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Photogalvanic effect in the HgTe/CdTe topological insulator due to edge-bulk optical transitions
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We study theoretically the 2D HgTe/CdTe quantum well topological insulator illuminated by circularly
polarized light with frequencies higher than the difference between the equilibrium Fermi level and the bottom
of the conduction band (THz range). We show that electron-hole asymmetry results in spin-dependent electric
dipole transitions between edge and bulk states, and we predict an occurrence of a circular photocurrent. If the
edge state is tunnel-coupled to a conductor, then the photocurrent can be detected by measuring an electromotive
force in the conductor, which is proportional to the photocurrent.
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I. INTRODUCTION

Topological insulators (TIs) became a focus of attention of
many condensed matter physicists in recent years, not least
due to their possible applications in spintronics and quantum
computing. These are materials with time-reversal symmetry
and nontrivial topological order, which have an insulating bulk
but conducting topologically protected edge/surface states
[1–3]. Spin-orbit interaction plays a significant role in these
materials, and particularly manifests itself in spin-momentum
locking of charge carriers in edge/surface states.

Optical excitation is an efficient tool for generating currents
in materials. This process has been studied in 3D TIs [4–15].
In Ref. [4] effects in study are due to electric optical transitions
between surface states, which are possible in the presence of
a magnetic field. Besides, in the presence of strong magnetic
fields, the electric dipole transitions between Landau levels are
also possible [14]. In contrast to these papers, here we study
2D TIs and show that the optical generation of the current is
possible without magnetic fields as well.

HgTe/CdTe quantum well structures [16] are one of the
most well-known 2D TIs. These quantum wells exhibit an
inverted band structure if their width exceeds a certain critical
value. The inverted band structure and strong spin-orbit
interaction give rise to unusual optoelectronic phenomena,
e.g., a nonlinear magneto-gyrotropic photogalvanic effect
(PGE) [17]. A circular PGE was also experimentally observed
[18] when the sample was illuminated by mid-infrared or
terahertz laser radiation. These photocurrents were induced
due to direct transitions between different size-quantized
subbands or due to indirect (Drude-like) transitions within
the lowest size-quantized subband. In both cases the optical
transitions responsible for the PGE involve only bulk states.
However, in the case of a finite sample size of 2D TIs there
exist topologically protected helical edge states which form
two branches with opposite spins [16]. In a recent paper [19] it
was predicted that edge states affect bulk magnetoconductivity.
The paper focuses on the bulk properties in a strong magnetic
field and does not discuss optoelectronic properties of the edge
states. However, it is of interest whether the photocurrent
can be induced at the edge states at zero magnetic field. A
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PGE due to transitions between edge states of the opposite
chiralities has been predicted in Ref. [20], but electric dipole
transitions between them are forbidden by selection rules, and
only magnetic dipole transitions are possible in this case. Thus,
the direct transitions between the edge states are weak. Unlike
Ref. [20], in this paper we study electric dipole transitions
between the edge and bulk states in HgTe/CdTe quantum well
2D TIs in zero magnetic field, which lead to the edge currents.
To our knowledge, this mechanism of the PGE in TIs has not
been studied yet.

Starting from the Bernevig-Hughes-Zhang (BHZ) model of
HgTe/CdTe 2D TIs, we find a relation between matrix elements
of the edge-bulk transitions. In the general case the electron-
hole symmetry is broken, and the probability of transition
depends on the spin and, hence, on the chirality. Thus, the
transitions will lead to a different population of spin-up and
spin-down states and to occurrence of a photoinduced electric
current. In order to study this effect, we derive a kinetic
equation and then solve it in the quasiequilibrium approxi-
mation. We also propose a way to detect the photoinduced
current by coupling 2D TIs with a conductor and measuring
an electromotive force (EMF) induced in the conductor.

The paper is organized as follows. In Sec. II we consider
optical transitions between edge and bulk states and derive the
photoinduced electric current. In Sec. III we calculate the EMF
that appears in the conductor tunnel-coupled to the edge state.
Below we set � = 1, c = 1.

II. OPTICAL TRANSITIONS BETWEEN EDGE
AND BULK STATES

We consider a HgTe/CdTe quantum well TI with a con-
ducting helical edge state illuminated by circularly polarized
light with a frequency ω0 slightly exceeding the the absorption
threshold, so that optical transitions may occur between the
edge state and the bulk conduction band (Fig. 1). We assume
that the TI is located at x > 0; the y axis is taken along
the edge of the TI, and the z axis is perpendicular to the
2D TI.

Both in HgTe and CdTe the relevant bands are the s-type
band (�6) and p-type band split by spin-orbit interaction into
a J = 3/2 (�8) and a J = 1/2 (�7) band. The latter is usually
neglected as it has negligible effects on the band structure
[16,21]. CdTe has a band ordering similar to GaAs with the
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�6 conduction band and �8 valence band. In HgTe the usual
band ordering is inverted. The quantum well subbands derived
from the heavy-hole �8 are usually denoted by Hn, and the
subbands derived from the electron �6 are denoted by En.

We describe the HgTe/CdTe quantum well TI by the four-band
BHZ model [16]. In the four-component basis consisting of
|E1↑〉, |H1↑〉, |E1↓〉, |H1↓〉 with mJ = 1/2,3/2,−1/2,−3/2
correspondingly, the Hamiltonian reads

ĤBHZ = − Dk̂2 +

⎛
⎜⎜⎝
M − Bk̂2 Ak̂+ 0 0

Ak̂− −(M − Bk̂2) 0 0
0 0 M − Bk̂2 −Ak̂−
0 0 −Ak̂+ −(M − Bk̂2)

⎞
⎟⎟⎠, (1)

where k̂± = k̂x ± ik̂y . Here A, B, D, M are material parame-
ters, which depend on quantum well geometry: A > 0, B < 0;
parameter M is negative if the quantum well is in a TI state,
and 2|M| is a value of a band gap in TI. Parameter D �= 0 if
electron-hole symmetry is broken, and D = 0 otherwise.

Since the Hamiltonian (1) has been obtained in the kp
approximation, and the nondiagonal part of (1) linear by quasi-
momentum k̂ corresponds to the kp term, the Hamiltonian of
a light-matter interaction in the electric dipole approximation
reads

Ĥe−A = Ĥ1(Ax − iAy) + Ĥ
†
1 (Ax + iAy), (2)

Ĥ1 = |e||H1↑〉〈E1↑| − |e||E1↓〉〈H1↓|, (3)

where e is the electron charge, and A is a vector potential of the
electromagnetic field. In the case of right-hand-polarized light
(as defined from the point of view of the source) propagating
along the z axis the vector potential can be represented as

Ax =
√

4πW
nrω0

cos ω0t, Ay = −
√

4πW
nrω0

sin ω0t, Az = 0,

(4)
where W is the intensity of light, and nr is the refractive index.
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FIG. 1. Schematic picture of optical transitions between two edge
state branches and bulk states. Circularly polarized light of frequency
ω0 exceeding the absorption threshold by �ω induces transitions
between edge and bulk conduction band states. The different thickness
of arrows depicts that probability of electric dipole transitions may
depend on chirality/spin of the edge electron.

Under the illumination by the right-hand circularly polar-
ized light the selection rules allow only those electric dipole
transitions from the edge to bulk, which increase angular
momentum by �. In the Hamiltonian (2) these transitions are
described by the first term. The conjugate term describes the
reverse optical transitions.

In the absence of the boundary, the eigenstates of 2D TIs
are bulk states separated by a gap, and the bulk states at the
bottom of the conduction band are formed by H1 states with
a zero momentum and a well-defined projection of an angular
momentum mJ = ±3/2.

In a finite-size sample, there appear edge states which are
superpositions of E1 and H1 Bloch wave functions. These
edge states can be found by solving the Schrödinger equation
with zero boundary conditions for the Hamiltonian (1) in the
coordinate representation in the x direction and the momentum
representation in the y direction (see Ref. [22]):

ψedge,s ∝ (is
√

|B − D||E1,s〉 +
√

|B + D||H1,s〉)
× (e−λs,−x − e−λs,+x), (5)

where λs,± are inverse decay lengths for the localized edge
states.

In the presence of the boundary, conduction band wave
functions are distorted near the boundary where they overlap
with the edge states. Instead of explicitly calculating the
conduction band wave functions by solving the Schrödinger
equation with zero boundary conditions, we will use the
time-reversal symmetry and orthogonality conditions for the
eigenstates of the Hamiltonian.

The BHZ Hamiltonian and zero boundary condition are
invariant under the time-reversal symmetry �̂. Therefore,
if the spin-up eigenstate with energy ε is of the form

bulk,↑(ε,ky,x) = fε,ky

(x)|E↑〉 + gε,ky
(x)|H↑〉, then the spin-

down eigenstate can be obtained as

�̂
bulk,↑ = −f ∗
ε,−ky

(x)|E1↓〉 − g∗
ε,−ky

(x)|H1↓〉.

We denote the overlap integrals between the edge and bulk
states as

F (ε,ky) =
∫ +∞

0
(e−λ−x − e−λ+x)fε,ky

(x)dx,

G(ε,ky) =
∫ +∞

0
(e−λ−x − e−λ+x)gε,ky

(x)dx.
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Mutual orthogonality of edge and bulk states yields the relation
between the integrals:

F

G
= −i

√|B + D|√|B − D| . (6)

Thus, both f and g are nonzero, and not only are the edge states
superpositions of E and H Bloch wave functions with different
well-defined projections of total angular momentum, but the
bulk conduction states are also their superpositions even at
the bottom of the band. Selection rules allow transitions from
|E↑〉 to |H↑〉, and from |H↓〉 to |E↓〉. Thus, the transitions
from both edge state branches to the conduction band satisfy
the selection rules. Calculation of the matrix elements ws of
the first term of the Hamiltonian (2) corresponding to these
transitions yields the main relation:

|w↓|
|w↑| =

√|B − D||G|√|B + D||F | = B − D
B + D . (7)

Note that if electron-hole symmetry is present, the probabilities
of optical transitions from both edge state branches are
equal. Electron-hole symmetry implies that the edge states
are superpositions of |E,s〉 and |H,s〉 with equal (up to a
phase factor) amplitudes. The same is true for the bulk states
(it is shown explicitly in Appendix A). Hence, the transition
probability for both spin-up and spin-down branches will be
the same. However, in real samples the electron-hole symmetry
is broken, i.e., the electron and hole components of the bulk
eigenstates as well as the edge eigenstates are not equal
anymore, and the probability of an edge-bulk transition will
depend on spin.

Values of matrix elements for the case of strong electron-
hole asymmetry are derived in Appendix B.

We estimate the ratio of probabilities for typical values
of parameters [3]: A = 365 meV nm, B = −686 meV nm2,
D = −512 meV nm2, M = −10 meV corresponding to the
quantum well width dc = 7 nm. In this case |w↑|2/|w↓|2 ≈
47.4. Thus, the transitions in the case of HgTe/CdTe 2D TIs
are strongly spin-dependent.

Our consideration can be applicable not only in the case
of HgTe/CdTe 2D TIs but also in the case of other 2D TIs
which can effectively be described by the BHZ model. One
of the interesting examples is a recently predicted all-electron
TI in an InAs double well [23] which allows one to easily
tune BHZ parameters. In the case of this material the band
gap 2|M| is of order 1 meV and D/B is of order 0.5. These
values of parameters correspond to characteristic frequencies

ω0 of order 100 GHz and a ratio of matrix elements |w↓|2
|w↑|2 of

order 10; i.e., the probabilities of transitions are also strongly
spin-dependent.

Note that we used zero boundary conditions (BCs) for 2D
TIs. The result (7) does not qualitatively depend on the BCs
for the wave functions provided they are invariant under time-
reversal symmetry and yield helical edge states. Different BCs
are discussed in Refs. [24–27]. Although the choice of the
boundary conditions does not affect the topological nature
and the existence of the edge states, the spectra of bulk and
edge states, and the eigenstates themselves, depend on the
BCs. Particularly, the matrix elements of the transitions may
depend on the BCs. However, in our approach only Eq. (5)

depends on the BCs. In the general case the amplitudes of E1

and H1 Bloch functions will be different, but if the electron-
hole symmetry is broken these amplitudes will remain still
unequal. Further, in order to obtain our main result (7) we
exploit their inequality, time-reversal symmetry, and mutual
orthogonality of eigenstates. Thus, we believe that the result
does not qualitatively depend on the BCs provided they are
invariant under time-reversal symmetry and yield helical edge
states.

If the light is incident in an arbitrary direction nθ,φ =
(cos φ sin θ, sin φ sin θ, cos θ ), then the matrix elements w

θ,φ
s

can be obtained by replacing vector potential in the light-matter
interaction Hamiltonian (2) with its projection on the TI
plane(for details see Appendix C):

wθ,φ
s = wse

−iφ(1 + cos θ ) + w∗
−se

iφ(1 − cos θ )

2
. (8)

Below we will use an expression for the value of the squared
matrix element averaged over the direction:〈

w2
s

〉
θ,φ

= 1
3 (|ws |2 + |w−s |2). (9)

Kinetic equations for distribution functions of electrons in
the edge state n(ε) and in the conduction band N (ε) can be
written as

dns(ε)

dt
= − ns(ε) − Ns(ε + ω0)

τind,s(ε,ε + ω0)
W

+
∫

Ns(ε + ω)[1 − ns(ε)]

τsp(ε + ω,ε)
dω + n−s(ε) − ns(ε)

τe

,

(10)

where Wτ−1
ind is the rate of transitions induced by illumination,

τ−1
sp (ε′,ε) is the rate of spontaneous transitions between the

conduction bulk state with energy ε′ and the edge state with
energy ε, i.e., the recombination rate; τe is the spin relaxation
time for the edge electrons. Since there is still discussion
in the literature [28–32] on which mechanism agrees better
with experimental data, in this paper we introduce this time
assuming that in any realistic system it is finite.

Here we write these kinetic equations (10) phenomeno-
logically, and more rigorous derivation based on the Keldysh
technique is given in Appendix D. The rate of the transitions
induced by illumination can be related to the matrix elements
using the Fermi golden rule:

τ−1
ind,s = 8π2ν̃C,ky

(ε + ω0)
|ws |2
n2

rω
2
0

,

where ν̃C,ky
is the density of states in the conduction band with

a fixed ky :

ν̃C,ky
=

∑
kx

δ(ε − εkx,ky
) =

√
mLx√

2π
√

ε − |M| − k2
y/(2m)

,

where m is the effective mass of conduction band electrons
and Lx is the length of the 2D TI in the x direction. Note
that summation over kx in the definition of ν̃C,ky

instead of
summation over both kx and ky reflects the fact that the
transitions are vertical; i.e., the ky projection of momentum
is conserved.
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In order to deduce a relation between induced and spon-
taneous transition rates one can use a detailed balancing
condition similar to that for Einstein coefficients for discrete
levels [33]. The factors τsp,ind in the kinetic equation do
not depend on the illumination and environment, since they
are intrinsic properties of the 2D TI. Therefore, the kinetic
equation (10) should remain valid if we put the system in
thermal equilibrium with blackbody radiation. In this case the
distribution functions of the edge and bulk electrons are the
equilibrium Fermi function with the same Fermi level, and
photons have the Bose distribution. The detailed balancing
between the states with energy ε and ε′ = ε + ω for an
arbitrary ω yields

[n0(ε) − n0(ε + ω)]〈τind,s〉θ,φ

dWeq,+
dω

+ [n0(ε) − n0(ε + ω)]〈τind,−s〉θ,φ

dWeq,−
dω

= n0(ε + ω)[1 − n0(ε)]

τsp

, (11)

where 〈τ−1
ind,s〉θ,φ is the induced transition rate averaged

over the direction of an incident equilibrium photon, n0 =
1
2 (1 − tanh ε

2T
) is the equilibrium Fermi distribution, and

dWeq,+(−)

dω
= n3

r ω
3

2π2 Nph(ω) is the spectral density of equilibrium
right (left) polarized illumination with the photon distribution
function Nph(ω) = 1

2 (coth ω
2T

− 1). The value of the induced
transition rate 〈τ−1

ind,s〉 averaged over direction can be calculated
using (9):

〈
τ−1
ind

〉
θ,φ

= τ−1
ind,s + τ−1

ind,−s

3
.

Finally, we obtain the expression for the spontaneous illumi-
nation rate τ−1

sp from (11):

τ−1
sp = 8

3 (|ws |2 + |w−s |2)nrων̃C,ky
(ε + ω). (12)

We solve kinetic equation (10) in the quasiequilibrium
approximation, i.e., assuming that the distribution function of
edge electrons with spin s is a Fermi distribution with a quasi-
Fermi level εF + μs , and, similarly, the distribution function
of conduction bulk electrons with spin s is a Fermi distribution
with a quasi-Fermi level |M| + ζs (|M| is the bottom of the
conduction band). The quasiequilibrium approximation can
be justified if the energy relaxation times in the edge and
bulk states are much shorter than the lifetime of the excess
photogenerated electrons. Since the results will depend on
whether the initial Fermi level is above or below the Dirac
point we consider both these cases.

A. Fermi level above Dirac point: Absorption
without photocurrent

The electrons in the conduction band in the quasiequilib-
rium approximation lie in the bottom of the conduction band
and they can recombine only with empty states in the vicinity
of the Dirac point. If the Fermi level is above the Dirac point
[see Fig. 2(a)] then all the states near the Dirac point are
occupied 1 − ns(ε) = 0, and the spontaneous transition term
in (10) vanishes.

After integrating the kinetic equation (10) over energies we
obtain a relation between quasi-Fermi levels

8π
|ws |2Lx

√
2m

n2
rω

2
0

√
μs + �ωW = μ−s − μs

τe

,

)c()b()a(

FIG. 2. (a) Schematic picture of quasi-Fermi levels if Fermi level is above the Dirac point. All the spin-up and spin-down edge electrons
with energies from εF − �ω to εF are moved to the conduction band. States near the Dirac point are occupied, and, hence, spontaneous
transitions from bulk to edge states are not allowed. The electric current of the edge electrons j = G0(μ↑ − μ↓) = 0. (b) Schematic picture
of quasi-Fermi levels if Fermi level is below the Dirac point and for low intensities W < W↓ − W↑ (region I in Fig. 3). All the spin-up
electrons with energies from εF − �ω to εF are excited by the light, and spin-down electrons in the conduction band appear mainly due to
spin relaxation. Recombination of bulk spin-down electrons shifts the quasi-Fermi level of spin-down electrons above the initial Fermi level.
(c) Schematic picture of quasi-Fermi levels for high intensities W > W↓/2 (region II in Fig. 3). Almost all spin-up and spin-down electrons
with energies from ε − �ω to ε are excited by the light (μ↑ ≈ μ↓ ≈ −�ω). The spin imbalance at the edge states decays with intensity of the
light as δμ ∝ W−2.
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where �ω is the difference between the light frequency and the
absorption threshold �ω = εF + ω0 − |M| − k2

y/(2m) (see
Fig. 1). The only solution is μ−s = μs = −�ω. Almost
all the electrons with energies from εF − �ω to εF are
moved to the conduction band by illumination (μ↑ ≈ −�ω).
They equilibrate in the conduction band and remain there,
since the edge states near the Dirac point are occupied. The
electric current j = G0(μ↑ − μ↓) = 0, where G0 = e2/h is
the conductance quantum.

B. Fermi level below Dirac point: Nonzero photocurrent

The situation differs if the Fermi level is below the Dirac
point. In this case the edge states in the vicinity of the Dirac
point are not occupied and the spontaneous transitions from
the conduction band to edge states are allowed. Integration of
(10) yields

W
√

μs + �ω = νC

νe

Ws√
�ω

(
ζs + τ0

μ−s − μs

τe

)
,

Ws = νe

3πνC

ω2
0(|M| − εD)

√
mv2

T I

2
�ω

× |ws |2 + |w−s |2
|ws |2 n3

r ,

τ−1
0 = 8LxnrmvT I (|M| − εD)(|w|2s + |w|2−s)

3
,

(13)

where �ω = εF + ω0 − |M| (see Fig. 1). Here νe and νC

are the densities of the edge states and the conduction bulk
states correspondingly. Note that in contrast to ν̃C,ky

defined
above, νC = ∑

ky
ν̃C,ky

is the 2D density of states in which
summation over both components of momentum is performed.
Another relation results from the conservation law for the
number of particles:

νe(μ↑ + μ↓) + νC(ζ↑ + ζ↓) = 0. (14)

In the stationary regime neither spin nor charge accumulates,
and the same number of transitions per unit time occurs from
spin-up states to spin-down states and vice versa. Therefore
we can equate spin-relaxation rates of the edge and bulk
electrons and obtain another quasiequilibrium condition:

νe

μs − μ−s

τe

= νC

ζ−s − ζs

τC

, (15)

where τC  τe is the spin relaxation time for the conduction
band electrons.

An important limiting case is when one can neglect spin
relaxation of the edge electrons assuming that τe � τC and
both times are great enough. In this case Eqs. (14)–(15)
yield ζs = ζ−s = − νe

νC

μ↑+μ↓
2 , and Eq. (13) can be solved

analytically:

μ0 = μ↑ + μ↓
2

=
W2 −

√
W4 + 2W2(W2

↑ + W2
↓)

(W2
↑ + W2

↓)
�ω,

(16)

I II

FIG. 3. Dependence of photocurrent (solid line) and currents of
spin-up/spin-down electrons (dashed lines) on light intensity if the
initial Fermi level is below the Dirac point. The currents of each
branch are proportional to the corresponding quasi-Fermi level shift.
For the region I (W < W↓/2) edge branches contribute to net current
with the same sign, while in the region II (W > W↓/2) the current
of spin-down electrons changes its sign. Currents are measured in the
units of G0�ω.

δμ = W2
↑ − W2

↓
�ωW2

μ2
0. (17)

An electric current j = G0δμ arises in the edge state, where
G0 = e2/h is the conductance quantum. If the intensity of
light is small W  W↑,W↓ [Fig. 2(b)], mainly the spin-up
electrons are excited by the light. The spin relaxation time for
the bulk states is much shorter than the lifetime of photogen-
erated electrons, hence, spin of the photogenerated electrons
relaxes, and there appear additional spin-down electrons in the
conduction band, whose recombination rate turns out to be
greater than the excitation rate of spin-down edge electrons.
Thus, the quasi-Fermi level for spin-up electrons is below εF ,
and the quasi-Fermi level for spin-down electrons is above
it. The currents of electrons with the opposite spin contribute
to the total electric current with the same sign [see Fig. 3(a),

Fig. 3(c)], and the total current j ≈ 2G0
W 2

↑−W 2
↓

W 2
↑+W 2

↓
�ω.

If the intensity of light W � W↑,W↓ [Fig. 3(b)], all the
edge electrons with energies from |M| − ω0 to εF are excited
to the conduction band, and the quasi-Fermi levels of the
edge electrons saturate at the value μs = −�ω. The currents
js = G0μs are almost equal, but contribute to the total current
with opposite signs. Thus, the total current decreases with
the increase of the intensity as j ∝ W−2. For an HgTe/CdTe
quantum well with width dc = 7 nm, and the sample size of
order L ∼ 1 μm, the quasi-Fermi level for spin-up electrons
saturates at W ∼ W↑ ∼ 10−9 W/cm2. The quasi-Fermi level
for spin-down electrons saturates at W↓ ∼ 10−8 W/cm2.

However, in case of extremely weak intensities spin
relaxation rate turns out to be comparable with transition
rates and hence cannot be neglected. We can solve (13)–(15)
analytically assuming W < W↑  W↓ and obtain

j = G0�ω
W2

4W2
↑

τ 2
e

τ 2
C

(
1 −

√
1 + 16

W2
↑

W2

τ 2
c

τ 2
e

)
.
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FIG. 4. A proposal to detect photocurrent in the edge state: 2D
conductor of length Ly is coupled to the edge state via the tunnel
contact of length �. The EMF appears between the opposite ends of
the 2D conductor.

The full curve for the dependence of photocurrent on
intensity is sketched in Fig. 3.

III. TUNNEL CONTACT TO AN EXTERNAL CIRCUIT

In the previous section we showed that circularly polar-
ized illumination induces an electric current at the edge of
HgTe/CdTe quantum well TIs. In order to observe the effect
one should connect the sample to an external circuit. We
consider a system of HgTe/CdTe tunnel-coupled by a contact
of length � to a 2D metal conductor (see Fig. 4).

The Hamiltonian of the system reads

Ĥ = ĤT I + Ĥ2D + Ĥtun. (18)

In order to describe the edge state we use an effective edge state
Hamiltonian corresponding to the linear edge state spectrum

ĤT I =
∑

s

∫
ψ̂†

s (y)(−ivT I s∂y + εD)ψ̂s(y)dy, (19)

where ψ̂ is the effective field operator for an electron in the
edge states, εD is the energy of the Dirac point measured from
the middle of the band gap, and vT I is the velocity of edge
electrons. We assume that illumination results in quasiequi-
librium occupation numbers of electrons corresponding to the
quasi-Fermi levels and the tunnel coupling is so weak that
it does not affect the optical transitions, so the results of the
previous section are applicable. The Hamiltonian of the 2D
conductor reads

Ĥ2D = Ĥ2D,0 +
∑

s

∫
d2r 
̂†

s Vimp(r)
̂s, (20)

where Ĥ2D,0 is the Hamiltonian of free 2D electrons, and 
̂

is the field operator in the 2D conductor. Here we take into
account a random delta-correlated potential of impurities Vimp

characterized by a mean scattering time τimp.
The tunneling Hamiltonian reads

Ĥtun =
∑

s

∫
dy ψ̂†

s (y)T 
̂s(x = 0,y) + H.c., (21)

where T is a matrix element of tunneling, and we assume that
the tunneling is momentum conserving.

We start from the Hamiltonian (18)–(21), and then derive
equations for Keldysh Green’s functions GR(A),K taking into
account the tunneling Hamiltonian and the impurity potential
as perturbations. The self-energy of 2D electrons in the
conductor resulting form the tunneling reads

�
R(A),K
tun (r1,r2) = |T |2δ(x1)δ(x2)GR(A),K

T I (y1 − y2).

The Green’s functions of the electrons in the edge state
electrons can be obtained by solving the corresponding Dyson
equations:

G
R(A)
T I,s (ε,py) = (ε − εpy,s

+ i�)−1, (22)

GK
T I,s(ε,py) = −2πiδ�(ε − εpy,s

) tanh
ε − ε

(T I )
F − μs

2T
,

(23)

where � is the inverse lifetime of electrons in the edge state,
which consists of contributions from tunneling and optical
transitions. The contribution from the optical transitions is
determined by the self-energy operator i� = ∑

ky
(�R − �A)

[see Eqs. (D15), (D17)]. Besides, some mechanisms of spin
relaxations, e.g., coupling to multiple puddles [32], also
contribute to �, so here we introduce it phenomenologically.
Note that the exact value of � does not affect the final results.
The Lorentz-type factor δ�(x) = 1

π
�

x2+�2 describes broadening
of electronic states due to their finite lifetime.

The derivation of kinetic equation for quasiclassical distri-
bution function fs(r,p) in the 2D conductor is straightforward
[34] and gives

[∂t + (v,∇)]fs + 2π |T |2δ(x)θ

(
�

2
− |y|

)

× δ�

(
εpy,s

− ε(2D)
p,s

)
[fs − ns]

= f̄s − fs

τ
. (24)

Here ns is a distribution function for the edge state electrons
of the TI, and the Heaviside step function θ restricts the length
of the contact to �.

If the TI is illuminated by circular-polarized light, the quasi-
Fermi level of spin-up electrons is lower than the quasi-Fermi
level of spin-down electrons. In a stationary regime the current
through the tunnel contact should be equal to zero; therefore,
the Fermi level in the 2D conductor is exactly in the middle
between the quasi-Fermi levels in the edge states of the TI.
However, the zero tunnel current consists of a spin-up current
from the TI to the conductor and a spin-down current from the
conductor to the TI. Electrons of the opposite spins in the TI
are of the opposite chiralities and the tunneling is assumed to
conserve momentum, so it should result in an electron drift and
appearance of the counterbalancing EMF in the conductor. We
consider a stationary case in which tunneling leads to charge
redistribution, and, hence, the extra charge induces an electric
field. The electric field E is related with the extra charge −|e|δρ
by the Poisson equation:

div E = −4π |e|δρ, (25)

where δρ is the deviation of electron density from its equilib-
rium value, and the full electron density can be expressed in
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terms of the distribution function as

ρ =
∑

s

∫
d2p

(2π )2
f̄s . (26)

The kinetic equation that takes into account the electric field
in the conductor reads

[∂t + (v,∇)]fs + �s + fs − f̄s

τ
− |e|vE

∂fs

∂ε
= 0, (27)

�s = θ

(
�

2
− |y|

)
2π |T |2δ(x)δ�

(
εpy,s

− ε(2D)
p,s

)
[fs − ns].

(28)

Here �s denotes the term responsible for the tunneling. Since
the electric field E arises due to the deviation of the distribution
function f from its equilibrium unperturbed value f0, we can
replace fs in the field term with f0, neglecting second-order
corrections.

We consider a model where the 2D conductor is a narrow
strip spanning from x = −Lx/2 and x = Lx/2 and is infinite
in the y direction, and the contact is in the middle of the strip
at x = 0. For simplicity we assume that the width Lx of the
conductor is smaller than the scattering length vF τ . In a more
general case the conductor can be qualitatively considered as
the same narrow strip with a bypass resistance. Under these
assumptions one can take into account only the electric field
along the contact Ey � Ex .

We solve the kinetic equation together with the Poisson
equation assuming quasineutrality and treating the angle-
averaged distribution function f̄s in the impurity term self-
consistently (for details see Appendix E).

Finally, we obtain the EMF as the integral over the
conductor length of the electric field averaged in the transversal
direction 〈Ey〉x = L−1

x

∫ Lx/2
−Lx/2 Ey dx:

|e|E =
∫ Ly/2

−Ly/2
|e|〈Ey〉x dy

= − |T |2
vF

2
(
ε

(T I )
F − εD

)
√

(pF vT I )2 − (
ε

(T I )
F − εD

)2

�

Lx

δμ

vT IpF

, (29)

where pF , vF are the Fermi momentum and velocity in the
conductor, and δμ is the difference between quasi-Fermi levels
given by (17)

IV. CONCLUSIONS

In summary, we considered electric dipole optical transi-
tions from helical edge states of HgTe/CdTe TI illuminated
by circularly polarized light to the bulk conduction band. If
electron-hole symmetry is broken which typically is the case,
these optical transitions are strongly spin-dependent.

This gives rise to a circular electric current in the edge state
if the Fermi level is below the Dirac point. The value of the
photocurrent reaches maximum and then decreases with the
growth of the light intensity. It is worth noting that although
the overlap between wave functions of the edge and bulk states
determines the time required for the stationary regime to settle
in, the magnitude of the current in this regime does not depend
on the overlap, and, hence, we anticipate that the effect can

be observed even in samples where this overlap is small. We
showed that the photocurrent can be detected electrically by
measuring the EMF in the conductor coupled to the edge state
of the TI.
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APPENDIX A: OPTICAL TRANSITIONS IN THE CASE
OF ELECTRON-HOLE SYMMETRY

In this Appendix the matrix elements of the optical tran-
sitions are explicitly calculated for the case of electron-hole
symmetry D = 0. In this case, the Hamiltonian (1) with zero
boundary conditions yields the edge state wave function

ψedge,s(x,ky) = 
edge,s(e
−λs,−x − e−λs,+x),


edge,↑ ∝

⎛
⎜⎝

i

1
0
0

⎞
⎟⎠, 
edge,↓ ∝

⎛
⎜⎝

0
0

−i

1

⎞
⎟⎠, (A1)

where λ+ ≈ A
|B| , λ− ≈ |M|

A  λ+. Here we assumed that

A2 � BM, which is the case for the typical parameters of
TIs. Solving the Schrödinger equation with zero boundary
condition for ε − |M|  |M|, ky = 0, we obtain bulk wave
functions near the bottom of the conduction band:

ψbulk,↑(ε) ∝

⎛
⎜⎜⎜⎝

cos kxx + kxA
2M sin kxx

i cos kxx − 2iM
kxA sin kxx

0
0

⎞
⎟⎟⎟⎠ −

⎛
⎜⎝

1
i

0
0

⎞
⎟⎠e−κx,

(A2)

ψbulk,↓(ε) ∝

⎛
⎜⎜⎝

0
0

cos kxx + kxA
2M sin kxx

−i cos kxx + 2iM
kxA sin kxx

⎞
⎟⎟⎠ −

⎛
⎜⎝

0
0
1

−i

⎞
⎟⎠e−κx,

(A3)

where kx ≈
√

ε2−M2

A  λ− and κ ≈ A
|B| ≈ λ+. The first terms

in Eqs. (A2)–(A3) correspond to the superposition of incident
and reflected waves, while the second terms correspond to
the parts of wave functions localized near the boundary. In the
presence of the boundary the angular momentum is ill defined.
Although the wave functions of the conduction band behave
like |H1,mj = 3/2〉 and |H1,mj = −3/2〉 with a well-defined
angular momentum far away from the boundary at x � k−1

x ,
the overlap integral between edge and bulk states is dominated
by small distances from the boundary x ∼ λ−1

− , where these
wave functions are superpositions of |E1〉, |H1〉 with equal (up
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to a phase factor) amplitudes:

ψbulk,↑(ε) ∼

⎛
⎜⎝

1
i

0
0

⎞
⎟⎠(1 − e−κx), (A4)

ψbulk,↓(ε) ∼

⎛
⎜⎝

0
0
1

−i

⎞
⎟⎠(1 − e−κx). (A5)

Thus, the matrix elements are equal up to a phase factor
|w↑|2 = |w↓|2 ∼ 1

Lxλ
3−

.

APPENDIX B: OPTICAL TRANSITIONS IN THE CASE
OF STRONG ELECTRON-HOLE ASYMMETRY

In this Appendix we analytically derive matrix elements
of the optical transitions in the case of strong electron-hole
asymmetry, i.e., |B − D|  B. For the simplicity we consider
transitions between the Dirac point ky = 0 and the bottom
of the conduction band ε − |M|  |M|√B2 − D2/B. We
also assume that typically A2 � BM. For the edge states

we can use the expression (5), where λ− ≈ |M|√B2−D2

2AB , λ+ ≈
A√

B2−D2 � λ−.
The bulk eigenstate of Hamiltonian (1) for energy ε > |M|

is a sum of a right-moving wave, a left-moving wave, and a
term localized in the vicinity of the boundary:

ψ
(bulk)
s,ky

∝ ψL + tRψR + tdψ
d, (B1)

ψL = e−ikxx

(
−Askx

M
|E1,s〉 + |H1,s〉

)
, (B2)

ψR = eikxx

(
Askx

M
|E1,s〉 + |H1,s〉

)
, (B3)

ψd = e−κx

(
iAs

Bκ
|E1,s〉 + |H1,s〉

)
, (B4)

where κ ≈ λ+, kx =
√

ε2−M2

A  κ,λ−. Amplitudes tR and td

can be obtained using the zero-boundary condition ψ (bulk)(x =
0) = 0. It yields

tR = Bkxκ+iM
Bkxκ − iM ≈ −1, td = − 2Bkxκ

Bkxκ−iM ≈ −2
Bikxκ

M .

(B5)

Now the matrix elements can be calculated straightfor-
wardly. First, we find the overlap integrals defined in Sec. II:

F = − 2ikx

λ2−

1√
2Lx

, G = − 2Akx

Mλ−

1√
2Lx

. (B6)

The matrix elements of the transitions can be calculated as

|w↑|2 = |G|2 |B − D|
4|B|λ−

= A2k2
x

2|M|2λ3−Lx

|B − D|
|B| , (B7)

|w↓|2 = |F |2 1

2λ−
= 2k2

x

λ5−Lx

. (B8)

APPENDIX C: MATRIX ELEMENTS FOR THE LIGHT
INCIDENT AT AN ARBITRARY ANGLE

In this Appendix we derive the matrix elements (8) for
light incident in the direction nθ,φ . We can take an auxiliary
orthonormal basis

eθ,φ
x = ex cos φ cos θ + ey sin φ cos θ − ez sin θ, (C1)

eθ,φ
y = −ex sin φ + ey cos φ, (C2)

eθ,φ
z = nθ,φ = ex cos φ sin θ + ey sin φ sin θ + ez cos θ.

(C3)

The vector potential reads

Aθ,φ = eθ,φ
x A0 cos ω0t − eθ,φ

y A0 sin ω0t, (C4)

Aθ,φ
x = A0(cos φ cos θ cos ω0t + sin φ sin ω0t), (C5)

Aθ,φ
y = A0(sin φ cos θ cos ω0t − cos φ sin ω0t), (C6)

Aθ,φ
z = −A0 sin θ cos ω0t, (C7)

where the amplitude A0 =
√

4πW
nrω0

[cf. Eq. (4)]. Since only
in-plane components of the vector potential yield the optical
transitions, the case of arbitrary direction of light is equivalent
to the case of elliptical polarization with sin θ standing for the
eccentricity.

The light-matter interaction Hamiltonian (2) can be now
rewritten as

Ĥ
θ,φ

e−A = A0

2
eiω0t [Ĥ1e

−iϕ(cos θ + 1)

+ Ĥ
†
1 eiϕ(cos θ − 1)] + H.c. (C8)

Time-reversal symmetry allows us to relate the matrix elements
of Ĥ1 and Ĥ

†
1 :

〈ψedge,s |Ĥ †
1 |ψbulk,s〉 = −〈ψedge,−s |Ĥ1|ψbulk,−s〉∗. (C9)

This implies the relation between the matrix elements for
different directions of the light:

wθ,φ
s = wse

−iφ(cos θ + 1) + w∗
−se

iφ(1 − cos θ )

2
. (C10)

APPENDIX D: DERIVATION OF KINETIC EQUATION

In order to derive the kinetic equation it is convenient
to write a second-quantized Hamiltonian by expanding the
field operator in the eigenbasis of ĤBHZ: ψ̂ = ∑

ky
âky

ψ
(e)
ky

+∑
kx ,ky

[ĉkx ,ky
ψ

(c)
kx

+ v̂kx ,ky
ψ

(v)
kx

], where ψ (e) is the 4 × 1 wave

function of the edge mode, and ψ (c), ψ (v) are 4 × 1 wave func-
tions in the conduction and valence bands correspondingly. In
this basis the Hamiltonian reads

ĤBHZ =
∑
s,ky

εs,ky
â
†
s,ky

âs,ky
+

∑
s,kx ,ky

ε
(c)
kx ,ky

ĉ
†
s,ky

ĉs,ky

+
∑

s,kx ,ky

ε
(v)
kx ,ky

v̂
†
s,kx ,ky

v̂s,kx ,ky
, (D1)
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Ĥe−A =
∑

s,kx ,ky

[ws(Âx − iÂy)

+w−s(Âx + iÂy)]â†
s,ky

ĉs,kx ,ky
+ H.c., (D2)

where ε
(c)
kx ,ky

, ε
(v)
kx ,ky

are the energies in the conduction and
valence bands correspondingly. Here we disregard transitions
between the edge states and the valence band as the frequency
of illumination ω0 is assumed to be much smaller than the
difference between the Fermi level and the top of the valence
band.

The correlations of quantum fluctuations δÂ are given
by the Green’s functions DR

αβ(1,1′) = −iθ (t − t ′)〈[δÂα(1),

δÂβ(1′)]〉, DA
αβ(1,1′) = iθ (t ′ − t)〈[δÂα(1),δÂβ(1′)]〉, DK =

−i〈{δÂα(1),δÂβ(1′)}〉. At zero temperature these Green’s
functions are of the form

D
R(A)
αβ (ω,k) = 4π

(nrω)2

(nrω)2δαβ − kαkβ

εω2 − |k|2 ± i0
, (D3)

DK = (DR − DA)sgn ω. (D4)

However, due to the form of the Hamiltonian (D2) it is
convenient to introduce axillary scalar fields

ˆ̃As = ws(Âx − iÂy) + w−s(Âx + iÂy).

Then the Green’s functions for
these fields D̃R

s (1,1′) = −iθ (t −
t ′)〈[δ ˆ̃As(1),δ ˆ̃A†

s(1′)]〉, D̃A
s (1,1′) = iθ (t ′ − t)〈[δ ˆ̃As(1),

δ ˆ̃A†
s(1′)]〉, D̃K

s = −i〈{δ ˆ̃As(1),δ ˆ̃Aβ(1′)}〉 take up the form

D̃R(A,K)
s = Dxx |ws + w−s |2 + Dyy |ws − w−s |2

− i(Dxy + Dyx)(wsw
∗
−s − w−sw

∗
s ). (D5)

We treat the interaction between electromagnetic field Â
and electrons given by (D2) as a perturbation, and use the
Keldysh perturbation theory in order to derive the retarded,
advanced and Keldysh Green’s functions G

R,A,K
edge of electrons

in the edge states. The Dyson equations read

(i∂t − εs,ky
)GR(A)

edge,s(t,t
′) −

∫
dt ′′�R(A)

s (t,t ′′)GR(A)
edge,s(t

′′,t ′)

= δ(t − t ′), (D6)

(i∂t − εs,ky
)GK

edge,s(t,t
′) −

∫
dt ′′

[
�R

s (t,t ′′)GK
edge,s(t

′′,t ′)

+ �K
s (t,t ′′)GA

edge,s(t
′′,t ′)] = 0, (D7)

(−i∂t ′ − εs,ky
)GK

edge,s(t,t
′) −

∫
dt ′′

[
GR

edge,s(t,t
′′)�K

s (t ′′,t ′)

+ GK
edge,s(t,t

′′)�A
s (t ′′,t ′)

] = 0. (D8)

The self-energy � can be represented as the sum of a
classical contribution �ind and a contribution �sp due to
quantum fluctuations δÂ, which is responsible for spontaneous

transitions

� = �ind + �sp, (D9)

�
R(A,K)
ind,s =

∑
s,kx

〈Ãs(t)〉GR(A,K)
c,s (kx,t,t

′)〈Ã∗
s (t ′)〉, (D10)

�R
sp,s(t − t ′,y − y ′) = i

2

(
D̃R

s GK
c,s + D̃K

s GR
c,s

)
, (D11)

�K
sp,s(t − t ′,y − y ′) = i

2

(
D̃K

s GK
c,s + D̃R

s GR
c,s + D̃A

s GA
c,s

)
.

(D12)

Since the classical value of electromagnetic field 〈A〉
depends on time the self-energy �ind depends both on the
sum of the times ts = t + t ′ and their difference ta = t − t ′.
However, the dependence on the sum of the times describes the
motion of electrons in a high-frequency electromagnetic field,
and we disregard it leaving only the dependence on the time
difference, which is responsible for induced transitions. After
performing the Fourier transform over the difference time we
obtain

�
R(A,K)
ind,s (ε,ky) = 4πW

(nrω0)2

∑
kx

|ws |2GR(A,K)
c,s (ε + ω0,ky)

+ |w−s |2GR(A,K)
c,s (ε − ω0,ky). (D13)

The kinetic equation for the distribution function ns(ε) of
electrons in the edge state may be derived in the standard way
by subtracting the Dyson equations with self-energy operators
acting from the left (D7) and from the right (D8), integrating
over ky , and using the relation GK = (GR − GA)[1 − 2ns(ε)]:

2∂tn(ε) = i[1 − 2n(ε)][�R(ky) − �A(ky)] − i�K (ky).

(D14)

Using Eqs. (D11)–(D13) and the expression for the Green’s
functions in the conduction band GR(A)

c,s = 1/(ε − εkx,ky
± i0),

GK = (GR − GA)[1 − 2Ns], where Ns(ε) is the distribution
function of electrons in the conduction band, the summation
over kx in the self-energy operators is straightforward:

�R
ind (ε,ky) − �A

ind (ε,ky) = −2πi
4πW

(nrω0)2
|ws |2ν̃c,ky

(ε + ω0),

(D15)

�K
ind (ε,ky) = − 2πi

4πW
(nrω0)2

|ws |2ν̃c,ky
(ε + ω0)

× [1 − 2Ns(ε + ω0)], (D16)

�R
sp(ε,ky) − �A

sp(ε,ky) = − 8i

3

∫
(|ws |2+|w−s |2)ν̃c,ky

(ε+ω)

× N (ε + ω)ωnr dω, (D17)

�K
sp(ε,ky) = − 8i

3

∫
(|ws |2 + |w−s |2)ν̃c,ky

(ε + ω)

× N (ε + ω)ωnr dω. (D18)
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The final kinetic equation can be obtained by substituting
the self-energy operators into (D14):

dns(ε)

dt
= − ns(ε) − Ns(ε + ω0)

τind,s(ε,ε + ω0)
W

+
∫

Ns(ε + ω)[1 − ns(ε)]

τsp(ε + ω,ε)
dω, (D19)

τ−1
ind,s = 8π2ν̃C,ky

(ε + ω0)
|ws |2
n2

rω
2
0

, (D20)

τ−1
sp = 8

3
(|ws |2 + |w−s |2)ων̃C,ky

(ε + ω)nr . (D21)

APPENDIX E: EMF CALCULATION

From the kinetic equation (27), one can express the
distribution function fs and its angle-averaged value 〈fs〉ϕ
via the tunneling source �s defined in (28):

〈fs〉ϕ =
(〈

1

ivk‖ + τ−1

〉
ϕ

− τ−1

)−1(
− �s + |e|vE

∂f0

∂ε

)
,

(E1)

where k = (k‖,kz) is a parameter of spatial Fourier transform.
The quasineutrality condition implies∫ 〈

v|e|E ∂f0

∂ε

ivk‖ + τ−1

〉
ϕ

dξ =
∑

s

∫ 〈
�s

ivk‖ + τ−1

〉
ϕ

dξ. (E2)

Using the relation 〈 1
ivk‖+τ−1 〉

ϕ
= τ√

1+k2
‖ l2

τ

, and 〈 vE
ivk‖+τ−1 〉

ϕ
=

− ik‖E
k2
‖

(1 − 1√
1+k2

‖ l2
τ

) we obtain the final equation for the

electric field,

|e|k‖E = i

2

∑
s

∫ 〈
�s

ivk‖ + τ−1

〉
ϕ

dξ
k2
‖
√

1 + k2
‖ l2

τ√
1 + k2

‖ l2
τ − 1

. (E3)

The electric field averaged over the lateral direction x

corresponds to the kx = 0 component:

〈Ey〉x(y) = i

2Lx

∑
s

∫ 〈
�̃s

eikyy

ivky cos ϕ + τ−1

〉
ϕ

×
2 sin ky�

2

√
1 + k2

yl
2
τ√

1 + k2
yl

2
τ − 1

dξ
dky

2π
, (E4)

where �̃s = 2π |T |2δ(x)δ�(εpy,s
− ε

(2D)
p,s )[fs − ns]. We per-

form averaging over ϕ, assuming that the angles with cos ϕ

close to s ε2D−ε0
pF vT I

give the main contribution. After summation
over spin index and integrating over ξ = vF (|p| − pF ) we
obtain

〈Ey〉x(y) = π |T |2δμ
LxpF vT I tan ϕ0

∫
vkye

ikyy

v2k2
y cos2 ϕ0 + τ−2

×
2 sin ky�

2

√
1 + k2

yl
2
τ√

1 + k2
yl

2
τ − 1

dky

2π
. (E5)

The EMF can be obtained as the integral of the mean electric
field E = ∫ Ly/2

−Ly/2〈Ey〉x dy:

E = 2πv|T |2δμ
Lx tan ϕ0

∫
sin kyLy

2

v2k2
y cos2 ϕ0 + τ−2

2 sin ky�

2

√
1 + k2

yl
2
τ√

1 + k2
yl

2
τ − 1

× dξ
dky

2π
. (E6)

The integration can be easily performed if Ly,� � lτ , i.e.,
when it is dominated by small values of ky :

|e|E = −|T |2
vF

2
(
ε

(T I )
F − εD

)
√

(pF vT I )2 − (εF − εD)2

�

Lx

δμ

vT IpF

. (E7)
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