (45) is always logarithmic (i.e., also away from D =
2). Thus Eq. (48) is applicable for any D as well. The only
condition of validity of this equation is dc � 1, which implies
that η � 1. The equation simplifies for D = 2 and D = 4 − ε,
yielding

η �
{

2/dc, for D = 2,

12ε/dc, for D = 4 − ε.
(49)

[Since dc � 1, the second line in this equation agrees with
Eq. (5) obtained by ε expansion.] For generic values of d

and D, the exponent η is not small. To find it, one would
have to take into account higher-loop contributions to RG
equations. Such a calculation does not appear feasible because
of the absence of a small parameter. On the other hand, one
may develop a self-consistent extension of the one-loop theory
by inserting renormalized Green functions into the one-loop
diagrams, which amounts to the replacement [65] of G0 with
G in Eqs. (37) and (43). The corresponding calculations yield
a self-consistency equation for η

1 = 1

dc

D

D + 1

B(D,η)

A(D,η)
, (50)

which was derived in Ref. [65]. This equation can be obtained
from Eq. (46) by replacing η0 with η. Although such a proce-
dure is not controlled parametrically for physical membranes
(d = 3, D = 2), it gives in this case a value η ≈ 0.821, which
turns out to be in a reasonable agreement [91] with numerical
values η = 0.60 ± 0.10 and η = 0.72 ± 0.04 (see Refs. [63]
and [68], respectively).

C. Renormalization group for disordered membrane

Now we include in the consideration the random curvature
disorder which modifies only the first term in Eq. (26). In the
coordinate representation, this term becomes

F0 = �

2

∫
dDx(�h + β)2, (51)

where β = β(x) is a random vector with Gaussian distribu-
tion (17). Disorder averaging can be performed with making
use of the replica trick. To this end, we introduce N replicas
of the field h (i.e., make a replacement h → hn with a replica
index n = 1, . . . ,N) and replicate the free energy F :

F rep = F
rep
0 + F

rep
1 , (52)

where

F
rep
0 =

n=N∑
n=1

�

2

∫
(dk)k4|hn

k + βk|2 (53)

and

F
rep
1 =

n=N∑
n=1

1

4dc

×
∫

(dkdk′dq)Rq(k,k′)
(
hn

k+qhn
−k

)(
hn

−k′−qhn
k′
)
. (54)

Next, we average exp(−Frep/T ) with P (β), thus arriving at
the following effective action:

Feff = 1

2

∑
n,m

∫
(dk)�nmk4hn

khm
−k + F

rep
1 , (55)

where we have introduced a replica-space matrix �̂ with
elements �nm given by

�̂ = � − b�2

T + b�N
Ĵ . (56)
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Here, Ĵ is a matrix with all elements equal to unity: J nm = 1.
The bare propagator thus becomes a matrix in the replica
space:

Ĝ0
k = T �̂−1

k4
= T

�k4
(1 + f Ĵ ), (57)

where

f = b�

T
(58)

is the dimensionless parameter characterising a ratio between
the bare disorder, b, and the bare dynamical fluctuations,
T/κ.

The polarization operator also becomes a replica-space
matrix. In the one-loop order (i.e., within RPA), its elements
read

�nm
q = 1

D2 − 1

∫
(dk)k4

⊥G
0,nm
k G

0,nm
q−k

= T 2

D2 − 1

∫
(dk)k4

⊥
(�̂−1)nm

k4

(�̂−1)nm

|q − k|4 . (59)

Using the property (δnm + f J nm)2 = (1 + 2f )δnm + f 2J nm,
we find

�̂q = AD

T 2

�2q4−D
(1 + 2f + f 2Ĵ ). (60)

Substituting Eq. (60) into Eqs. (33) and (34), we obtain the
screened couplings N̂q and M̂q as matrices in the replica
space. The Ginzburg scale q∗ is now affected by the disorder
that enters the polarization operator (60):

q∗ ∼
[
μT (1 + 2f )

�2

]1/(4−D)

. (61)

It is worth noting that for strong disorder or low temperatures
(f � 1) q∗ ∼ (μb/κ)1/(4−D) is independent of temperature,
while for weak disorder (f � 1) we recover Eq. (41), q∗ ∝
T 1/2.

Let us now calculate the self-energy determining the
renormalization of the bending rigidity. In similarity with
Eq. (44), the effective interaction Û with matrix elements Unm

(see Fig. 3) is expressed for q � q∗ in terms of the polarization
operator,

Û = D�̂−1
q

2(D + 1)

= D

2(D + 1)

�2q4−D

T 2AD

1 + 2f + f 2N − f 2Ĵ

(1 + 2f )(1 + 2f + f 2N )
. (62)

The replica generalization of Eq. (43) for self-energy thus takes
the form

�nm
k = 2T

dc

∫
(dq)k4

⊥
D

(
�−1

q

)nm

2(D + 1)
G

0,nm
k−q . (63)

Substituting here the Green function, Eq. (57), using the
property

[1 + 2f + f 2N − f 2Ĵ ]nm(1 + f Ĵ )nm

= [1 + 3f + f 2(N + 1) + f 3N − f 3Ĵ ]nm,

FIG. 3. Replica-index structure of the h4 interaction and of the
one-loop diagrams for a disordered membrane.

and taking the limit N → 0, we finally arrive at the matrix
equation which governs the renormalization of �̂ in the
presence of disorder:

d�̂

d�
= η�

1 + 3f + f 2 − f 3Ĵ

(1 + 2f )2
, (64)

where η is given by Eq. (46). Substituting Eq. (56) into
the left-hand side (l.h.s.) of Eq. (64), and separating terms
proportional to Ĵ from scalar ones, we find two equations
describing renormalization of the bending rigidity and of the
disorder strength:

d�

d�
= η�

1 + 3f + f 2

(1 + 2f )2
, (65)

d(�f )

d�
= η�

f 3

(1 + 2f )2
. (66)

Equations (23), (65), and (66) represent the full set of RG
equations, which determine the behavior of the system for
q � q∗ [the Ginzburg scale q∗ is defined here with the bare
disorder strength f0 in Eq. (61)]. To analyze the fixed points
and the scaling flow, we rewrite them in terms of appropriate
dimensionless couplings. To this end, we introduce a rescaled
bending rigidity,

�̃ = �ξ̃ 2 = �ξ 2k2−D. (67)

The meaning of Eq. (67) is twofold. First, the ratio �̃/T is
made dimensionless (also for a dimensionality deviating from
D = 2). Second, it takes into account the “compression” of
the membrane controlled by the factor ξ in Eq. (18), which
can be viewed as an analog of the order-parameter field
renormalization in the conventional σ -model RG. Expressing
further the flow of f from Eqs. (65) and (66), we cast the RG
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equation into the following form:

dξ 2

d�
= − d̃c

4π

T

�̃
(1 + f )ξ 2, (68)

d�̃

d�
= �̃

[
D − 2 + η

1 + 3f + f 2

(1 + 2f )2

]
− d̃cT

4π
(1 + f ), (69)

df

d�
= −η

f (1 + 3f )

(1 + 2f )2
. (70)

It is worth discussing a structure of the derived RG
equations. Equations (69) and (70) describe evolution of two
dimensionless couplings of the theory: the inverse dimen-
sionless bending rigidity T/κ̃ and the dimensionless disorder
b̃ = f T/κ̃ . The solution of one-loop equations is simplified
by the fact that the equation for f (ratio of disorder to the
inverse bending rigidity), Eq. (70), decouples and thus can
be straightforwardly integrated. After this, Eq. (69) for �̃ can
be solved. Finally, Eq. (68) is analogous to the wave-function
renormalization equation of the σ -model RG. It is a “slave”
equation, which can be solved at the last stage.

We emphasize that the set of the RG equations (68), (69),
and (70) strongly differs from the RG equations [61,62,66]
previously derived in dimensionality D = 4 − ε. Apart from
the dimensionality (that allows us to employ the RG approach
to physical D = 2 graphene samples), the crucial difference
is in the role of screening near two dimensions. In our case,
the screening of anharmonic couplings eliminates the separate
renormalization of elastic constants λ and μ; they now only
determine the starting point of the RG, q∗, Eq. (61). For the
same reason, only the out-of-plane (curvature) short-range
disorder survives the renormalization, see discussion of the
in-plane disorder in Sec. III D below.

One can further simplify Eqs. (68) and (69) by introducing
a dimensionless coupling

K = 4πη�̃

d̃cT (1 + f )
(71)

[for D = 2 this transformation takes the form K =
(8π/d2

c T )�̃/(1 + f )]. We also change the variable � to

z = η�, (72)

thus arriving at the following RG equations:

dξ 2

dz
= −ξ 2

K
, (73)

dK

dz
= K

[
ε2 + 1 + 5f + 7f 2 + f 3

(1 + f )(1 + 2f )2

]
− 1, (74)

df

dz
= −f (1 + 3f )

(1 + 2f )2
. (75)

Here,

ε2 = D − 2

η
� (D − 2)dc

2
. (76)

Before proceeding to a detailed analysis of these RG
equations, we briefly discuss the effect of in-plane disorder.

D. In-plane disorder

In most of this paper, we explore the problem in the presence
of out-of-plane (“random curvature”) disorder. In this section,
we briefly analyze the in-plane disorder and show that, with
an exception of the case of topological defects (disclinations),
it can be safely neglected. We restrict ourselves to the case
D = 2. Let us consider an impurity-induced isotropic in-plane
disorder that leads [62] to the following modification of the
free energy (26):

F = �

2

∫
(dk)k4|hk|2

+ N
4dc

∫
(dq)

∣∣∣∣
∫

(dk)
(k × q)2

q2
hk+qh−k + cq

∣∣∣∣
2

. (77)

Here, cq is the Fourier transform of the random quenched field
c(x) with the Gaussian distribution

P [c(x)] ∝ exp

(
− 1

2σ

∫
dxc2(x)

)
,

and σ is the effective disorder strength. Replicating the field h
and averaging over disorder, we find that the bare interaction
U 0

nm (see Fig. 3) acquires now off-diagonal elements in the
replica space:

U 0
nm = N δnm − N 2σ Ĵ . (78)

Next, we find the screened interaction by solving the equation
Û = Û0 − Û0�Û (see Fig. 3), which yields

Û = (1 + Û0�)−1Û0 = (
1 + �−1Û−1

0

)−1
�−1. (79)

For q � q∗, the polarization operator grows as 1/q2, so that
one can neglect the term �−1Û−1

0 ∼ q2. As a result, both the
elastic constant N and the disorder strength σ drop out from
the effective interaction:

Û → �−1, for q � q∗. (80)

We thus conclude that, in the critical region q � q∗, the in-
plane random potential becomes irrelevant and does not affect
critical behavior of �.

This conclusion should be contrasted with that of Ref. [64]
where it was argued that an arbitrarily weak in-plane impurity
disorder destroys the flat phase. Specifically, it was found
that the membrane is destroyed for σ > σ (0)

c , where 1/σ (0)
c

is strongly divergent in the infrared limit: 1/σ (0)
c ∝ 1/q2

IR.

Here, qIR is the infrared cutoff momentum (inverse system
size, qIR ∼ 1/L). One can demonstrate that in fact screening
cures this divergency (cf. Ref. [67]) and leads to a replacement
of qIR with q∗, thus yielding a finite value σc ∝ T/μ. A not
too strong in-plane disorder, σ0 < σc will thus simply lead
to ultraviolet corrections to the bare parameters (out-of-plane
disorder b0 and bending rigidity �0) of our theory. Specifically,
a natural expectation is that the in-plane disorder would
enhance b0 and reduce �0. In other words, the in-plane disorder
is RG-irrelevant at length scales �1/q∗ but its contribution on
shorter (atomic) scales can affect the starting point of RG.

The above result on irrelevance of the in-plane disorder was
based on an assumption of a finite-range disorder c(x), which
means that the disorder strength σq remains finite in the limit
q → 0. It is easy to see that this assumption can be in fact
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weakened: it is sufficient to require that the singularity of σq at
q → 0 (if present) is not stronger than 1/q2−α with α > 0. This
corresponds to spatial correlations with a power-law decay,
〈c(0)c(x)〉 ∝ x−α . In this case, inverting Eq. (78) and taking
the limit N → 0, we find

Û−1
0 (N → 0) = 1

N + σqĴ . (81)

Since σq�
−1 → qα for q → 0, we conclude that Û−1

0 �−1

vanishes at small q, so that the derivation of (80) retains its
validity. Only for α → 0 (which corresponds to logarithmic
real-space correlations), we get σq�

−1 → const for q → 0.
Such a disorder is RG-marginal and thus will influence the
flow of other couplings. Physically, the 1/q2 in-plane disorder
corresponds to random topological defects—disclinations (see
Ref. [67] for a discussion of different types of long-range
disorder and their treatment within the SCSA). A detailed
analysis of this type of in-plane disorder is outside of the
scope of this paper and will be presented elsewhere.

IV. ANALYSIS OF RG EQUATIONS:
CRUMPLING TRANSITION

In this section, we analyze the RG equations derived above
for clean and disordered cases.

A. Clean membrane

In the absence of disorder (f = 0) and for D = 2, Eqs. (73)
and (74) take the form

dξ 2

dz
= −ξ 2

K
, (82)

dK

dz
= K − 1. (83)

Here we have taken into account that ξ̃ = ξ for D = 2. The
initial condition for Eq. (82) is [92]

ξ0 = 1, for z = 0. (84)

From Eqs. (82) and (83), we conclude that there exists an
unstable fixed point

Kcr = 1 (85)

or, equivalently,

�cr = d2
c T

8π
. (86)

Indeed, assuming that the starting value of the bending rigidity,
�0 = �̃z=0 = �z=0, exceeds the critical value, �0 > �cr, we find
from Eqs. (82) and (83)

ξ 2 = �cre
−z + �0 − �cr

�0
, (87)

and, consequently,

ξ 2
z=∞ = �0 − �cr

�0
. (88)

Therefore, above the critical point, the membrane remains in
the flat phase in the course of renormalization. On the other
hand, one can easily check that below the critical point (for

�0 < �cr), the membrane shrinks to the crumpled phase, ξ = 0,
at a finite scale

L ∼ q−1 = 1

q∗

(
�cr

�cr − �0

)dc/2

. (89)

Hence the fixed point (86) separates the crumpled and flat
phases [55].

For a membrane dimensionality D slightly deviating from
2, we get instead of (83)

dK

dz
= K(ε2 + 1) − 1. (90)

Equation (90) implies that the lower critical dimension for
crumpling transition can be found from the condition ε2 = −1,
which yields

Dcr = 2 − 2

dc

, (91)

in agreement with previous studies [59].
Exactly at the transition point, when K = Kcr = 1/(1 +

ε2), the stretching factor ξ decays with L according to a power
law:

ξ ∝ 1

Lτ
, (92)

where τ = (D − 2 + η)/2. In other words, the extension of
the membrane R in the embedding space scales with its
“intrinsic” length L as R = L1−τ . The exponent τ determines
thus the fractal (Hausdorff) dimension DH of the membrane
at criticality (defined by the relation RDH ∼ LD), yielding
DH = D/(1 − τ ) = 2D/(4 − D − η).

Let us discuss in more detail geometric properties of the
membrane, which are determined by the behavior of ξ. To this
end, let us consider two points r1 and r2 on the membrane
and the corresponding points x1 and x2 in the reference plane.
According to Eq. (18) and to the RG procedure, we have a
scaling relation

〈|r1 − r2|2〉 ∼ ξ 2
|x1−x2|(x1 − x2)2, (93)

where ξx is the value of the running renormalization-parameter
ξ at the RG spatial scale x. When ξx drops down to a value
substantially smaller than unity (say, to 1/2), the embedding-
space distance |r1 − r2| between the points become essentially
smaller than the intrinsic distance |x1 − x2|. This indicates that
a membrane of such size starts to show “folding” (i.e., strong
spatial variation of the normal vector to the membrane in the
embedding space).

Deep in the flat phase, the renormalization of ξ at the
whole interval of RG scales, 1/q∗ < L < ∞, is relatively
weak. This implies that the membrane does not fold. In other
words, although the surface of a membrane is not exactly flat
due to dynamical fluctuations (and also due to ripples in the
disordered case, as discussed below), the spatial variation of
the normal vector remains relatively small.

On the other hand, when �0 approaches the critical
value, Eq. (86) (i.e., when �0 − �cr � �cr), the membrane
shows fractal folding at the broad interval of length scales.
Specifically, as seen from Eq, (87), this folding becomes strong
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for z ∼ 1, i.e., at the length scale L ∼ L1, where

L1 ∼ 1

q∗ e1/η. (94)

At a much larger scale,

L2 ∼ 1

q∗

(
�cr

�0 − �cr

)1/η

, (95)

exp(−z) becomes on the order of (�0 − �cr)/�cr and ξ

saturates. Thus, the membrane has a fractal geometry in
the interval L1 � L � L2. At larger scales, L � L2 the
membrane flattens. Exactly at the transition, L2 diverges and
the membrane remains fractal at arbitrarily large scales.

B. Disordered membrane

1. RG flow in disordered case

Let us now consider the disordered case. From now on and
till the end of the paper, we will assume that D = 2 and, con-
sequently, ε2 = 0. We see from Eq. (75) that f monotonously
decreases in course of renormalization. Dividing Eq. (74) by
Eq. (75), we find an equation that determines variation of K

with f . Its solution yields the function K(f ), which can be
written in the following form:

K(f ) = Kcr(f ) + (3f + 1)1/9e−f/3

f (1 + f )
δ. (96)

Here, Kcr(f ) is the critical curve in the (K,f ) plane which
separates the crumpled and flat phases (see Fig. 4):

Kcr(f ) = (3f + 1)1/9e−f/3

f (1 + f )

∫ f

0
dy

(1 + 2y)2(1 + y)ey/3

(3y + 1)10/9
.

(97)

The phase boundary has the following asymptotic behavior at
small and large f :

Kcr �
{

1 + f 2/3, for f → 0,

4(1 − 5/f ), for f → ∞.
(98)

For f = 0, we recover Eq. (85) as expected. The parameter δ

controlling the deviation of the RG flow line from the critical
one depends on initial values of f and K in the following way:

δ = f0(1 + f0)

(3f0 + 1)1/9
ef0/3[K0 − Kcr(f0)]. (99)

The flat phase corresponds to δ > 0, while the crumpled phase
to δ < 0.

The RG flow in the (K,f ) plane is illustrated in Fig. 4.
One observes that in the flat phase the evolution of K is
nonmonotonous. For δ � 1, the minimum of K lies in the
region of small f , where K ≈ 1 + f 2/3 + δ/f . Minimization
yields the position of the minimum:

fmin ≈ (3δ/2)1/3,Kmin ≈ 1 + (3δ/2)2/3,for δ � 1. (100)

In the opposite case, δ � 1, the minimum corresponds to large
f , where K ≈ 4 − 20/f + 9δ exp(−f/3)/(3f )17/9. We find
with logarithmical precision

fmin ≈ 3 ln(δ),Kmin ≈ 4 − 20/3 ln(δ), for δ � 1. (101)

FIG. 4. (Color online) (Top) Critical curve (δ = 0) separating the
crumpled and flat phases in the K-f plane. (Bottom) RG flow lines
in the K-f plane for a disordered membrane for different values of δ

(δ = −200, −100, −50, −3, −0.4, 0, 1.2, 7.5, 50, 100, and 200 from
bottom to top).

2. Disorder-induced crumpling

Let us fix initial value of �0 = �̃z=0 = �z=0 and consider
what happens with increasing disorder strength b. Since ξ0 =
1, we have the following initial values of K and f :

K0 = �0

�cr(1 + f0)
and f0 = b0�0

T
, (102)

where �cr is given by Eq. (86). The crumpling occurs when
K0 becomes smaller than Kcr(f0). Hence the critical curve
in the (�0,b0) plane is implicitly determined by equations
�0 = �cr(1 + f0)Kcr(f0) and b0 = f0T/�0 = (8π/d2)f0/(1 +
f0)Kcr(f0), with f0 varying in the interval (0,∞). The
dependence b0(�0) found from these equations is plotted in
Fig. 5. The asymptotic behavior of the critical line reads

b0 = 2π

d2
c

{
4(�0 − �cr)/�cr, for �0 → �cr,

1 + 19�cr/16�0, for �0 → ∞.
(103)

We notice that the dependence is nonmonotonous. In other
words, there exists an optimal value of bare bending rigidity,
�0 ≈ 4.2�cr, for which the membrane is most robust to
disorder-induced crumpling. It is also worth stressing that
the critical disorder saturates in the limit of infinite bending
rigidity at the universal value b0 = 2π/d2

c .
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flat

crumpled

FIG. 5. (Color online) Crumpling-transition phase diagram in the
plane of initial parameters (bending rigidity �0 and disorder b0).

V. RIPPLING AND FOLDING OF MEMBRANE
IN THE FLAT PHASE

We have thus established the phase diagram of the crum-
pling transition in the plane of initial parameters, i.e., bending
rigidity �0 and disorder b0. An important question that remains
to be explored is the evolution of physical observables with
the length scale. This will be done in the present section. We
will, in particular, show that the disorder strength decreases
beyond a certain length scale Lr.

After rescaling the disorder strength

b̃ = b

ξ 2
, (104)

one finds that the RG equations in the (�̃,b̃) plane are implicitly
determined by the following equations:

�̃

�cr
= (1 + f )K(f ), (105)

b̃d2
c

2π
= 4f

(1 + f )K(f )
, (106)

where K(f ) is given by Eq. (96) and f varies in the
interval [0,∞]. For δ = 0, we reproduce the critical curve
b0(�0) separating the crumpled and flat phases, see Fig. 5.
The RG flow lines are illustrated in Fig. 6. We see that in
the flat phase at the first stage of the renormalization the
bending rigidity strongly decreases, while the disorder strength
slightly increases. This behavior indicates the tendency of the
membrane to the disorder-induced crumpling. However, below
the critical line the disorder strength is insufficient to destroy
the membrane, so that �̃ eventually shows a minimum and
then starts to grow, while the disorder gets suppressed. Close
to the minimum of �̃, the RG curve is approximately vertical.
This behavior can be interpreted as screening of disorder by
softened membrane.

The minimal value of the bending rigidity is given by

�̃min � �cr

{
1 + 2

√
δ, for δ → 0,

12 ln δ, for δ → ∞.
(107)

A particularly interesting behavior is predicted slightly above
the critical curve (δ < 0 with |δ| � 1). In this case, the disorder

crumpled

flat

FIG. 6. (Color online) RG flow in the (�̃,b̃) plane for δ = −200,
−100, −50, −3, −0.4, −0.3, −0.2, −0.1, 0, 0.1, 0.3, 1.2, 7.5, 50,
100, and 200, increasing from top to bottom.

first increases, then reaches a maximum, starts to decrease and,
finally, after reaching a deep minimum, increases again and
goes to infinity.

The geometry of membrane is determined by the behavior
of the stretching factor ξ , which can be expressed in terms of
K(f ) by using Eqs. (73) and (75):

ξ 2 = exp

[
−

∫ f0

f

dy
(1 + 2y)2

y(1 + 3y)K(y)

]
. (108)

The value of ξ in the limit L → ∞ is found from this equation
by putting f = 0 : ξz=∞ = ξf =0.

Having in mind applications to graphene, let us now discuss
in more detail the scale dependence of the bending rigidity and
disorder in the flat phase (δ > 0). Similar to the clean case, the
behavior of membrane is essentially different deep in the flat
phase (when δ is large) and in the near-critical regime (when
δ is small). The regions corresponding to different regimes are
shown schematically in Fig. 7 on the (δ,f0) plane. Regions
(I), (II), and (III) are sufficiently close to critical line, so

FIG. 7. (Color online) Phase diagram in the (δ,f0) plane. Critical
curve (shown in red) separates flat and crumpled phases. Clean case
corresponds to horizontal axis (f0 = 0). Regions (I), (II), and (III)
correspond to a near-critical regime within the flat phase. In this part
of the phase space, the membrane shows critical (fractal) folding at
intermediate scales before flattening at larger scales. Regions (IV)
and (V) correspond to a rippled membrane deep in the flat phase.
Blue curves correspond to fixed values of bare bending rigidity
�0: (a) (�0 − �cr)/�cr � 1 and (b)(�0 − �cr)/�cr � 1. Bare disorder
increases along these curves from the bottom to the top.
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that the membrane undergoes strong folding in course of the
renormalization. Therefore we term these regions near-critical.
In contrast, for membranes with a starting point within regions
(IV) and (V), the stretching parameter ξ does not change
essentially in course of renormalization (i.e., ξ remains close
to unity in the limit L → ∞). Such membranes do not fold
and only show small dynamical wrinkling and static rippling.

We consider separately the cases of small and large
deviations from the critical transition line.

A. Close to critical line [regions (I), (II), and (III) in Fig. 7]

When the system is in the flat phase but not far from the
transition [i.e, δ > 0 but δ � 1, regions (I) and (II) in Fig. 7],
the dependence �̃(f ) has a minimum at f � √

δ. The minimal
value is given by (�̃/�cr)min � 1 + 2

√
δ and therefore is very

close to the critical value for the clean membrane. The disorder
strength shows a maximum at a much larger values of f ,
namely, f � 2. The maximal value of disorder is given by
b̃maxd2

c /2π � 1.9.
For strong disorder, when the starting values of f is large,

f0 � 1 [region (II)], the overall RG evolution is particularly
rich. At the initial stage of renormalization (i.e., as long as f

remains large), we find form Eq. (75) that f changes linearly
with z:

f (z) = f0 − 3z

4
, for f � 1. (109)

As follows from Eq. (106), at such spatial scales the disorder
slowly increases,

b̃(z)d2
c

2π
� 1 + 4

f (z)
. (110)

Here we have taken into account that δ � 1, replaced K with
Kcr in the denominator of Eq. (106), and used the large-f
asymptotic of the function Kcr [see Eq. (98)]. The bending
rigidity decreases linearly with z:

�̃

�cr
≈ 4f (z). (111)

The scaling of disorder changes when f becomes of the
order of unity. This happens for

zr ≈ 4f0

3
+ O[ln f0]. (112)

As seen from Eq. (70), for large scales, f decays exponentially
with z, i.e., f (z) ∼ exp(−z), so that the disorder starts to
decrease as

b̃(z)d2
c

2π
≈ 4f (z)

K[f (z)]
. (113)

Although the disorder strength starts to fall, the bending
rigidity is still strongly affected by disorder and continues to
decrease up to a value �̃min where f becomes quite small (of
the order of

√
δ). Only after this, the bending rigidity begins

to grow.
In the case when the starting value of disorder is weaker,√

δ � f0 � 1 [region (I)], it does not show a maximum and
monotonously decreases in course of the renormalization.
However, as was mentioned in the previous paragraph, the
disorder strongly affects �̃ as long as f >

√
δ.

The disorder becomes irrelevant for the evolution of
bending rigidity for f0 � √

δ. In this case, f ≈ f0 exp(−z)
and, using Eqs. (96), (98), (99), (105), and (106), we arrive at
the following scaling dependencies:

�̃ ≈ �cr + (�0 − �cr)e
z, (114)

b̃ ≈ b0�0e
−z

�cr + (�0 − �cr)ez
. (115)

The disorder strength decreases in course of the renormal-
ization, first as exp(−z) and, at larger scales, when bending
rigidity becomes large enough, as exp(−2z). A crossover
between these two regimes happens at f ∼ δ, i.e., on the
boundary separating the near-critical and flat phases.

Using Eq. (108), one can easily find that in regions (I) and
(II) the membrane folds in the course of the renormalization.
In particular, in the region (II), we find that at the early stage
of renormalization (when f � 1) the rescaling parameter ξ

is given by ξ 2 ≈ exp[(f0 − f )/3] ≈ exp[−z/4] = (q∗L)−η/4.

Hence the first folding of the membrane occurs at z ≈ 4. This
yields the following estimate for the length scale of the folding:

L1 ∼ 1

q∗ e4/η. (116)

One can also find that ξ saturates at an exponentially small
value:

ξ 2
z=∞ = δ

f0
e−f0/3 (117)

for L ∼ L2, where

L2 ∼ 1

q∗

(
f0

δ

)1/η

e4f0/3η. (118)

It is worth stressing that L2 coincides (up to a prefactor) with
the length scale corresponding to the maximum of disorder.

In the region (I) disorder does not essentially affect the
folding of the membrane, i.e., the dynamical fluctuations
dominate. Therefore L1 and L2 are given by Eqs. (94) and (95)
derived above for the clean case.

Let us now discuss the region (III), where f0 � 3 ln δ � 1.

Using the asymptotic of K(f ) at large f [see Eqs. (96)
and (98)], we find that the functions �̃(f ) and b̃(f ) have,
respectively, minimum and maximum at fm ≈ 3 ln δ. The
minimal value of rigidity is much larger than the critical
value, �̃min/�cr ≈ 12 ln δ, while the maximal value of disorder
slightly exceeds the universal value 2π/d2

c ; specifically,
b̃d2

c /2π − 1 ∼ 1/fm.

In view of the assumption f0 > fm, the maximum in b̃ is
reached at

zr = 4
3 (f0 − 3 ln δ). (119)

For z � zr the behavior of b̃ and �̃ can be well described by
Eqs. (110) and (111) with f (z) given by Eq. (109). For z � zr ,
one can neglect Kcr in expression (96), so that Eqs. (105)
and (106) become

�̃

�cr
= δ(3f + 1)1/9

f
e−f/3, (120)

b̃d2
c

2π
= 4f 2

δ(3f + 1)1/9
ef/3. (121)
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Since fm � 1, there exists a large interval of z, where these
formulas can be used and at the same time f � 1, so that
Eq. (109) is applicable. In this interval we get, with exponential
precision,

�̃ ∝ ez/4 and b̃ ∝ e−z/4. (122)

Finally, for very large z, when f becomes smaller than unity
and decays as exp(−z), we find from Eqs. (120) and (121):

�̃ ∝ ez and b̃ ∝ e−2z. (123)

The latter regime is well described by Eqs. (114) and (115)
with �0 − �cr � �cr.

In analogy with the regions (I) and (II), we find that in the
region (III) the membrane undergoes a critical folding in a
broad range of length scales, L1 < L < L2. The value of L1

is given by the same equation (116) as in the region (II). The
stretching factor saturates at the value

ξ 2
z=∞ = δe−f0/3 (124)

when the spatial scale L becomes of the order of

L2 ∼ 1

q∗ e4(f0−3 ln δ)/3η. (125)

Again, up to a prefactor, this length coincides with the length
Lr where the disorder has a maximum.

B. Away from the critical line [regions (IV) and (V) in Fig. 7]

The evolution of bending rigidity and disorder for a
membrane with initial couplings within the region (IV) or (V)
coincides with the intermediate (or, respectively, final) stage of
renormalization of �̃ and b̃ for the case of bare couplings in the
region (III). Specifically, both �̃ and b̃ change monotonously
with increasing spatial scale: �̃ increases, while b̃ decreases.
For the region (IV), there exists a large interval of length scales
L with 1 < f < 3 ln δ, where Eqs. (120), (121), and (122)
apply. With further increase of L, we enter the region f < 1,
where scaling dependencies change to Eq. (123). For the region
(V) the asymptotic formulas (123) are valid from the very
beginning of the renormalization.

Let us analyze the evolution of the stretching factor ξ in
these two regions. For region (V), the membrane stretching is
fully controlled by dynamical fluctuations, while the disorder
is irrelevant. Hence, one can use Eqs. (87) and (88) derived for
the clean case. One can easily check that within the region
(V) �0 − �cr � �cr, so that ξ does not change essentially
and, consequently, the membrane does not fold, remaining
approximately flat at all scales. The same statement is valid
for region (IV) as well. Indeed, in this case, one can use the
inequality 1 < f < 3 ln δ and replace the function K(f ) in
Eq. (108) with 31/9δf −17/9 exp(−f/3) � 1 [see Eq. (96)].
Estimating then the integral in Eq. (108), we find that the
renormalization of ξ remains small.

This completes the analysis of the RG flow of the bending
rigidity and the disorder for membranes with bare couplings
in different regions of the flat phase. We have seen that
the evolution can be very nontrivial, with several intermediate
scaling regimes. It is worth emphasising, however, that the
scaling behavior at longest scales, L ∼ q−1 → ∞, is the same
for the whole flat phase: the bending rigidity increases, while

the disorder gets suppressed according to universal power
laws,

�̃ ∝ Lη and b̃ ∝ L−2η for L → ∞, (126)

with η � 2/dc in the large-dc limit.

C. Spatial scale of ripples

As follows from the above discussion, the scaling depen-
dence of both �̃ and b̃ in the flat phase are especially nontrivial
when the bare disorder is sufficiently strong. In particular, b̃

shows in this case a maximum in the course of renormalization.
The spatial scale corresponding to the maximum can be easily
found from the expression for zr and is given by

Lr � 1

q∗

{
edcf0/6, for δ � 1, f0 � 1,

edc(f0−3 ln δ)/6, for δ � 1, f0 > ln δ.
(127)

For L < Lr , the disorder slowly increases with z, while for
L > Lr , it decays exponentially with z (i.e., according to a
power law with respect to L). In other words, the disorder
is, roughly speaking, “switched off” at L > Lr. Hence, one
can interpret Lr as a characteristic scale of random static
deformations—ripples. It is worth emphasising at this point
that in the case of a nearly critical membrane such “ripples”
are multiply folded (fractal) configurations.

When the bare disorder is weaker [regions (IV) and (V)
in Fig. 7], the ripples take a more conventional form of
relatively small static deformations of a nearly flat surface.
Indeed, in this case ξ ≈ 1, so that the membrane does not fold.
For both regions, the suppression of disorder begins already
on the Ginzburg length 1/q∗. The scaling of disorder at the
initial stage of renormalization is different for regions (IV)
and (V):

b ∝ (q∗L)−η/4, (128)

for region (IV) and

b ∝ (q∗L)−2η, (129)

for region (V). Hence the ripple scale can be estimated as

Lr ∼ 1

q∗

{
e4/η, for region (IV),

e1/2η, for region (V).
(130)

While η is small (η = 2/dc) in the limit of high spatial
dimensionality of the embedding space, it is a number of
order unity, η � 0.7–0.8, for a physical 2D membrane (e.g.,
graphene) in a 3D space. This yields a characteristic scale for
ripples of the order of the Ginzburg length [93].

The functions �̃(z) and b̃(z) are plotted in Figs. 8 and 9 for
f0 = 20 and different values of δ. These figures nicely illus-
trate the nonmonotonous scale dependencies of the coupling
constants, with the bending rigidity �̃(z) having a minimum
and the disorder b̃(z) showing a maximum, in full agreement
with the above analytical results.

We also plot the dependence of disorder on the spatial
scale for a fixed value of �0 = 30�cr and various values of
the bare disorder b0 (see Fig. 10). In this case, the starting
points of the RG flow lie on a vertical line in Fig. 6. This
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z

FIG. 8. (Color online) Scale dependence of the renormalized
bending rigidity �̃ in the flat phase for δ = 1, 5, 25, 100, 300, 1000,
10000, and 100000 increasing from bottom to top. Critical curve
(δ = 0) is shown in red.

plot serves as a nice illustration of the dependence of the
characteristic scale Lr on the bare disorder b0. Indeed, it is seen
that for small b0 the disorder drops quickly at the Ginzburg
scale, in agreement with Eq. (130). With increasing b0 the
length Lr increases. This effect becomes particularly strong
when disorder becomes comparable to the critical one, i.e.,
the parameter δ approaches zero, as predicted by Eq. (127).
For the near-critical curves (δ small but still positive) and
the critical one (δ = 0), the disorder slowly increases up to
a parametrically large scale Lr and then drops down. On the
other side of the transition (δ < 0), the disorder shows the same
behavior for a while but eventually starts to increase rapidly,
which reflects the crumpling. In Fig. 11, we plot the parameter
δ as a function of the bare disorder.

FIG. 9. (Color online) Scale dependence of the renormalized
disorder b̃ in the flat phase for fixed f0 = 20 and for δ = 1, 5, 25,
100, 300, 1000, 10000, and 100000 increasing from top to bottom.
Critical curve (δ = 0) is shown in red.

FIG. 10. (Color online) Scale dependence of the renormalized
disorder b̃ (measured in the units of its bare value b0) for �0/�cr = 30
and for different values of b0d

2
c /2π = 0.001, 0.5, 0.9, 1.2, 1.34, 1.36,

1.37525, 1.382, 1.385, 1.386, 1.38672, 1.3867555, 1.38676, 1.38677,
1.3868, and 1.38685 increasing from bottom to top. Critical curve
(δ = 0 and b0 = 1.38675444319) is shown in red.

D. Dynamic and static correlation functions

To characterize dynamic and static fluctuations in the mem-
brane, we introduce the following correlation functions [66]:

〈hα(0)hβ(x)〉 = δαβGd+s(x), (131)

〈hα(0)〉〈hβ(x)〉 = δαβGs(x), (132)

where angular brackets denote the Gibbs averaging, while the
overline stands for the disorder averaging. The function Gd+s ,
incorporates both dynamical and static fluctuations, while Gs

includes static correlations only. These functions depend on
the absolute value of the distance x = |x|, so that their Fourier

FIG. 11. Dependence of the parameter δ (which labels RG flow
lines) on the bare disorder b0d

2
c /2π for fixed bending rigidity,

�0/�cr = 30. The sign change of δ corresponds to the crumpling
transition.
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transforms

Gd+s
q =

∫
Gd+s(x)e−iqxd2x

= 2π

∫
Gd+s(x)J0(qx)xdx, (133)

Gs
q =

∫
Gs(x)e−iqxd2x

= 2π

∫
Gs(x)J0(qx)xdx (134)

depend on the absolute value of momentum q = |q|.
The dynamic part of the fluctuations is thus given by the

difference of these two functions,

Gd
q = Gd+s

q − Gs
q (135)

(this function was used in the previous sections without
index d). The correlation functions defined above can be
straightforwardly calculated on the basis of the above RG
analysis. Specifically, we first renormalize the theory from
the original ultraviolet scale to the scale 1/q. As a result,
all nonlinear effects get incorporated in the renormalization
of � and b. Having renormalized the couplings, we eval-
uate the correlation functions at the Gaussian level, which
yields

Gd+s
q = 1

q4

(
T

�q

+ bq

)
, (136)

Gd
q = T

�qq4
, (137)

Gs
q = bq

q4
, (138)

where �q and bq depend on q according to the RG equations
derived above.

At this point, it is worth recalling that the running scale � for
renormalization of � and b is associated with a wave vector q
conjugated to the coordinate x in the reference plane. From the
experimental point of view, a more natural coordinate on the
membrane surface is given by the vector r in the embedding
space [see Eq. (18)]. As seen from Fig. 12, the difference
between vectors r and x becomes stronger when the system
approaches criticality.

The physical correlation functions depend on the distance
r = |r| in the embedding space between two points on the
membrane surface:

gd+s(r) = Gd+s(r/ξ ) =
∫

gd+s
Q J0(Qr)

QdQ

2π
, (139)

gs(r) = Gs(r/ξ ) =
∫

gs
QJ0(Qr)

QdQ

2π
, (140)

gd (r) = gd+s(r) − gs(r). (141)

Here, ξ = ξx is the running stretching parameter that relates
r and x : r = ξxx [see Eq. (93)]. The correlation function gQ

(measured experimentally) is related to Gq as follows:

gQ/ξ = ξ 2GQ , (142)

FIG. 12. (Color online) (Top) Membrane with intrinsic size L

in the absence of fluctuations. (Middle) Membrane deeply in the
flat phase. (Bottom) Membrane at criticality. The linear size R of
membrane with fluctuations is smaller by a factor ξL. The distance r in
the embedding space between two points on membrane surface scales
with the distance on the reference plane with a local stretching factor:
r � ξxx. Membrane shows self-similarity at different scales, so that
the dashed line represents a coarse-grained shape of the membrane at
largest scale shown in the picture. The fractal structure of membrane
is illustrated in the grey box magnifying a segment of the membrane.

with ξ = ξQ. In the flat phase, the rescaling factor ξ remains
finite in the infrared limit (i.e. the membrane linear size
R = ξLL in the embedding space is proportional to its intrinsic
size L), and does not essentially affect the scaling. Therefore
the difference between g and G is immaterial. On the other
hand, for a critical or near-critical membrane this difference is
of crucial importance. In particular, the RG flow is controlled
by rescaled couplings �̃ and b̃ (rather than by � and b.)
Further, we find from Eq. (142) that the correlation functions
in the embedding space, gd+s

Q , gd
Q, and gs

Q, are given by
Eqs. (136), (137), and (138) with � and b replaced by �̃ and
b̃, respectively.

In the flat phase, we get the following asymptotic scaling
behavior of the static and dynamic correlation functions at
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Q → 0:

gd+s
Q ∼ gd

Q ∝ 1

Q4−η
, (143)

gs
Q ∝ 1

Q4−2η
. (144)

It is worth noting that an analogous asymptotic relation
between the dynamic and static correlation functions was
obtained in Ref. [66] for D = 4 − ε for the flat-phase fixed
point (called P4 point there). Equations (143) and (144)
imply, in particular, that the characteristic dynamic and
static transverse excursions of a membrane (root-mean-square
values of the corresponding fluctuations of h) scale with its
size R ∝ L as follows:

hd
rms ∝ R1−η/2 , (145)

hs
rms ∝ R1−η . (146)

At the crumpling transition point, we have �̃ = �cr = const,
b̃ ∝ L−η, and ξL ∝ L−η/2. Therefore the characteristic mag-
nitudes of the transverse excursions of the membrane scale at
the transition as

hd
rms ∝ R , (147)

hs
rms ∝ R(2−2η)/(2−η) , (148)

and R ∝ L1−η/2. Since �cr is proportional to d2
c [see Eq. (86)]

the dimensionless coefficient in Eq. (147) turns out to be small,
on the order of 1/

√
dc.

E. Ripple intensity and correlations

It is natural to characterize the intensity and spatial
correlations of ripples (i.e., of static transverse deformations)
with the static dimensionless correlation function of spatial
gradients of out-of-plane displacements. Such function can be
expressed in terms of gs as follows:

H (r) =
∫

dQ

2π
Q3gs

QJ0(Qr). (149)

Using Eq. (142), we rewrite Eq. (149) as

H (r) =
∫

d2q
(2π )2

b̃q

q2
eiqx. (150)

It is worth noting that function H (r) characterizes fluctuations
and correlations of normal vectors to the membrane surface.
Such fluctuations of the tilt angle of the surface are directly
studied in graphene experiments, see below.

Let us now discuss the temperature dependence of the size
and height of the ripples deeply in the flat phase, i.e., in regions
(IV) and (V) in Fig. 7. In this situation, the difference between
r and x coordinates is not particularly important and can be
discarded. Using the results of Secs. V A, V B, and V C, we
find the behavior of b̃q (shown schematically in Fig. 13) and
thus for H (r) for these two cases.

FIG. 13. Schematic dependence of the effective disorder strength
b̃q on the length scale q−1 on the log-log scale for regions (IV) and
(V). The indices η/4 and 2η denote the power-law decay exponents
in the corresponding regimes.

1. Strong disorder [region (IV)]

The calculation of the integral entering Eq. (150) yields

H (r) ∼ b0

2π

⎧⎪⎪⎨
⎪⎪⎩

ln
(

1
q∗r

)
, r < 1/q∗,(

1
q∗r

)η/4
, 1/q∗ < r < L(1)

r ,(
1

q∗L(1)
r

)η/4(L
(1)
r

r

)2η
, L(1)

r < r.

(151)

In Eq. (151),

L(1)
r ∼ 1

q∗ e4f0/3η = 1

q∗ e4b0�0/3T η (152)

is the spatial scale determined by the condition f ∼ 1. For
r > L(1)

r , the exponent characterizing the spatial decay of H (r)
changes because of a stronger suppression of the disorder by
increased bending rigidity. Note that at very small distances,
r < a (where a is the ultraviolet cutoff length, which is
of the order of the lattice constant), one should replace r

with a in the first line of Eq. (151). We thus find that the
dimensionless parameter H (0), which represents the averaged
squared surface tilt is given by

H (0) = b0

2π
ln

(
1

q∗a

)
. (153)

The length 1/q∗ and the averaged squared tilt H (0) are
two natural parameters that characterize the characteristic
extension and magnitude of ripples. Importantly, both of them
decrease with increasing temperature.

2. Weak disorder [region (V)]

In the case of a weak disorder, the only difference is that
disorder falls with the exponent 2η from the very beginning of
renormalization. Hence similar to the case of a strong potential,
the characteristic ripple size is determined by the Ginzburg
scale. For D = 2, this scale is determined from the condition
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3N�q ∼ 1 [see Eq. (33)], yielding

q∗ = q∗
N �

√
3A2μ(2μ + 2λ)T

(2μ + λ)�2
. (154)

Therefore we find the ripple size

Lr � 2π

q∗ ∝ 1√
T

. (155)

The averaged squared surface tilt is given by Eq. (153), which
can be rewritten as

H (0) = b0

4π
ln

(
T ∗

T

)
, (156)

where T ∗ � �2(2μ + λ)/[6A2μ(μ + λ)a2]. We see that, also
in this case, both the size of the ripples Lr and the characteristic
surface tilt

√
H (0) decrease with increasing temperature.

3. Comparison with experiment

Let us compare our results with available experimental data
on suspended graphene. In Ref. [17], the parameters of ripples
at room temperature were found to be Lr � 5–10 nm for the
ripple size and

√
H (0) � 5◦ � 0.1 for the characteristic tilt

angle. Very similar results at T = 300 K were obtained in
Ref. [81], which found Lr � 10 nm and H (0) � 0.01. The
small value of H (0) indicates that the system is in the weak-
disorder regime, so that the results of Sec. V E 2 are expected to
be applicable. Indeed, the measured room-temperature ripple
size Lr agrees well with Eqs. (155) and (154) that yield Lr �
5 nm at T = 300 K. Comparing (156) with the experimentally
measured H (0) � 0.01, we get an estimate for the disorder
strength, b0 � 0.03.

The authors of Ref. [81] provided also some information
about the temperature dependence of the ripple characteristics.
Specifically, they performed measurements also at T = 150 K
and found that, in comparison with the room temperature,
the ripple size increased, Lr � 18 nm, whereas the averaged
squared surface tilt H (0) remained almost unchanged. These
findings are in reasonable agreement with our weak-disorder
results (154) and (156), which predict a square-root increase
of Lr and a slow (logarithmic) increase of H (0) with inverse
temperature.

It is worth reminding the reader at this point that static
ripples coexist with dynamical fluctuations. In the weak-
disorder regime, the relative strength of the two types of
fluctuations is controlled by the parameter f0 = b0κ0/T ,
see Eqs. (137) and (138). According to the above estimate,
this parameter is close to unity at room temperature for
the samples experimentally studied in Refs. [17] and [81].
However, it has a 1/T temperature dependence, which reflects
the fact that the dynamical fluctuations become suppressed
with lowering temperature. Contrary to this, the typical tilt
angle

√
H (0) characterizing static ripples gets enhanced with

lowering temperature, Eq. (156). Therefore a measurement
of the temperature dependence of

√
H (0) may be useful for

experimentally differentiating between the static and dynamic
fluctuations.

VI. SUMMARY AND OUTLOOK

In this paper, we have discussed the rippling and the crum-
pling transition in graphene with a static quenched disorder.
We have derived RG equations, Eqs. (68), (69), and (70), for
a model of a crystalline membrane with out-of-plane (random
curvature) disorder. Equations (69) and (70) describe a
combined flow of the running dimensionless bending rigidity
�̃/T and the running disorder strength b̃ ≡ f T/�̃. They
yield, in particular, a critical curve b̃(�̃) separating the flat
and the crumpled phases, see Figs. 4, 5, and 6. Equation (69)
controls the spatial contraction of the membrane due to its
deformation. Even deep in the flat phase, random fluctuations
of the membrane tension caused by the disorder may strongly
affect the behavior of the bending rigidity �̃q/T . Specifically,
for a sufficiently strong disorder, the bending rigidity
decreases at the first stage of the renormalization, reaches
minimum, and only then starts to grow (Fig. 8). Furthermore,
we have found that disorder b̃q also changes nonmonotonously
in the flat phase if the bare disorder b0 is sufficiently strong.
Specifically, b̃q first increases slowly (logarithmically) with
L, then reaches a maximum at a certain scale Lr , and finally
decreases according to a power law at larger scales, see Figs. 9
and 10.

The random static out-of-plane fluctuations of the graphene
membranes can be identified with experimentally observed
ripples, with the length scale Lr playing the role of the
characteristic ripple size. The found values and temperature
dependencies of the ripples parameters—the size Lr and the
typical surface tilt angle

√
H (0)—are in a good agreement

with experimental observations of Refs. [17,81] if a disorder
strength b0 � 0.03 is assumed.

We have also briefly discussed an in-plane disorder and
showed that it is irrelevant in the RG sense (if one excludes
a long-range disorder whose correlation function is highly
singular at small momenta) and thus does not affect our main
conclusions. The effect of the in-plane disorder at atomic scales
may, however, be important for determining the bare value of
the out-of-plane disorder.

Before closing the paper, we discuss some of the possible
directions of future research.

(1) In our work, we considered a free-standing membrane
without tension. On the other hand, the tension may become
essential under certain experimental conditions. In a clean
case, such a membrane might demonstrate a buckling transi-
tion [56]. It remains to be explored what will be the effect of
disorder in this situation.

(2) We have assumed that the disorder is of short-range
character. On the other hand, a finite density of topological
defects (like dislocations or disclinations) may yield long-
range-correlated disorder. An earlier work [67] predicts a
variety of possible phases in a membrane with long-range
disorder. A study of crumpling transition and of rippling
in a membrane with physically relevant long-range disorder
remains an interesting prospect for future.

(3) Our analysis did not include terms preventing self-
crossing of a membrane which are known to become im-
portant in the crumpled phase. It remains to be investigated
whether such terms may affect the physics in the near-critical
regime.
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(4) There is a certain analogy between the physics of a
membrane and that of the Anderson metal-insulator transition
in disordered (and possibly interacting) systems [94,95]. In
particular, the field theory of a disordered membrane developed
above bears similarity with the σ -model description of the
Anderson localization. Within this analogy, the flat phase
corresponds to a metal, the crumpled phase to an insulator, and
the dimensionless bending rigidity �̃/T to the dimensionless
conductance. Remarkably, both problems manage to evade the
Mermin-Wagner theorem, showing a transition also in D = 2.
(In the case of the Anderson transition, this requires either
spin-orbit coupling or electron-electron interaction.) Static
fluctuations of local deformations (ripples) in a disordered
membrane can be viewed as a counterpart of mesoscopic
fluctuations of wave functions (or local density of states) in the
Anderson-localization problem. An interesting and important
question is whether this analogy can be pushed further and,
in particular, whether the ripple statistics at the crumpling
transition is characterized by multifractality that is a hallmark
of the Anderson-transition critical point.

(5) On the experimental side, a more systematic study of
rippling and crumpling in free-standing graphene would be
highly desirable. In particular, measurements of the tempera-
ture dependence of ripple parameters in a broader temperature
range would be of great interest. Furthermore, experiments
on various kinds of membranes (including emerging 2D
materials) are expected to be instrumental for exploring the
whole phase diagram of the problem.
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APPENDIX A: APPLICABILITY OF THE
QUASICLASSICAL APPROXIMATION

In this appendix, we provide a justification for the quasi-
classical approximation used in this paper and determine the
regime of its validity.

The quasiclassical approximation is valid for not too low
temperatures (see also Refs. [73,74,76] for discussion). More
specifically, it is well justified provided that the temperature
is large compared to frequencies of both out-of-plane and
in-plane phonons: T > �ωq, T > �sq, where ωq is given
by Eq. (2), and s = √

(2μ + λ)/T is the velocity of the
longitudinal in-plane phonons. (Here, we take into account
that the velocity of the transverse in-plane phonons is smaller
for graphene parameters.) The characteristic momentum q of
the discussed problem is the Ginzburg scale q∗, which itself
depends on temperature. According to Eq. (154), the condition
T > �ωq∗ can be rewritten as

ρ�3 > 36A2
2�

2 μ2(μ + λ)2

(2μ + λ)2
. (A1)

Note that this inequality does not contain temperature. Sub-
stituting graphene parameters (ρ � 7.6 × 10−7 kg/m2, λ �
3 eV/Å

2
, μ � 9 eV/Å

2
, and � � 1 eV), we find that the l.h.s.

of this inequality exceeds the right-hand side (r.h.s.) by a factor

of the order of 103, so that this requirement is perfectly met.
This result is not surprising, because the density of graphene ρ,
entering this estimate is proportional to the atomic mass M and
therefore is large compared to typical electronic mass scales.
In other words, the l.h.s. of Eq. (A1) should be larger than its
r.h.s. by a factor of the order of M/m ∼ 2 × 104 (where m

is the electron mass). Hence for the problem discussed here,
the flexural phonons can be treated semiclassically for any
temperature and with a very good precision. The corresponding
criterium for longitudinal phonons reads

T > Tin = 6A2
�

2μ(μ + λ)

ρ�2
. (A2)

The r.h.s. of this inequality can be estimated as (m/M)Ea ,
where Ea is a characteristic atomic energy scale. Taking Ea =
10 eV, we get a rough estimate Tin � 5 K. Using known results
for the mechanical parameters of graphene yields a somewhat
larger value, Tin � 80 K, which still leaves enough room for the
validity of the semiclassical theory. Furthermore, our theory
remains applicable also at lower temperatures, T < Tin, where
it describes the physics on sufficiently large spatial scales,
q � T/�s.

APPENDIX B: SCREENING OF h4 INTERACTION

In this appendix, we present the technical details of the
calculation of the screening. As a starting point, we use the
equation for free energy derived in Ref. [65]:

F

T
= �

2T

∫
(dk)k4|hk|2 + 1

4dc

∫
(dk1dk2dk3)Rαβγ δ(q)

× k1αk2βk3γ k4δ(hk1 hk2 )(hk3 hk4 ), (B1)

where q = k1 + k2 and k1 + k2 + k3 + k4 = 0, and the inter-
action kernel reads

Rαβγ δ(q) = N
D − 1

PαβPγδ

+M
(

Pαγ Pβδ + PαδPβγ

2
− PαβPγδ

D − 1

)
. (B2)

Choosing k1 = k + q, k2 = −k, k3 = −k′ − q, and k4 = k′,
we find, after some algebra,

Rαβγ δ(q)k1αk2βk3γ k4δ = Rq(k,k′), (B3)

where Rq(k,k′) is given by Eq. (27) of the main text. Screened
interaction R̃αβγ δ obeys [65]

R̃αβγ δ = Rαβγ δ − Rαβγ ′δ′�γ ′δ′α′β ′R̃α′β ′γ δ, (B4)

with the tensor polarization operator �γδαβ given by

�γδαβ =
∫

(dk)kαkβkγ kδG
0
kG

0
q−k. (B5)

Because of the rotation symmetry one can write

�γδαβ = (δαβδγ δ + δαγ δβδ + δαδδβγ )�q

+ (δαβqγ qδ + · · · )�(1)
q + qαqβqγ qδ�

(2)
q , (B6)

where functions �q,�
(1)
q , and �

(2)
q depend on |q| only,

and (+ · · · ) stands for a sum over permutations of α,β,γ ,
and δ. Due to the projection operators P̂ entering in the
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unscreened coupling, Eq. (B2), functions �
(1)
q and �

(2)
q drop

out from Eq. (B4). The function �q can be easily obtained
by multiplication of Eq. (B5) by PαβPγδ and summation over
repeated indices. Taking into account that the trace of the
matrix Pαβ equals to D − 1, we arrive at Eq. (37) of the main
text. Further, substituting Eq. (B5) into Eq. (B4), we find that
the screened interaction R̃αβγ δ can be written in the same form
as Eq. (B2) but with N and M replaced by their screened

values Nq and Mq. These values are given by Eqs. (33)
and (34) of the main text, respectively.

APPENDIX C: REGULARIZATION INTEGRALS

In order to shed light on a connection of our approach to
the SCSA, we employ the regularization integrals A(D,η) and
B(D,η) introduced in Ref. [65]:

A(D,η) = 1

D2 − 1

∫
(dx)

x4
⊥

x4−η|x − n|4−η
= �

(
D+η

2

)
�

( 4−2η−D

2

)
22D+η+1π (D−1)/2�2

( 4−η

2

)
�

( 1+D+η

2

) , (C1)

B(D,η) =
∫

(dx)
x4

⊥
xD+2η|x − n|4−η

= (D2 − 1)�
(

D+η

2

)
�

(
η

2

)
�(2 − η)

22+DπD/2�
( 4−η

2

)
�

(
D+2η

2

)
�

( 4+D−η

2

) . (C2)

Here, n is an arbitrary unit-length vector and x⊥ = x − n(xn). These integrals naturally arise when one uses for calculation of
the polarization loop the Green function, Eq. (42), with the self-energy found self-consistently by replacement of the bare Green
function G0

k in Eq. (43) with Gk. Evaluation of both integrals can be performed in the following way. First, one uses the identity

1

xθ |x − n|4−η
= 1

�
(

θ
2

)
�

( 4−η

2

) ∫ ∞

0
dt1

∫ ∞

0
dt2t

θ/2−1
1 t

1−η/2
2 e−t1x

2−t2(x−n)2
,

where θ = 4 − η for the integral A and θ = D + 2η for the integral B. The integral over dx = dxD/(2π )D becomes then
a Gaussian one and is easily calculated. The remaining integral can be done by using the following change of variables:
t1 = τez cosh z and t2 = τe−z cosh z. After lengthy but straightforward calculations, one arrives at Eqs. (C1) and (C2).
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[83] D. A. Kirilenko, Tech. Phys. Lett. 39, 325 (2013).
[84] P. Xu, M. Neek-Amal, S. D. Barber, J. K. Schoelz, M. L.

Ackerman, P. M. Thibado, A. Sadeghi, and F. M. Peeters, Nat.
Commun. 5, 3720 (2014); M. Neek-Amal, P. Xu, J. K. Schoelz,
M. L. Ackerman, S. D. Barber, P. M. Thibado, A. Sadeghi, and
F. M. Peeters, ibid. 5, 4962 (2014).

[85] J. K. Schoelz, P. Xu, V. Meunier, P. Kumar, M. Neek-Amal, P. M.
Thibado, and F. M. Peeters, Phys. Rev. B 91, 045413 (2015).

[86] C. F. Schmidt, K. Svoboda, N. Lei, I. B. Petsche, L. E. Berman,
C. R. Safinya, and G. S. Grest, Science 259, 952 (1993).

[87] T. Hwa, E. Kokufuta, and T. Tanaka, Phys. Rev. A 44, R2235
(1991); X. Wen, C. W. Garland, T. Hwa, M. Kardar, E. Kokufuta,
Y. Li, M. Orkisz, and T. Tanaka, Nature (London) 355, 426
(1992); C. Cheng and D. Li, Adv. Mater. 25, 13 (2013).

155428-21

http://dx.doi.org/10.1103/PhysRevB.61.10651
http://dx.doi.org/10.1103/PhysRevB.61.10651
http://dx.doi.org/10.1103/PhysRevB.61.10651
http://dx.doi.org/10.1103/PhysRevB.61.10651
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.76.045430
http://dx.doi.org/10.1103/PhysRevB.76.045430
http://dx.doi.org/10.1103/PhysRevB.76.045430
http://dx.doi.org/10.1103/PhysRevB.76.045430
http://dx.doi.org/10.1209/0295-5075/84/57007
http://dx.doi.org/10.1209/0295-5075/84/57007
http://dx.doi.org/10.1209/0295-5075/84/57007
http://dx.doi.org/10.1209/0295-5075/84/57007
http://dx.doi.org/10.1038/nmat2011
http://dx.doi.org/10.1038/nmat2011
http://dx.doi.org/10.1038/nmat2011
http://dx.doi.org/10.1038/nmat2011
http://dx.doi.org/10.1103/PhysRevB.77.041409
http://dx.doi.org/10.1103/PhysRevB.77.041409
http://dx.doi.org/10.1103/PhysRevB.77.041409
http://dx.doi.org/10.1103/PhysRevB.77.041409
http://dx.doi.org/10.1103/PhysRevB.78.125418
http://dx.doi.org/10.1103/PhysRevB.78.125418
http://dx.doi.org/10.1103/PhysRevB.78.125418
http://dx.doi.org/10.1103/PhysRevB.78.125418
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevB.80.075420
http://dx.doi.org/10.1103/PhysRevB.80.075420
http://dx.doi.org/10.1103/PhysRevB.80.075420
http://dx.doi.org/10.1103/PhysRevB.80.075420
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1016/j.physrep.2010.07.003
http://dx.doi.org/10.1016/j.physrep.2010.07.003
http://dx.doi.org/10.1016/j.physrep.2010.07.003
http://dx.doi.org/10.1016/j.physrep.2010.07.003
http://dx.doi.org/10.1103/PhysRevLett.105.266601
http://dx.doi.org/10.1103/PhysRevLett.105.266601
http://dx.doi.org/10.1103/PhysRevLett.105.266601
http://dx.doi.org/10.1103/PhysRevLett.105.266601
http://dx.doi.org/10.1103/PhysRevB.82.125435
http://dx.doi.org/10.1103/PhysRevB.82.125435
http://dx.doi.org/10.1103/PhysRevB.82.125435
http://dx.doi.org/10.1103/PhysRevB.82.125435
http://dx.doi.org/10.1103/PhysRevB.83.174104
http://dx.doi.org/10.1103/PhysRevB.83.174104
http://dx.doi.org/10.1103/PhysRevB.83.174104
http://dx.doi.org/10.1103/PhysRevB.83.174104
http://dx.doi.org/10.1103/PhysRevLett.106.045502
http://dx.doi.org/10.1103/PhysRevLett.106.045502
http://dx.doi.org/10.1103/PhysRevLett.106.045502
http://dx.doi.org/10.1103/PhysRevLett.106.045502
http://dx.doi.org/10.1103/PhysRevB.83.235416
http://dx.doi.org/10.1103/PhysRevB.83.235416
http://dx.doi.org/10.1103/PhysRevB.83.235416
http://dx.doi.org/10.1103/PhysRevB.83.235416
http://dx.doi.org/10.1103/PhysRevB.86.165413
http://dx.doi.org/10.1103/PhysRevB.86.165413
http://dx.doi.org/10.1103/PhysRevB.86.165413
http://dx.doi.org/10.1103/PhysRevB.86.165413
http://dx.doi.org/10.1103/PhysRevB.87.035415
http://dx.doi.org/10.1103/PhysRevB.87.035415
http://dx.doi.org/10.1103/PhysRevB.87.035415
http://dx.doi.org/10.1103/PhysRevB.87.035415
http://dx.doi.org/10.1103/PhysRevB.88.125423
http://dx.doi.org/10.1103/PhysRevB.88.125423
http://dx.doi.org/10.1103/PhysRevB.88.125423
http://dx.doi.org/10.1103/PhysRevB.88.125423
http://dx.doi.org/10.1103/PhysRevLett.113.076601
http://dx.doi.org/10.1103/PhysRevLett.113.076601
http://dx.doi.org/10.1103/PhysRevLett.113.076601
http://dx.doi.org/10.1103/PhysRevLett.113.076601
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1126/science.1184014
http://dx.doi.org/10.1126/science.1184014
http://dx.doi.org/10.1126/science.1184014
http://dx.doi.org/10.1126/science.1184014
http://dx.doi.org/10.1021/nl102923q
http://dx.doi.org/10.1021/nl102923q
http://dx.doi.org/10.1021/nl102923q
http://dx.doi.org/10.1021/nl102923q
http://dx.doi.org/10.1103/PhysRevB.91.134302
http://dx.doi.org/10.1103/PhysRevB.91.134302
http://dx.doi.org/10.1103/PhysRevB.91.134302
http://dx.doi.org/10.1103/PhysRevB.91.134302
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1051/jphys:019870048070108500
http://dx.doi.org/10.1051/jphys:019870048070108500
http://dx.doi.org/10.1051/jphys:019870048070108500
http://dx.doi.org/10.1051/jphys:019870048070108500
http://dx.doi.org/10.1103/PhysRevLett.58.2774
http://dx.doi.org/10.1103/PhysRevLett.58.2774
http://dx.doi.org/10.1103/PhysRevLett.58.2774
http://dx.doi.org/10.1103/PhysRevLett.58.2774
http://dx.doi.org/10.1103/PhysRevA.36.4020
http://dx.doi.org/10.1103/PhysRevA.36.4020
http://dx.doi.org/10.1103/PhysRevA.36.4020
http://dx.doi.org/10.1103/PhysRevA.36.4020
http://dx.doi.org/10.1103/PhysRevLett.60.2638
http://dx.doi.org/10.1103/PhysRevLett.60.2638
http://dx.doi.org/10.1103/PhysRevLett.60.2638
http://dx.doi.org/10.1103/PhysRevLett.60.2638
http://dx.doi.org/10.1209/0295-5075/5/8/008
http://dx.doi.org/10.1209/0295-5075/5/8/008
http://dx.doi.org/10.1209/0295-5075/5/8/008
http://dx.doi.org/10.1209/0295-5075/5/8/008
http://dx.doi.org/10.1103/PhysRevLett.61.2949
http://dx.doi.org/10.1103/PhysRevLett.61.2949
http://dx.doi.org/10.1103/PhysRevLett.61.2949
http://dx.doi.org/10.1103/PhysRevLett.61.2949
http://dx.doi.org/10.1103/PhysRevLett.60.2634
http://dx.doi.org/10.1103/PhysRevLett.60.2634
http://dx.doi.org/10.1103/PhysRevLett.60.2634
http://dx.doi.org/10.1103/PhysRevLett.60.2634
http://dx.doi.org/10.1051/jphys:0198900500140178700
http://dx.doi.org/10.1051/jphys:0198900500140178700
http://dx.doi.org/10.1051/jphys:0198900500140178700
http://dx.doi.org/10.1051/jphys:0198900500140178700
http://dx.doi.org/10.1051/jphys:01989005006060900
http://dx.doi.org/10.1051/jphys:01989005006060900
http://dx.doi.org/10.1051/jphys:01989005006060900
http://dx.doi.org/10.1051/jphys:01989005006060900
http://dx.doi.org/10.1103/PhysRevA.39.6086
http://dx.doi.org/10.1103/PhysRevA.39.6086
http://dx.doi.org/10.1103/PhysRevA.39.6086
http://dx.doi.org/10.1103/PhysRevA.39.6086
http://dx.doi.org/10.1103/PhysRevA.44.3525
http://dx.doi.org/10.1103/PhysRevA.44.3525
http://dx.doi.org/10.1103/PhysRevA.44.3525
http://dx.doi.org/10.1103/PhysRevA.44.3525
http://dx.doi.org/10.1209/0295-5075/16/1/014
http://dx.doi.org/10.1209/0295-5075/16/1/014
http://dx.doi.org/10.1209/0295-5075/16/1/014
http://dx.doi.org/10.1209/0295-5075/16/1/014
http://dx.doi.org/10.1209/0295-5075/15/7/015
http://dx.doi.org/10.1209/0295-5075/15/7/015
http://dx.doi.org/10.1209/0295-5075/15/7/015
http://dx.doi.org/10.1209/0295-5075/15/7/015
http://dx.doi.org/10.1051/jp1:1992169
http://dx.doi.org/10.1051/jp1:1992169
http://dx.doi.org/10.1051/jp1:1992169
http://dx.doi.org/10.1051/jp1:1992169
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevA.45.R2151
http://dx.doi.org/10.1103/PhysRevA.45.R2151
http://dx.doi.org/10.1103/PhysRevA.45.R2151
http://dx.doi.org/10.1103/PhysRevA.45.R2151
http://dx.doi.org/10.1103/PhysRevB.48.3548
http://dx.doi.org/10.1103/PhysRevB.48.3548
http://dx.doi.org/10.1103/PhysRevB.48.3548
http://dx.doi.org/10.1103/PhysRevB.48.3548
http://dx.doi.org/10.1051/jp1:1996139
http://dx.doi.org/10.1051/jp1:1996139
http://dx.doi.org/10.1051/jp1:1996139
http://dx.doi.org/10.1051/jp1:1996139
http://dx.doi.org/10.1103/PhysRevE.79.040101
http://dx.doi.org/10.1103/PhysRevE.79.040101
http://dx.doi.org/10.1103/PhysRevE.79.040101
http://dx.doi.org/10.1103/PhysRevE.79.040101
http://dx.doi.org/10.1103/PhysRevE.80.041117
http://dx.doi.org/10.1103/PhysRevE.80.041117
http://dx.doi.org/10.1103/PhysRevE.80.041117
http://dx.doi.org/10.1103/PhysRevE.80.041117
http://dx.doi.org/10.1103/PhysRevB.80.161406
http://dx.doi.org/10.1103/PhysRevB.80.161406
http://dx.doi.org/10.1103/PhysRevB.80.161406
http://dx.doi.org/10.1103/PhysRevB.80.161406
http://dx.doi.org/10.1103/PhysRevB.82.035407
http://dx.doi.org/10.1103/PhysRevB.82.035407
http://dx.doi.org/10.1103/PhysRevB.82.035407
http://dx.doi.org/10.1103/PhysRevB.82.035407
http://dx.doi.org/10.1103/PhysRevB.85.045416
http://dx.doi.org/10.1103/PhysRevB.85.045416
http://dx.doi.org/10.1103/PhysRevB.85.045416
http://dx.doi.org/10.1103/PhysRevB.85.045416
http://dx.doi.org/10.1103/PhysRevB.89.125433
http://dx.doi.org/10.1103/PhysRevB.89.125433
http://dx.doi.org/10.1103/PhysRevB.89.125433
http://dx.doi.org/10.1103/PhysRevB.89.125433
http://dx.doi.org/10.1103/PhysRevB.89.224307
http://dx.doi.org/10.1103/PhysRevB.89.224307
http://dx.doi.org/10.1103/PhysRevB.89.224307
http://dx.doi.org/10.1103/PhysRevB.89.224307
http://dx.doi.org/10.1103/PhysRevE.91.032415
http://dx.doi.org/10.1103/PhysRevE.91.032415
http://dx.doi.org/10.1103/PhysRevE.91.032415
http://dx.doi.org/10.1103/PhysRevE.91.032415
http://dx.doi.org/10.1103/PhysRevLett.100.056807
http://dx.doi.org/10.1103/PhysRevLett.100.056807
http://dx.doi.org/10.1103/PhysRevLett.100.056807
http://dx.doi.org/10.1103/PhysRevLett.100.056807
http://dx.doi.org/10.1063/1.2771084
http://dx.doi.org/10.1063/1.2771084
http://dx.doi.org/10.1063/1.2771084
http://dx.doi.org/10.1063/1.2771084
http://dx.doi.org/10.1103/PhysRevLett.102.076102
http://dx.doi.org/10.1103/PhysRevLett.102.076102
http://dx.doi.org/10.1103/PhysRevLett.102.076102
http://dx.doi.org/10.1103/PhysRevLett.102.076102
http://dx.doi.org/10.1038/nnano.2009.191
http://dx.doi.org/10.1038/nnano.2009.191
http://dx.doi.org/10.1038/nnano.2009.191
http://dx.doi.org/10.1038/nnano.2009.191
http://dx.doi.org/10.1103/PhysRevB.84.235417
http://dx.doi.org/10.1103/PhysRevB.84.235417
http://dx.doi.org/10.1103/PhysRevB.84.235417
http://dx.doi.org/10.1103/PhysRevB.84.235417
http://dx.doi.org/10.1038/nphys2389
http://dx.doi.org/10.1038/nphys2389
http://dx.doi.org/10.1038/nphys2389
http://dx.doi.org/10.1038/nphys2389
http://dx.doi.org/10.1134/S1063785013040081
http://dx.doi.org/10.1134/S1063785013040081
http://dx.doi.org/10.1134/S1063785013040081
http://dx.doi.org/10.1134/S1063785013040081
http://dx.doi.org/10.1038/ncomms4720
http://dx.doi.org/10.1038/ncomms4720
http://dx.doi.org/10.1038/ncomms4720
http://dx.doi.org/10.1038/ncomms4720
http://dx.doi.org/10.1038/ncomms5962
http://dx.doi.org/10.1038/ncomms5962
http://dx.doi.org/10.1038/ncomms5962
http://dx.doi.org/10.1038/ncomms5962
http://dx.doi.org/10.1103/PhysRevB.91.045413
http://dx.doi.org/10.1103/PhysRevB.91.045413
http://dx.doi.org/10.1103/PhysRevB.91.045413
http://dx.doi.org/10.1103/PhysRevB.91.045413
http://dx.doi.org/10.1126/science.8438153
http://dx.doi.org/10.1126/science.8438153
http://dx.doi.org/10.1126/science.8438153
http://dx.doi.org/10.1126/science.8438153
http://dx.doi.org/10.1103/PhysRevA.44.R2235
http://dx.doi.org/10.1103/PhysRevA.44.R2235
http://dx.doi.org/10.1103/PhysRevA.44.R2235
http://dx.doi.org/10.1103/PhysRevA.44.R2235
http://dx.doi.org/10.1038/355426a0
http://dx.doi.org/10.1038/355426a0
http://dx.doi.org/10.1038/355426a0
http://dx.doi.org/10.1038/355426a0
http://dx.doi.org/10.1002/adma.201203567
http://dx.doi.org/10.1002/adma.201203567
http://dx.doi.org/10.1002/adma.201203567
http://dx.doi.org/10.1002/adma.201203567


I. V. GORNYI, V. YU. KACHOROVSKII, AND A. D. MIRLIN PHYSICAL REVIEW B 92, 155428 (2015)

[88] S. Costamagna, M. Neek-Amal, J. H. Los, and F. M. Peeters,
Phys. Rev. B 86, 041408(R) (2012).

[89] R. R. Chianelli, E. B. Prestridge, T. A. Pecoraro, and J. P.
Deneufville, Science 203, 1105 (1979); J. Brivio, D. T. L.
Alexander, and A. Kis, Nano Lett. 11, 5148 (2011).

[90] D. Pacile, J. C. Meyer, C. O. Girit, and A. Zettl, Appl. Phys.
Lett. 92, 133107 (2008).

[91] The stability of the SCSA with respect to higher-order con-
tributions was addressed in Ref. [70], where the inclusion of
second-order corrections in the parameter 1/dc = 1 was found
to yield η ≈ 0.789 for physical membranes. The SCSA has been
applied to graphene in Ref. [38].

[92] As follows from Eqs. (20) and (21), the renormalization of ξ

starts from the inverse ultraviolet cutoff length, 1/a. Here, we
neglect the renormalization of ξ in the interval q∗ < q < 1/a

assuming that (1/dc) ln(1/q∗a) � 1.

[93] The Ginzburg length as a characteristic scale for thermally
excited ripples was also found in Ref. [72]. The numerical
simulations of graphene flakes performed in Ref. [30] also
yielded a spatial scale of ripples close to the Ginzburg length.
In Refs. [40] and [71], the size of the ripples was related to the
coupling of phonons with electrons, yielding a T -independent
length (ultraviolet atomic scale). Interestingly, taking into
account the numerical factors, this scale was estimated [71] to be
close to the thermal Ginzburg scale corresponding to the room
temperature. We emphasize that the membrane fluctuations
discussed in the above works are dynamical rather than static,
see Sec. V D.

[94] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355
(2008).

[95] A. M. Finkelstein, Int. J. Mod. Phys. B 24, 1855
(2010).

155428-22

http://dx.doi.org/10.1103/PhysRevB.86.041408
http://dx.doi.org/10.1103/PhysRevB.86.041408
http://dx.doi.org/10.1103/PhysRevB.86.041408
http://dx.doi.org/10.1103/PhysRevB.86.041408
http://dx.doi.org/10.1126/science.203.4385.1105
http://dx.doi.org/10.1126/science.203.4385.1105
http://dx.doi.org/10.1126/science.203.4385.1105
http://dx.doi.org/10.1126/science.203.4385.1105
http://dx.doi.org/10.1021/nl2022288
http://dx.doi.org/10.1021/nl2022288
http://dx.doi.org/10.1021/nl2022288
http://dx.doi.org/10.1021/nl2022288
http://dx.doi.org/10.1063/1.2903702
http://dx.doi.org/10.1063/1.2903702
http://dx.doi.org/10.1063/1.2903702
http://dx.doi.org/10.1063/1.2903702
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1142/S0217979210064642
http://dx.doi.org/10.1142/S0217979210064642
http://dx.doi.org/10.1142/S0217979210064642
http://dx.doi.org/10.1142/S0217979210064642



