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Non-Gaussian signatures and collective effects in charge noise affecting
a dynamically decoupled qubit
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The effects of a collection of classical two-level charge fluctuators on the coherence of a dynamically decoupled
qubit are studied. Distinct dynamics is found at different qubit working positions. Exact analytical formulas are
derived at pure dephasing and approximate solutions are found at the general working position, for weakly and
strongly coupled fluctuators. Analysis of these solutions, combined with numerical simulations of the multiple
random telegraph processes, reveal the scaling of the noise with the number of fluctuators and the number of
control pulses, as well as dependence on other parameters of the qubit-fluctuators system. These results can be
used to determine potential microscopic models for the charge environment by performing noise spectroscopy.
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I. INTRODUCTION

Charge noise is a quintessential decoherence channel in
many qubit systems including Josephson junctions, quantum
dots (QDs), and hybrid systems such as electron and nuclear
spins in nitrogen-vacancy centers in diamond [1]. Studies
of exchange-coupled electron spin qubits in GaAs QDs, in
particular, have shifted their attention from the nuclear to
the charge environment, as the important role of the latter
has been identified [2–4]. Recent works include design and
implementation of exchange-only three-spin qubits in a triple
QD that have better immunity against low-frequency electrical
noise [5], multielectron spin qubits with demonstrated reduced
exchange noise [6], and self-calibrated, optimized pulse
sequence [7] and asymmetric double dot geometry [8], both
tailored to mitigate charge noise for high-fidelity single-qubit
gates in singlet-triplet (S-T0) spin qubits. Charge noise was
also shown to cause relaxation in a single-electron spin qubit,
through the spin-orbit interaction [9].

Despite their key role in limiting the qubit coherence time
and gate fidelity, the physical origin of charge fluctuations is
still unclear. In superconducting devices, spurious tunneling
two-level systems were suggested to reside in the amorphous
dielectric covering the circuits, or in the dielectric forming
the tunneling barrier in the Josephson junction. Suggested
trap mechanisms in semiconductor devices include localized
states near gate electrodes inducing leakage currents, charge
traps near quantum point contacts, donor centers near the gate
surface, and localized switching charges in the doping layer.
One of the difficulties in interpreting noise measurements
is the inability to distinguish between the various and often
system-specific microscopic mechanisms that cause charge
fluctuations. While all of the above mechanisms fall into
either an Anderson-type model or a tunneling two-level
system model, their specific characteristics may lead to
very different qubit dynamics, with distinct sensitivity to
its working position. It is therefore imperative to establish
a theoretical framework that predicts the effects of charge
fluctuators on qubit dynamics, including the dependence of
noise characteristics on various parameters of the qubit and
its charge environment. The theory developed in this paper
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is aimed to bridge between microscopic modeling of the
charge environment and characteristic measurements of the
noise spectrum. We refer, for concreteness, to S-T0 spin qubits
in GaAs gate-defined double QDs [10], where charge noise
characterization [11–14] and spectroscopy measurements [15]
were previously reported, but our results are relevant to any
system afflicted with charge noise. For example, we expect
that charge noise will play a dominant role in Si, where the
hyperfine interaction strength is three orders of magnitude
smaller, due to reduced coupling to, and number of nuclear
spins, as compared with GaAs [16].

We model the charge environment with a collection of
nT two-level charge fluctuators (TLFs), each characterized
by a qubit-TLF coupling strength vi , and asymmetric mean
switching rates γ +

i (γ −
i ) from the upper state to lower

state (lower to upper). While quantum treatment of charge
fluctuators, coupled to a noninteracting electron reservoir, was
carried out before [17], in this study we treat the TLFs as
classical sources of random telegraph noise (RTN). This ap-
proach, commonly referred to as the spin-fluctuator model, is
typically justified when the TLFs couple more strongly to their
own environment than to the qubit (overdamped fluctuators)
[18,19]. In their study of the applicability of the classical
RTN model, Wold et al. determined more precisely that the
difference between the quantum and classical TLF models
depends on the ratio between the qubit-TLF coupling strength
and the TLF decoherence rate [20]. The latter was defined
by the authors as the rate at which the off-diagonal density
matrix elements decay in the basis where the equilibrium
density matrix is diagonal. In this context, we mention a recent
work by Trapani et al. that quantified the classical to quantum
transition using several nonclassicality criteria [21]. Using an
open-system approach, where a quantum TLF is coupled to a
stochastic classical field, the authors studied non-Markovian
effects and demonstrated that time correlations in the classical
environment enhance quantum coherence and may induce its
collapse and revival.

In our model, the qubit is endowed with control fields that
allow us to rotate its state around two perpendicular axes,
and perform dynamical decoupling (DD) through sequences
of π pulses. In the context of S-T0 spin qubits in gate-defined
QDs, rotation around the z axis is performed by electrostatic
control over the interdot bias that provides highly tunable
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FIG. 1. (Color online) Bloch sphere representation of qubit rota-
tions around an axis determined by the two control fields J and δh.

exchange coupling (J ) [22]. Nuclear polarization cycles, in
which spin polarization is exchanged between the electrons
and the nuclei, generate a hyperfine field gradient across the
dots δh, that provides qubit rotation around the x axis [23,24].
Other methods to generate local magnetic field gradients
were also demonstrated, including on-chip micromagnets [25].
Under these assumptions, the system Hamiltonian reads as

H =
(

� cos θ +
nT∑
i=1

viξi(t)

)
σz + � sin θσx, (1)

where � = 1
2

√
J 2 + δh2, θ = tan−1 (δh/J ), σj are the Pauli

spin matrices for the pseudospin states S and T0, and
ξi(t) = ±1 is a classical noise representing the ith random
telegraph process, switching between ±1 with average rates
γ ±

i . Throughout the paper, strong (weak) coupling refers to
vi � γ ±

i (vi � γ ±
i ) and has nothing to do with the energy

scale of the qubit control fields.
The qubit dynamics is crucially dependent on its working

position. Figure 1 provides a geometrical representation of the
qubit state, where we highlight two commonly used working
positions: J � δh (θ ≈ 0), referred to as pure dephasing, and
J � δh (θ → π/2), referred to as the optimal working point
(OP). For S-T0 qubits, stabilizing the field gradient by nuclear
state preparation is a relatively long process, and we assume
that δh is fixed throughout the experiment, thus, various
working points are accessed by tuning J . In this scenario, the
pure dephasing regime and OP are realized by positive interdot
bias (at or above the avoided singlet crossing) and a large
negative bias (where J approaches zero), respectively. At the
avoided crossing, the qubit sensitivity to charge fluctuations is
heightened and charge noise becomes dominant. This working
position is needed for fast z rotations or during two-qubit
operations, in order to achieve sizable capacitive coupling
between the two double dots. Recognizing the importance
of charge noise was a crucial step in the realization of a
controlled-PHASE gate between two S-T0 qubits, which became
possible by mitigating the noise using a spin-echo (SE) pulse
along the x axis [26]. While charge noise peaks at pure
dephasing, where the exchange interaction is strongest, it is
equally important to characterize its effects at or near the OP,
where it is envisioned that the qubit will need to maintain its
coherence for longer times.

The application of sequences of control pulses is essential
for removing quasistatic noise and extending coherence time.
Moreover, DD is valuable in experiments that use the qubit as
a noise spectrum analyzer, as the noise sensitivity is peaked at

f ≈ 1/τ , where τ is the time interval between control pulses.
This allows us to scan the noise spectrum by changing the
number of control pulses. Both of these aspects of DD were
studied experimentally [15,27–29] and theoretically for pure
dephasing [30] and at the OP [31].

In a previous paper, we studied the effects of a single TLF
on the qubit coherence under DD sequences of control pulses
[32]. Distinct qubit dynamics were found for different working
positions. Specifically, it was shown that at or near the optimal
point the qubit state exhibits a multiexponential decay, with
several decay rates whose weights are governed by the TLF
parameters. In contrast, at pure dephasing, within the relevant
parameter range, the qubit was found to decay with a single
rate associated with the TLF switching rate. In this paper, we
extend this work to treat TLF ensembles, providing scaling
of the noise with ensemble size and analyzing the resulting
qubit dynamics at different working positions. Throughout
the paper, we employ sequences of π pulses around the y axis,
which have been realized in several systems, including the S-T0

qubit, albeit with limited fidelity [23]. Although the efficacy of
control pulses in mitigating charge noise in the pure dephasing
regime is indifferent to their axis within the x-y plane, πy

pulses, used here, were shown to be more effective when
operating at a general position [32,33]. In addition, πy pulses
should be equally effective in correcting nuclear-induced
noise, as compared with the traditionally employed πz pulses.
We note that our theory can be applied straightforwardly to
analyze any sequence of composite pulses, such as the XY − 4
self-correcting protocol that has been suggested to be more
robust against pulse errors [34].

Since RTN is generally non-Gaussian, one cannot fully
characterize it using a noise spectrum, and a correct in-
terpretation of the noise characteristics from qubit signal
measurements must consider the non-Gaussian nature of the
noise. Here, we examine the validity range of the Gaussian
approximation, as the number of fluctuators is increased, and
its dependence on the number of control pulses. As current
experimental efforts are focused on more complicated QD
structures, such as two coupled double QDs [26,35] and
three spin qubits in triple dots [36–38], the resulting larger
devices are expected to have a noisier charge environment.
Understanding how qubit decoherence scales with the number
of TLFs is therefore important.

The paper is organized as follows. In Sec. II, we study the
case of pure dephasing, where exact analytical results are ob-
tained and their asymptotic behavior is analyzed. In Sec. III, we
treat a general working point, where both dephasing and dis-
sipative dynamics are expected, focusing on the optimal point
and considering separately weak and strong couplings. A sum-
mary of our work is provided in Sec. IV. In Appendix A, we
compare our exact results for pure dephasing with the results of
a cumulant expansion, allowing us to quantify non-Gaussian
behavior, whereas Appendix B details the calculation of the
qubit coherence factor at pure dephasing with two fluctuators.

II. PURE DEPHASING

Pure dephasing (θ = 0) applies strictly to δh = 0, but
our analysis holds also in the vicinity of this point, where
δh � J . The results given in this section apply, therefore, to
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the common experimental scenario where it is much easier
to stabilize the magnetic field gradient to a fixed value
throughout the measurement. We consider δh = 0.1 μeV,
which was experimentally demonstrated [24], and J = 4 μeV,
typically measured [15,22] and calculated [32] near the singlet
anticrossing.

A. Single fluctuator

The case of pure dephasing due to a single RTN source
was previously solved for free induction decay (FID) and spin
echo (SE) [18,39] and was extended to an N -pulse periodic
DD (PDD) for the case of symmetric fluctuator [33]. Here,
we reproduce these results using a simple procedure described
below and extend them to treat the more commonly used Carr-
Purcell-Meiboom-Gill (CPMG) protocol and an asymmetric
TLF with different switching rates between its states in each di-
rection (γ + �= γ −). Working at low temperatures as compared
with the TLF level splitting results in longer stays in the lower
state. Such asymmetric telegraphic signals were observed in
various systems, including tunnel junctions [40] and a single-
electron tunneling electrometer [41]. Furthermore, our general
results for asymmetric TLFs may be relevant in explaining
temperature-dependent noise spectroscopy measurements that
were recently performed on S-T0 qubits [15]. In this context,
we mention a recent theoretical work that focused on the
temperature dependence of qubit dephasing, induced by a TLF
bath. The authors considered several microscopic mechanisms,
including direct tunneling, cotunneling, and coupling of the
TLFs to a phonon bath [42]. While none of these mechanisms
were fully consistent with the experimental data by itself,
some agreement was found by adding an extrinsic dephasing
mechanism such as phonon coupling [43], acting directly on
the qubit.

Since both the qubit control field and its coupling to the
TLF induce precession about the z axis, the dynamics is fully
accounted by a single coordinate. We take the qubit initial
state to be along the x axis (equal superposition of its up and
down states) and quantify the qubit coherence by calculating
its signal decay function χ (t), defined as [30,44]

χ (t) =
∣∣∣∣ 〈ρ+−(t)〉
〈ρ+−(0)〉

∣∣∣∣ = 〈eiφ〉, (2)

where ρ+− is the off-diagonal element of the qubit density
matrix, and φ is the random phase accumulated due to the
qubit coupling with the TLF. The signal decay is calculated
by dividing the probability distribution to partial probabilities
p(φ,t) = p+(φ,t) + p−(φ,t), to accumulate phase φ while the
TLF is in the up or down state [33,45]:

χ (t) =
∫

dφ p(φ,t)eiφ. (3)

The corresponding phase factors χ±, averaged over switching
histories, are found by converting the rate equations for
p±(φ,t) to equations for χ (t) = χ+(t) + χ−(t) and δχ (t) =
χ+(t) − χ−(t):(

χ̇
˙δχ

)
= M1

(
χ

δχ

)
, M1 =

(
0 −iv − δγ

−iv −2γ

)
. (4)

Here, γ = (γ + + γ −)/2 is the average TLF switching rate and
δγ = γ + − γ − is the switching asymmetry arising from the
TLF’s level splitting �Et , according to γ −/γ + = e−�Et/kBT .
The initial conditions for χ and δχ are provided by those for
the partial probabilities:

p±(0) = γ ∓

γ + + γ − . (5)

After a πy (or πx) pulse, the qubit evolves under

M2 =
(

0 iv − δγ

iv −2γ

)
. (6)

Writing M2 = LM1L, where L = diag(−1,1), it is convenient
to define the qubit evolution operator as

T =
√

eM2τ eM1τ = LeM1τ , (7)

where τ is the time interval between pulses and T 2 is the
qubit evolution under one full control cycle. For the PDD
sequence τi ≡ τ = t/(N + 1) for 1 � i � N + 1, whereas
for the CPMG sequence τi ≡ τ = t/N for 2 � i � N and
τ1 = τN+1 = τ/2. Here and throughout the paper, N is the
number of control pulses. Assuming the qubit initially lies
on the equator, its signal decay after N pulses is calculated
from

χPDD(t) = (1 0)T N+1

(
1

− δγ

2γ

)
(8)

for a PDD sequence and

χCP(t) = (1 0)LN−1T1/2T
N−1T1/2

(
1

− δγ

2γ

)
(9)

for a CPMG sequence, where T1/2 is the evolution operator
during the first and last, τ/2, pulse intervals. We find χPDD(t)
and χCP(t) by diagonalizing T :

ST S−1 =
(

λ− 0
0 λ+

)
, (10)

where the eigenvalues of T are found to be

λ± =
√

A ±
√

A + |μ|2,
A ≡ (1 + μ2

I

)
sinh2 γμRτ + (1 − μ2

R

)
sin2 γμI τ, (11)

and the columns of S−1 are the corresponding eigenvectors. In
Eq. (11), μR and μI are the real and imaginary parts of

μ =
√

1 −
(

v

γ

)2

+ 2ivδγ

2γ 2
. (12)

The solutions for the qubit decay under PDD and CPMG
sequences are found as

χPDD(t) = e−γ t

|μ|N+1

{
λN+1

+ − λN+1
−

λ2+ − λ2−

[(
1 + μ2

I

)
μR sinh 2γμRτ

+ (1 − μ2
R

)
μI sin 2γμI τ

]+ λN+1
+ + λN+1

−
2(λ2+ + λ2−)

}
(13)
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and

χCP(t) = e−γ t

|μ|N+1

{
λN

+ − λN
−

λ+ − λ−

[(
1 + μ2

I

)
cosh γμRτ

− (1 − μ2
R

)
cos γμI τ

]+ λN
+ + λN

−
λ+ + λ−

× [(1 + μ2
I

)
μR sinh γμRτ

+ (1 − μ2
R

)
μI sin γμI τ

]}
. (14)

We note that Eqs. (13) and (14) coincide for N = 1, when
time intervals are taken as prescribed (τ = t/2 for PDD and
τ = t for CPMG). In this case, both equations reproduce the
previously reported spin-echo (SE) decay [32]

χSE(t) = e−γ t

2|μ|2
[(

μ2
I + 1

)∑
±

(1 ± μR)e±γμRt

+ (μ2
R − 1

)∑
±

(1 ± iμI )e±iγμI t

]
. (15)

For a symmetric fluctuator, γ + = γ − = γ , realized with
zero TLF level splitting, or at high temperature, μ is either real
or pure imaginary. The above results simplify and for either
real or imaginary μ (corresponding to v/γ < 1 or v/γ > 1,
respectively) they reduce to

χ
sym
PDD(t) = e−γ t

2μN+1

[
μ cosh γμτ√

sinh2 γμτ + μ2
(λN+1

+ − λN+1
− )

+ (λN+1
+ + λN+1

− )

]
, (16)

previously reported [33], and

χ
sym
CP (t)

= e−γ t

2μN

[
cosh γμτ − v2/γ 2

μ
√

sinh2 γμτ + μ2
(λN

+−λN
− )+(λN

++λN
−)

]
,

(17)

with

λ
sym
± = sinh γμτ ±

√
sinh2 γμτ + μ2. (18)

The above exact results should be compared with the widely
used Gaussian approximation, in which the signal decay for
an arbitrary control sequence can be expressed by the spectral
density of the noise S(ω) and a so-called filter function F (ωt)
as [30]

χ (t) = e−〈�2(t)〉/2,

〈�2(t)〉 =
∫ ∞

−∞
S(ω)

F (ωt)

ω2
dω. (19)

The power spectrum of a single RTN source reads as [46]

S(ω) = v2

2π

γ +γ −

γ

1

ω2 + (2γ )2
, (20)

where γ = (γ + + γ −)/2 is the average TLF switching rate.
Focusing on the CPMG sequence, the filter function is [30]

FCP(z) = 32
sin4 z

4N

cos2 z
2N

(cos z ± 1), (21)

and we find a closed-form expression for the second moment:

〈
�2

CP(t)
〉 = v2γ +γ −

γ 4

[
γ t − N tanh

γ t

N

−1

2
(1 ± e−2γ t )

(
1 − sech

γ t

N

)2
]
, (22)

where the upper (lower) sign in the above two equations
corresponds to odd (even) number of pulses. Equation (22)
reduces to the Gaussian approximation result previously
reported for SE (setting N = 1) [19,44] as well as to the short-
and long-time asymptotic behavior for large number of pulses,
given by Cywiński et al. [30]. The Gaussian result can be
seen as the first nonvanishing term in a cumulant expansion,
whose nth term is proportional to (v/γ )n, thus our exact
result, Eqs. (17) and (18), should converge to the Gaussian
expression in the weak coupling limit. In Appendix A, we show
that explicitly by calculating the next nonvanishing (fourth)
cumulant. These higher-order noise correlators quantify the
non-Gaussian contributions to qubit dephasing under a given
pulse sequence.

Figures 2(a) and 2(b) depict qubit dephasing due to a single
weakly and strongly coupled TLF, calculated using the exact
result (17) and the Gaussian approximation (22) for SE and
16-pulse CPMG. The Gaussian result holds well throughout
the entire decay time scale for weak coupling [dashed and solid
lines coincide in Fig. 2(a)], whereas pronounced non-Gaussian
behavior develops in the strong coupling case, dominating the
qubit signal. As the number of pulses increases, the deviations
from Gaussian behavior are pushed to longer times, where
their effect on the qubit decay becomes less significant.

B. Many fluctuators

Charge fluctuators generate qubit dephasing by shifting
its energy levels, thereby inducing random phase kicks to
its two states [47]. Denoting the sum of the contributions
from all TLFs as vnT

(t) =∑nT

i=1 viξi(t), the eigenvalues of
the Hamiltonian (1) read as

�±(t) = ±
√

�2 + v2
nT

(t) + 2�vnT
(t) cos θ. (23)

At pure dephasing (θ = 0), the coupling of the qubit to the
TLFs is linear, as seen by the linearity of the eigenvalues in
vnT

. As a result, the extension of the single-TLF results to any
number of fluctuators is done straightforwardly by multiplying
all coherence factors:

χ (t) =
nT∏
i=1

χi(t). (24)

It is instructive to obtain this result by extending the single-
TLF formulation, outlined in the previous section to two or
more TLFs. This is done in Appendix B, which also serves to
illustrate our approach to solve the nT > 1 problem that we
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FIG. 2. (Color online) Qubit signal decay vs time for SE and 16-
pulse CPMG at pure dephasing, calculated using the exact solution
(17) (solid lines) and the Gaussian approximation (22) (dashed lines).
(a) Single weakly coupled TLF; (b) single strongly coupled TLF.
(c) , (d) Dephasing times vs the number of control pulses for 1, 5,
and 20 identical TLFs at weak and strong coupling. Symbols (solid
lines) correspond to the exact solution (Gaussian approximation). The
short-time limit (25) is also shown by dotted lines (notice that the latter
completely coincides with the Gaussian approximation in the strong
coupling regime). TLF parameters are γ = 0.1 μeV, v = 0.01 μeV
for (a) and (c), and γ = 5 neV, v = 0.2 μeV for (b) and (d).

later apply to the general working point, where the effects of
the fluctuators do not simply factor out. In the Gaussian limit,
Eq. (24) leads to a qubit decay rate that is a sum over nT decay
rates, weighted by TLF parameter distribution [48].

Our exact results allow us to extend previous studies of
free induction and spin echo [49] by analyzing the general
conditions for the onset of non-Gaussian qubit dynamics.
Focusing on symmetric TLFs under CPMG, we consider
various asymptotic limits of Eq. (24). First, at short time,
γi,vi � t−1:

− ln χCP −→ t3

6N2

nT∑
i=1

γiv
2
i , (25)

suggesting similar time and N dependence as that of a
Gaussian noise with a soft (ω2) cutoff. Similarly, we find the
weak coupling (vi,t

−1 � γi) and strong coupling (γi,t
−1 �

vi) asymptotic behaviors as

− ln χCP −→
{

t
2

∑nT

i=1
v2

i

γi
,

γi t

N
� 1

t3

6N2

∑nT

i=1 γiv
2
i ,

γi t

N
� 1

(26)

and

− ln χCP −→
{∑nT

i=1

(
γit − Nγi

vi
sin vi t

N

)
, vi t

N
� 1

t3

6N2

∑nT

i=1 γiv
2
i ,

vi t

N
� 1

(27)

respectively. These asymptotes elucidate the interplay between
TLF parameters, ensemble size, and number of control pulses,
in determining the qubit dephasing dynamics. First we observe
that both the short- and long-time limits for the weak coupling
case can be obtained directly from the Gaussian result (22),
reaffirming the validity of the Gaussian approximation for
weakly coupled TLFs. In contrast, in the strong coupling case,
only the short-time limit converges to the short-time Gaussian
result, demonstrating the onset of non-Gaussian effects at
longer times [see Fig. 2(b)].

We confirm as expected that the noise becomes Gaussian
with sufficiently large number of control pulses [31,32]. More
precisely, the Gaussian limit is reached when the pulses
are sufficiently frequent, i.e., when τ = t/N � γ −1,v−1,
corresponding to the short-time asymptotic. Lastly, we expect
that the Gaussian limit will be reached with fewer control
pulses as the number of TLFs increases, as it is known that
1/f (Gaussian) noise can be generated from a large ensemble
of TLFs with a log-uniform distribution of γi [45,50]. This is
demonstrated in Figs. 2(c) and 2(d) for identical TLFs, where
we depict qubit dephasing time T2, defined as signal drop
time to 50%. For a single strongly coupled TLF, deviations
from Gaussian behavior are observed for any reasonable
number of control pulses, whereas Gaussianity is completely
restored with 20 TLFs. In the weak coupling regime, where the
Gaussian result holds for any number of pulses and TLFs for
the chosen parameters, the TLFs switch many times between
control pulses and we are in the motional narrowing regime,
where the long-time limit holds (compare with the short-time
limit result depicted by dotted lines). Here, increasing N has
little effect on the qubit coherence, up to unrealistic number of
pulses [the weak coupling long-time limit given in Eq. (26) is
strictly independent of N , but subleading contributions have
a mild N dependence, as seen in Fig. 2(c)]. Alternatively,
increased number of TLFs will result in a shorter time scale for
the qubit decay and a departure from the motional narrowing
regime, accompanied with a great benefit from increasing the
number of the control pulses. For the chosen parameters, we
find that the short-time limit is reached for 200 TLFs with
N = 20.

To further demonstrate the implications of these results, we
consider in Fig. 3 the impact of background TLFs added to a
single weakly or strongly coupled TLF. We add 20 identical
TLFs, which are either 100 times slower (γ ′ = 0.01γ ) or
10 times weaker (v′ = 0.1v) than the main TLF, such that
the additional background contribution is comparable in the
short-time limit, where the qubit decay rate is proportional to
γ v2. In the following, we refer to slow and weak background
TLFs, as they relate to the main TLF parameters γ and v. In
Figs. 3(a) and 3(c), we show the effect of adding 20 slow (green
dashed lines) or weak (red dotted lines) TLFs to a single weakly
coupled TLF, under SE and 16-pulse CPMG, respectively.
Without background TLFs, we are in the long-time regime,
where increased number of control pulses has little effect [see
Fig. 2(c)]. In this case, the contribution of the additional weak
TLFs to qubit decay is relatively small since they are also
motional narrowed, and the resulting combined decay rate
increases by only 20% (v2 + 20v′2 = 1.2v2). In contrast, the
slow background TLFs have a short-time dynamics, resulting
in a dominant contribution to qubit dephasing. The 1/N2
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FIG. 3. (Color online) Qubit dephasing due to a single TLF and
20 additional background fluctuators. In each case, we consider
identical slow (γ ′ = 0.01γ, v′ = v) and weak (γ ′ = γ, v′ = 0.1v)
background TLFs. (a), (c) Main TLF is weakly coupled (γ = 1 μeV,
v = 0.1 μeV) for SE and 16-pulse CPMG. (b), (d) Main TLF is
strongly coupled (γ = 0.01 μeV, v = 0.1 μeV) for SE and 16-pulse
CPMG.

dependence of the decay rate in the short-time limit reduces the
effect of the weak background TLFs as N increases [compare
the green dashed lines in Figs. 3(a) and 3(c)].

Turning to the case of a strongly coupled TLF, depicted
in Figs. 3(b) and 3(d), the importance of slow and weak
background TLFs is reversed. Here, the time scale of the qubit
decay is set by vt/N so that for SE, the contribution of the
main TLF can be approximated by the long-time asymptote,
with its characteristic plateaus [see Eq. (27)]. The additional
contribution from slow TLFs is also adequately given by the
long-time result, generating a small effect. Weak background
TLFs, on the other hand, exhibit a short-time behavior inducing

a large effect. Again, the short-time 1/N2 dependence of the
decay rate results in a smaller effect of the weak background
TLFs with increased number of pulses [compare red dotted
lines in Figs. 3(b) and 3(d)], thus, we conclude that at pure
dephasing the effects of both slow and weak background TLFs
is small when the main TLF is strongly coupled to the qubit,
and a sufficiently large number of control pulses is being used.

III. GENERAL WORKING POINT

Unlike the case of pure dephasing, there is no exact
analytical result for qubit decoherence due to RTN at the
general working point, where the qubit is expected to undergo
both dephasing and dissipative dynamics. Previous works
studied the weak and strong coupling limits of a single TLF
at the OP [33] and at a general working position [32]. In
this section, we extend these studies to treat any number of
TLFs. The resulting coupled equations are generally solved
numerically, but we are able to obtain analytical results for
the weak and strong coupling regimes. In the following we
explain how to extend the single TLF case to an ensemble of
TLFs by outlining the necessary steps for the case of two TLFs.
The two-TLF solution is then generalized to any number of
fluctuators. In order to reduce clutter, we present and solve the
equations for the case of symmetric TLFs, but our simulations
implement the more general formulation. The procedure is
described in greater detail for the single-TLF case in Ref. [32].

Considering the Hamiltonian (1), with nT = 2, we can write
it as H(t) = Bmn · σ , where σ is the vector of Pauli matrices,
and the time dependence is implied by evolution under any of
the four effective fields:

Bmn = (� sin θ,0,� cos θ + mv1 + nv2),

m,n = {+,−} (28)

corresponding to the four possible two-fluctuator states. At
any given time, the qubit Bloch vector rotates around one of
these fields and can thus reach any point on the Bloch sphere.
We denote p(r,t) the probability to reach point r = (x,y,z)
on the Bloch sphere at time t , and divide it into four partial
probabilities p(r,t) =∑m,n pmn(r,t) to reach the point r when
the two TLFs are in states m and n. In analogy to Eq. (B1) in
Appendix B for the pure dephasing case, we have

p++(r,t + τ ) = (1 − γ1τ )(1 − γ2τ )p++(U−1
++r,t) + (1 − γ1τ )(γ2τ )p+−(U−1

+−r,t)

+ (γ1τ )(1 − γ2τ )p−+(U−1
−+r,t) + (γ1τ )(γ2τ )p−−(U−1

−−r,t), (29)

and similar equations for the other three partial probabilities. Here, Umn = eτBmn·R rotates the qubit around the Bmn field, where
R = (Rx,Ry,Rz) are three-dimensional (3D) rotation matrices [33] such that

(Bmn · R)r = � sin θ (0, − z,y) + (� cos θ + mv1 + nv2)(−y,x,0).

Taking an infinitesimal time step and keeping only linear terms in τ , we find the following rate equations for pmn:

ṗ++ = −(γ1 + γ2)p++ + γ1p−+ + γ2p+− − [� sin θ (y∂z − z∂y) + (� cos θ + v1 + v2)(x∂y − y∂x)]p++
ṗ+− = −(γ1 + γ2)p+− + γ1p−− + γ2p++ − [� sin θ (y∂z − z∂y) + (� cos θ + v1 − v2)(x∂y − y∂x)]p+−
ṗ−+ = −(γ1 + γ2)p−+ + γ1p++ + γ2p−− − [� sin θ (y∂z − z∂y) + (� cos θ − v1 + v2)(x∂y − y∂x)]p−+
ṗ−− = −(γ1 + γ2)p−− + γ1p+− + γ2p−+ − [� sin θ (y∂z − z∂y) + (� cos θ − v1 − v2)(x∂y − y∂x)]p−−. (30)
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Next, we translate these rate equations to a set of 12 coupled equations for the partial Bloch vector components, evolving under
the fields Bmn, defined as

rmn =
∫

dr pmn(r,t)r. (31)

In analogy with the concept of partial probabilities, defined below Eq. (3), rmn indicate the contributions to the coordinates of
the qubit Bloch vector, coming from the four two-TLF states. Finally, following our treatment of the pure dephasing case [see
Eq. (B3)], we construct combinations of rmn:

r(t) = r++(t) + r+−(t) + r−+(t) + r−−(t)

r1(t) = r++(t) + r+−(t) − r−+(t) − r−−(t)

r2(t) = r++(t) − r+−(t) + r−+(t) − r−−(t)

r3(t) = r++(t) − r+−(t) − r−+(t) + r−−(t), (32)

where the first vector r(t) is the actual (full) Bloch vector. These particular combinations are chosen so that the resulting set
of equations can be easily decoupled into two blocks when θ = 0. Using Eqs. (30)–(32), we find the following set of coupled
equations for (r,r1,r2,r3): ⎡

⎣ẋ = −� cos θy − v1y1 − v2y2

ẏ = � cos θx + v1x1 + v2x2 − � sin θz

ż = � sin θy⎡
⎣ẋ1 = −2γ1x1 − � cos θy − v1y − v2y3

ẏ1 = −2γ1y1 + � cos θx1 + v1x + v2x3 − � sin θz1

ż1 = −2γ1z1 + � sin θy1⎡
⎣ẋ2 = −2γ2x2 − � cos θy2 − v1y3 − v2y

ẏ2 = −2γ2y2 + � cos θx2 + v1x3 + v2x − � sin θz2

ż2 = −2γ2z2 + � sin θy2

(33)

⎡
⎣ẋ3 = −2(γ1 + γ2)x3 − � cos θy3 − v1y2 − v2y1

ẏ3 = −2(γ1 + γ2)y3 + � cos θx3 + v1x2 + v2x1 − � sin θz3

ż3 = −2(γ1 + γ2)z3 + � sin θy3.

Equations (33) are conveniently written in a matrix form

k̇ = M1k,

with the 12 − D vector:

k = (y,z,x1,x2,y3,z3; x,x3,y1,y2,z1,z2). (34)

After a control πy pulse, the qubit evolves with M2, found by substituting � → −�,vi → −vi in M1, which can be written as

M2 = LM1L,

where L = diag(−1,1,1,1,−1,1; 1,1,−1,−1,1,1). The solution for the time-dependent Bloch vector components is found for
either PDD or CPMG protocols, by calculating the eigenvalues of the evolution operator for one full control cycle T = LeM1τ

and their respective weights for a given DD sequence, as detailed in Sec. II for the pure dephasing single-TLF case.
At the optimal point, the above set of 12 equations decouples to two blocks separated by the semicolon in Eq. (34), hence

the particular coordinate ordering. Here and throughout the rest of the paper, we assume the qubit is initially prepared along the
z axis. At the OP, this means there is no x dynamics and we only need to consider the first block kOP = (y,z,x1,x2,y3,z3), for
which the dynamics is determined by

MOP
1 =

⎛
⎜⎜⎜⎜⎜⎝

0 −� v1 v2 0 0
� 0 0 0 0 0

−v1 0 −2γ1 0 −v2 0
−v2 0 0 −2γ2 −v1 0

0 0 v2 v1 −2(γ1 + γ2) −�

0 0 0 0 � −2(γ1 + γ2)

⎞
⎟⎟⎟⎟⎟⎠. (35)

The diagonalization of the evolution operator T can be done numerically, providing a solution of the time-dependent Bloch
vector for a given pulse sequence. By induction, it is straightforward to extend the above analysis to the general case with
nT fluctuators, thus, we have obtained all the necessary ingredients for an exact solution to the problem with any number of
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fluctuators. We note, however, that matrix size grows exponen-
tially as 3 × 2nT , and above nT = 10, exact diagonalization is
computationally intensive. For larger nT , we find that direct
simulation of the multiple RTN is numerically more efficient,
although it requires increasing number of random sampling
as nT increases. The above limitations motivate us to seek
approximate analytical solutions, which are obtained for the
weak and strong coupling regimes, providing powerful tools
that are particularly useful for larger ensembles of fluctuators.
In the following subsections we first present single-TLF
analytical solutions, subsequently building on them to derive
the multi-TLF solutions.

A. Analytical solutions for weak coupling

Here, we present analytical solutions for the case of weakly
coupled TLFs, vi � γi ∀ i, accurate to second order in vi/γi .
For the PDD sequence we detail an explicit multi-TLF solution
limited to the OP (θ = π/2) whereas the solution for the more
commonly used (and more effective) CPMG sequence is good
for arbitrary qubit working point. We assume that the qubit
state is prepared along the z axis. Notice that this choice affects
only the weights of the various decay rates in the solution, as
detailed in the following. The perturbative solutions of the
coupled set (33) for the two-TLF case, and of larger sets of
equations, when more than two TLFs are present, rely on
the single-TLF solution. In order to allow us to introduce the
many-TLF solutions in a self-contained and accessible manner,
we first present the solutions for the single-TLF case.

1. Single fluctuator

The single-TLF problem was worked out in Ref. [32] for a
rotated reference frame whose axes are the qubit eigenstates.
In the rotated frame, the qubit evolves under a static field in the
z axis, with noise in both x and z axes. Here and throughout
the paper, all our solutions are given in the original nonrotated
frame, avoiding confusion with the components of the initial
qubit state and control pulses rotation axis.

For a qubit at general working position, coupled to a single
TLF, the evolution operator for a full control cycle T is given
by a 6 × 6 matrix. Performing a second-order perturbation in
v/γ , we can analytically diagonalize T . The solution for the
Bloch vector components can be generally written as

j (t) =
6∑

i=1

w
j

i e
−�(i)t , j = x,y,z (36)

where the decay rates are found from the eigenvalues of T ,
�(i) = − ln |λi |/τ , and w

j

i is the weight of the ith decay rate
in the solution of the j th component. These weights are found
from the eigenvectors of T , analogously to Eq. (10).

For the PDD sequence, three of the six eigenvalues have
nonzero weights in the solution, and the corresponding decay
rates are

�(1) = γ v2

�2 + 4γ 2
[(1 − A − B1) sin2 θ + C cos2 θ ],

�(2,3) = γ v2

�2 + 4γ 2
[(2 − B1 − B2) sin2 θ − F

±
√

F 2 + D2 sin2 2θ ], (37)

where the different functions of τ are given by

A = �2 − 4γ 2

�2 + 4γ 2
sinc τ̃ ,

B1 = 8γ 2

�2 + 4γ 2
cos2 τ̃

2

tanh γ τ

γ τ
,

B2 = 8γ 2

�2 + 4γ 2
sin2 τ̃

2

coth γ τ

γ τ
,

(38)

C = �2 + 4γ 2

2γ 2

(
1 − tanh γ τ

γ τ

)
,

D = cos
τ̃

2

tanh γ τ

γ τ
− sinc

τ̃

2
,

F = 1

2
[(1 − A − B1) sin2 θ − C cos2 θ ],

and sinc τ̃ ≡ sin τ̃ /τ̃ , τ̃ ≡ �τ being the normalized time
interval between pulses. With the qubit initially prepared along
the z axis, the weights of the three rates in the PDD solution
for the longitudinal (z) and transverse (y, x) components read
as

wz
1 = sin2 θ sin2 τ̃

2
,

wz
2,3 = 1

2

[
sin2 θ cos2 τ̃

2

(
1 ∓ F√

F 2 + D2 sin2 2θ

)

+ cos2 θ

(
1 ± F√

F 2 + D2 sin2 2θ

)

± sin2 2θ cos
τ̃

2

D√
F 2 + D2 sin2 2θ

]
, (39)

w
y

1 = −1

2
sin θ sin τ̃ ,

w
y

2,3 = 1

4
sin τ̃

(
1 ∓ F√

F 2 + D2 sin2 2θ

)
sin θ

± D cos θ sin 2θ

2
√

F 2 + D2 sin2 2θ
sin

τ̃

2
, (40)

wx
1 = −1

2
sin 2θ sin2 τ̃

2
,

wx
2,3 = 1

4
sin 2θ

[
sin2 τ̃

2
± F√

F 2 + D2 sin2 2θ

(
1 + cos2 τ̃

2

)]

∓ D sin 4θ

4
√

F 2 + D2 sin2 2θ
cos

τ̃

2
. (41)

These results simplify at the OP (θ = π/2), where we find two
distinct rates:

�(1)(θ = π/2) = γ v2

�2 + 4γ 2
(1 − A − B1),

�(2)(θ = π/2) = γ v2

�2 + 4γ 2
(1 + A − B2), (42)
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and the relevant Bloch vector components read as

zOP
PDD(t) = sin2 τ̃

2
e−�(1)t + cos2 τ̃

2
e−�(2)t , (43)

yOP
PDD(t) = 1

2
sin τ̃

(
e−�(2)t − e−�(1)t

)
. (44)

Turning to the CPMG case, only two eigenvalues have
nonzero weights with corresponding decay rates [51]:

�̃(1) = γ v2

�2 + 4γ 2

[
(1 + A − B2) sin2 θ

+ (C + 2D) cos2 θ
]
,

�̃(2) = γ v2

�2 + 4γ 2
(2 − B1 − B2 + 2D) sin2 θ, (45)

where the different functions are given by Eqs. (38). The
associated weights in the longitudinal component read as

wz
1 = sin2 θ,

wz
2 = cos2 θ. (46)

At the OP, there is a single decay rate �̃(1) = �(2). Since �(1)

is always larger than �(2), these results reaffirm the superior
performance of the CPMG protocol. This improvement is more
pronounced for slow TLFs, γ � �, for which �(1) � �(2).
As one moves away from the OP, the C term becomes the
dominant contribution in the decay rates, a tendency that is
more pronounced for slow TLFs. Since this term is present
in both PDD and CPMG decay rates, the CPMG advantage is
largely lost outside the OP.

The dynamics of the transverse components is typically less
pronounced for CPMG as compared with PDD since leading
terms in v/γ are canceled. Performing a calculation analogous
to the one outlined in Eq. (9), we find that one cannot neglect
the small contributions from the 2γ decay rates [52], as was
done for the z components, requiring us to work with the
full 6 × 6 matrices. Here, we focus on the OP, for which a
qubit initially prepared along the z axis has no x dynamics,
and dissipative dynamics is manifested only through the y

component, allowing us to consider smaller 3 × 3 matrices.
The relevant decay rates are thus �(1),�(2), given in Eqs. (42),
and 2γ , and the y(t) component is found by⎛

⎝ y

z

δx

⎞
⎠ = L̃N−1T1/2T

N−1T1/2

⎛
⎝0

1
0

⎞
⎠, (47)

where T and T1/2 are the evolution operators during τ

and τ/2 pulse intervals, respectively (see Sec. II A), and
L̃ = diag(±1,1,1), with the upper (lower) sign corresponding
to odd (even) number of pulses. We note that while z(t) is
unaffected by L̃, even-odd effects do appear in the transverse
component, as demonstrated in the following. Keeping terms
to second order in v/γ , we find

yOP
CP (t) = w̃ye

−�(1)t − τ

4
sin

τ̃

2

(
�

(2)
1/2 − �

(1)
1/2

)
×[(−1)N+1e−�(2)t + e−�(1)t

]
, (48)

where

w̃y = 2γ v2

(�2 + 4γ 2)2

(
1 − cos τ̃ /2

cosh γ τ

)(
� − 2γ

sin τ̃ /2

sinh γ τ

)
.

(49)
In Eq. (48), �

(j )
1/2 refer to decay rates [Eqs. (42)], evaluated

with τ → τ/2. For an even number of pulses, the second term
in Eq. (48) is negligible, leading to weaker qubit dissipation
and improved performance, as compared with the case of odd
number of pulses.

2. Two or more fluctuators

Considering first the two-TLF case at the OP, we apply
the same perturbative approach in diagonalizing the evolution
operator T , with M1 given by Eq. (35). Out of the six
eigenvalues obtained for T , we find, like in the single-TLF
case, that for PDD only two have nonzero weights in the
solution. Initializing the qubit state along the z axis, the qubit
signal decay along the longitudinal axis reads as

zOP
PDD(t) = sin2 τ̃

2
e−(�(1)

1 +�
(1)
2 )t + cos2 τ̃

2
e−(�(2)

1 +�
(2)
2 )t .

Here, τ̃ ≡ �τ , and the decay rates �
(j )
i are the single-TLF rates

given by Eqs. (42), where the subscript i denotes quantities
evaluated with the ith TLF parameters γi,vi .

At the OP, the two-TLF solution can be extended by
induction to the general nT case, and it can be shown that
the two-rate structure is retained, with all other eigenvalues
having no weight in the final solution. The weights of the
remaining two rates are independent of the TLF parameters,
allowing us to write the general nT solution as [53]

zOP
PDD(t) = sin2 τ̃

2
e−�(1)t + cos2 τ̃

2
e−�(2)t ,

�(j ) ≡
nT∑
i=1

�
(j )
i , j = 1,2. (50)

Outside the optimal point, there are three single-TLF rates
given in Eqs. (37), and their TLF-dependent weights for PDD
[Eqs. (39)] do not allow us to simply group them in the
multi-TLF case, as was done in Eq. (50). Indeed, examining
the weights of the various eigenvalues in the multi-TLF PDD
solution outside the optimal point, we find that the number
of contributing terms grows exponentially with nT , and the
general analytical solution is intractable.

In contrast, the single-TLF CPMG solution [Eqs. (45) and
(46)] includes only two rates with weights that are independent
of TLF parameters, allowing us to extend the solution to the
nT case at an arbitrary working point:

zCP(t) = sin2 θe−�̃(1)t + cos2 θe−�̃(2)t ,

�̃(j ) ≡
nT∑
i=1

�̃
(j )
i , j = 1,2 (51)

where we use a tilde to denote the CPMG rates, which are
different from the PDD rates in the general working point
[compare Eqs. (37) with Eqs. (45)]. At the OP, this solution
reduces to a single decay rate �̃(1) = �(2). Inspecting these
solutions, we observe that they are, in general, not factorizable
to the single-TLF solutions, as was the case at pure dephasing
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FIG. 4. (Color online) Qubit dephasing due to four identical
weakly coupled TLFs under 10-pulse CPMG. Both exact (solid blue
lines) and product of single-TLF solutions (dashed red lines) are
shown. (a), (b) Longitudinal (z) signal decay at the optimal point
(J = 0) and at θ = π/4 (J = δh = 0.1μeV), with γi = 0.2μsec−1

and vi = 2 neV. (c), (d) Corresponding T2 time dependence on
the ratio γ /�, where v/γ is kept constant (maintaining weak
coupling) by simultaneously sweeping γ and v. Also included are
slow-TLF (dotted green lines) and fast-TLF (dash dotted black lines)
approximations, discussed in the main text.

[Eq. (24)]. The extent to which the exact solution deviates from
the factorized single-TLF solutions,

∏nT

i=1 zi(t), indicates the
role of collective effects within the fluctuator bath in the qubit
dynamics. In other words, it allows us to quantify to what
extent does qubit dephasing due to one fluctuator depend on
the presence of other fluctuators.

Following Ref. [47], we explain these collective effects by
recalling the nonlinear dependence of the Hamiltonian eigen-
values in the qubit-TLF couplings [Eq. (23)]. At short times,
γ t � 1, these eigenvalues can be expanded to include linear
and quadratic coupling terms, each resulting in a contribution
to the qubit dephasing [31,50]. As one approaches the OP, the
linear coupling contribution, which is proportional to cos θ

[see Eq. (23)] becomes smaller, making the contribution of
the quadratic coupling dominant. The physical explanation to
the nonlinear contribution is that the OP for one fluctuator
is no longer well defined in the presence of other TLFs,
thus, although the TLFs are independent RTN sources, their
contributions to the qubit dephasing are not. Outside pure
dephasing, slow fluctuators can thus play an important role
by introducing quasistatic changes to the OP location, thereby
enhancing the effects of other fluctuators. At longer times,
qubit dephasing can no longer, in general, be split into linear
and quadratic contributions, and one needs to evaluate it from a
single nonlinear coupling term, but the qualitative picture given
above holds true, as demonstrated by the results following.

In Fig. 4(a), we plot the longitudinal (z) Bloch vector
component at OP, subjected to four identical weakly coupled
TLFs under 10-pulse CPMG. The figure shows the full matrix
diagonalization solution (blue solid line) and an approximate

factorized solution (red dashed line). As expected for CPMG
at OP, where dephasing is governed by a single decay rate, the
two solutions are identical. In contrast, the PDD solution (not
shown), which includes two decay rates, factorizes only for
slow TLFs, γi � �, where the two rates are approximately
identical.

It is instructive to examine the asymptotic behavior of these
solutions for slow and fast TLFs. For slow TLFs, satisfying
max(γi) � �, PDD and CPMG perform the same with a single
decay rate, independent of the number of control pulses. The
resulting dephasing time is

T
ST,OP

2 ≈
(

nT∑
i=1

γiv
2
i

�2 + 4γ 2
i

)−1

ln 2
Id.TLFs−→ �2 + 4γ 2

γ v2nT

ln 2,

(52)

where we included the simplified result for nT identical TLFs.
For fast TLFs, min(γi) � �, we expand �(2) in Eqs. (42) by
taking γ τ � 1 and �τ � 1. The resulting dephasing time is

T
FT,OP

2 ≈
[

3N2 ln 2

2�2
∑

i v
2
i γ

3
i /
(
�2 + 4γ 2

i

)2
]1/3

Id.TLFs−→
[

3N2 ln 2(�2 + 4γ 2)2

2�2v2γ 3nT

]1/3

, (53)

and we recover the N2/3 power law predicted [30,32] and
observed [29,54] in previous works. The dependence of T2

times on the TLF switching rate γ (identical for all four TLFs)
is depicted in Fig. 4(c), where the TLF coupling strength v is
swept along with γ to maintain a constant v/γ ratio within the
weak coupling regime. The figure shows the asymptotes (52)
and (53), and the factorized single-TLF solution, identical to
the exact solution for CPMG at OP.

Outside the OP, the CPMG solution includes two compara-
ble but nonidentical decay rates, thus it is no longer factorizable
and collective effects begin to show up, as demonstrated in
Fig. 4(b) for J = δh (θ = π/4). Examining the asymptotic
behavior at the general working point for the slow-TLF
case, max(γi) � �, we have two distinct single-TLF decay
rates: �

(1)
i ≈ cos2 θv2

i /2γi and �
(2)
i ≈ 2 sin2 θγiv

2
i /�

2. The
dephasing time can be generally found as

T ST
2 = 1

�(2)

[
1 − 1

2
sec2 θ

+�(2)

�(1)
W

(
�(1)

�(2)
e
− �(1)

�(2) (1− 1
2 sec2 θ) tan2 θ

)]
,

where W (z) is the Lambert W function, solving the equation
z = W (z)eW (z). As long as we are not too close to the OP,
�

(1)
i � �

(2)
i ∀ i, and for θ = π/4, the dephasing time is found

to first order in �(2)/�(1) as

T ST
2 = 1

�(1)
ln

[
�(1)/�(2)

ln(�(1)/�(2))

]

Id.TLFs−→ 4γ

nT v2
ln

[
�2

8γ 2 ln(�/2γ )

]
. (54)

Notice that in this limit, the initial decay is governed by the
fast �(1) until the signal has dropped to ≈50% [see Eq. (51)
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with θ = π/4], after which, a much slower decay �(2) takes
place. In this regime, exhibiting two very different decay
rates, collective effects are strongest, as indicated by the large
deviation of the factorized solution from the exact solution
in Fig. 4(d). In many practical situations, one is interested in
coherence times for which the signal remains above, say, 95%
of its initial value. In this slow-TLF regime, the initial decay
time is governed by �(1), thus, it is much shorter than T ST

2
given in Eq. (54). As in the OP case, the qubit dephasing due
to slow TLFs is independent of the DD protocol or the number
of control pulses, as long as the time interval between pulses
satisfies τ � γ −1

i .
For fast TLFs, we find a single effective rate �̃ = (�̃(1) +

�̃(2))/2, which can be expanded as in the OP case to give

T FT
2 ≈

[
2 ln 2N2

2�2
(
1 − 2

3 cos2 θ
)∑

i v
2
i γ

3
i

/(
�2 + 4γ 2

i

)2
]1/3

Id.TLFs−→
[

2 ln 2(�2 + 4γ 2)2N2(
1 − 2

3 cos2 θ
)
�2v2γ 3nT

]1/3

. (55)

At this limit, the factorized solution coincides with the exact
result, as demonstrated by the right-hand side of Fig. 4(d).

We now turn our attention to the qubit dissipative dynamics,
by considering the transverse components of the Bloch vector.
At the OP, a qubit initially prepared along the z axis has
no x dynamics and dissipative dynamics is manifested only
through the y component. Extending the single-TLF analysis
presented in the previous subsection to the multi-TLF case,
we find that the formulas for y(t) for the PDD [Eq. (44)]
and CPMG [Eq. (48)] cases hold true by substituting �(j ) and
�

(j )
1/2 with summations over single-TLF decay rates, as was

done in Eq. (50). Similarly, w̃y in Eq. (49) is replaced with
summation over all TLF weights,

∑nT

i=1 w̃i
y , each evaluated

with its respective TLF parameters γi,vi . We note that these
dissipative effects are of higher order and are thus never
factorizable.

The analytical solutions for y(t) at the OP are compared
with the results of numerical diagonalization in Fig. 5(a) for
four identical weakly coupled TLFs, under 11-pulse PDD (blue
line), 11-pulse CPMG (green line), and 10-pulse CPMG (red
line). The accuracy of the analytical solutions for the CPMG
sequences is obtained by including the 2γ rate contribution,
whereas a less accurate result is shown for the PDD case
for which this contribution was neglected. In Figs. 5(c) and
5(e), we depict the maximum value of y(t) and the time to
reach that maximum, respectively, as we simultaneously vary
γ and v. The superior performance of the CPMG sequence is
evidenced throughout the parameter range. CPMG sequences
with even number of pulses are better than those with odd
number of pulses [see Eq. (48)], but this advantage is washed
out for very slow or very fast TLFs [see Fig. 5(c)]. For slow
TLFs, v � γ � �, in particular, τ ∼ 1/�, and inspection of
Eqs. (48) and (49) leads to

yST
max ≈

nT∑
i=1

w̃i
y ≈

nT∑
i=1

4γiv
2
i

�3
, (56)

irrespective of the number of control pulses. This result agrees
well with the slow-TLF asymptote in Fig. 5(c). Figures 5(b),

FIG. 5. (Color online) y(t) Bloch vector component of a qubit,
initially prepared along the z axis, due to four identical weakly
coupled TLFs. (a), (b) y(t) for 11-pulse PDD, 11-pulse CPMG and
10-pulse CPMG, at the OP and at J = δh = 0.1μeV, respectively,
with γi = 0.2μsec−1 and vi = 2 neV. (c), (d) Maximal values of y(t)
at the OP and at θ = π/4 vs γ /�, while keeping v/γ constant. (e), (f)
The corresponding times, at which maximal y(t) values are reached.
Dashed lines in plots (a), (c) and (e) depict the analytical formulas
given in Sec. III A 1 for the OP (see main text), and are compared
against exact numerical diagonalization (solid lines).

5(d), and 5(f) depict the y(t) dynamics at θ = π/4 (J = δh).
The most striking difference with respect to the optimal point
takes place at the slow-TLF regime, where substantially larger
y values are obtained.

Finally, dissipative dynamics along the x axis occurs
for a qubit initially prepared along the z axis only when
operating away from the optimal point. As seen in Fig. 6
for working position J = δh (θ = π/4), a substantial buildup
of x component, up to 50%, is obtained for slow TLFs,
albeit at increasingly longer time scales. At this limit, where
v � γ � �, the dynamics is indifferent to the pulse sequence,
as well as to the number of pulses. Similarly to the discussion
above Eq. (54), there are two distinct single-TLF decay rates,
where �

(1)
i � �

(2)
i , and the x component reads as x(t) =

1
2 [e−�(2)t − e−�(1)t ]. At this slow-TLF limit we find the time
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FIG. 6. (Color online) x(t) Bloch vector component of a qubit
initially prepared along the z axis, due to four identical weakly
coupled TLFs, for J = δh = 0.1μeV working point. (a) x(t) for
11-pulse PDD, 11-pulse CPMG, and 10-pulse CPMG, with γi =
0.05μsec−1 and vi = 8 neV. (b) Maximal values of x(t) vs γ /�,
while keeping v/γ constant. (c) The corresponding times, at which
maximal x(t) values are reached. Dashed line corresponds to the
analytical result (57), applicable for the slow-TLF regime. (d) Time
to reach x = 0.01 vs γ /�.

to reach the maximum is

T ST
max(x) = 1

�(1)
ln[�(1)/�(2)]

Id.TLFs−→ 4γ sec2 θ

nT v2
ln

(
� cot θ

2γ

)
. (57)

Equation (57) is depicted by the dashed line in Fig. 6(c), and
agrees well with the results of exact numerical diagonalization
at the slow-TLF regime. Improved performance of the CPMG
sequences over PDD is found only when γ � � [see right-
hand side of Fig. 6(b)]. In contrast with y(t) dynamics, there is
no improvement in performance gained by employing an even
number of CPMG pulses.

B. Strong coupling

Similarly to the weak coupling regime, we use a pertur-
bative approach to diagonalize the evolution operator T in
the strong coupling regime, where γi � vi ∀ i. The solutions
to the many-TLF problem are not directly derivable from the
single-TLF solutions, as was the case for weak coupling. In the
following, we provide results for both single- and many-TLF
cases, allowing us to draw conclusions on the role of collective
effects in qubit dephasing, and scaling of the noise with the
number of TLFs, in the strong coupling regime.

1. Single fluctuator near or at the optimal point

For a strongly coupled TLF, it is sufficient to perform first-
order degenerate perturbation theory in γ /v. The analytical
expressions are lengthy and we present here results for the
optimal point (see Ref. [32] for results for general working
point in the rotated frame), expanded to third order in v/δh.
At the OP, the equations decouple and we only need to solve
for (y,z,δx), similarly to the weak coupling case. The three
eigenvalues of the resulting evolution operator lead to two
decay rates, relevant for both PDD and CPMG protocols:

�(1) = γ v2

�2
(1 − sinc τ̃ ),

�(2) = γ v2

�2

(
1 − 2sinc2 τ̃

2
+ sinc τ̃

)
, (58)

and a much faster third rate �(3) ≈ 2γ , predominantly asso-
ciated with δx. Whereas in the weak coupling regime, this
latter decay rate had no effect on the qubit signal, in the
strong coupling regime, its weight in the final solution is not
negligible.

Taking the qubit initial state to lie along the z axis, we
find the longitudinal (z) and transverse (y) Bloch vector
components by using Eq. (36) (there is no x dynamics at the
OP). The weights of the three decay rates in the PDD solution
are found as

wz
1 = sin

τ̃

2

(
1 − v2

�2

)
+
( v

2�

)2
τ̃ sin τ̃

wz
2 = cos2 τ̃

2
+ v2

�2

[
sin2 τ̃

2
− (1 − sincτ̃ )2 − τ̃

4
sin τ̃

]

wz
3 = v2

�2
(1 − sinc τ̃ )2 (59)

w
y

1 = −1

2
sin τ̃ −

( v

2�

)2
τ̃ (cos τ̃ − sinc τ̃ )

w
y

2 = 1

2
sin τ̃ +

( v

2�

)2
[

2 sinc2 τ̃

2
(τ̃ − sin τ̃ )

+τ̃ cos τ̃ − sin τ̃

]

w
y

3 = − v2

2�2
τ̃ sinc2 τ̃

2
(1 − sinc τ̃ ). (60)

For CPMG, we find, similarly to the weak coupling case
(see Sec. III A 1), that the faster decay rate �(1) is eliminated
from the longitudinal component. The improved performance,
as compared with PDD, is nevertheless compromised in the
strong coupling, due to the contribution of the fast decay rate
�(3) = 2γ that is also present in the CPMG solution. The
weights of these two remaining rates are found as

wz
2 = 1 − v2

�2

(
1 − sinc

τ̃

2

)2

,

wz
3 =

(
1 − sinc

τ̃

2

)2

, (61)
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FIG. 7. (Color online) Qubit dephasing due to a strongly coupled
TLF (v = 2 neV, γ −1 = 0.5 msec). (a) T2 time vs δh for SE, at the
optimal point (J = 0). (b) T2 times as one moves away from the
optimal point by ramping up J to δh (θ = π/4, see top axis). Three
different δh values are depicted for both SE and 16 pulse CPMG
protocols. (c), (d) Maximum value of the transverse (y) component
and the corresponding time, vs δh for SE, at the optimal point. The
dashed red lines in plots (a), (c), and (d) depict the full analytical
results of Eqs. (58), (59), and (62), whereas the dotted black lines
show the single-rate approximations.

and the solution for the transverse y component is found to be

yOP
CP = 4γ v2

�3
sin2 τ̃

4

[
sin2 τ̃

4

(
e−�(1)t − (−1)Ne−�(2)t

)

+(−1)N
(

1 − sinc
τ̃

2

)(
e−�(2)t − e−2γ t

)]
. (62)

Figure 7(a) depicts SE dephasing time versus δh due to a
single strongly coupled TLF, at the optimal point. For δh �
v � γ , the magnetic field gradient provides protection against
the noise, and very long coherence times, in excess of 100
msec, are obtained. At this limit, τ � δh−1 and Eqs. (58)
reduce to a single decay rate: � ≈ 4γ v2/δh2. This single-
exponential decay results in approximate dephasing time:

T2 ≈ ln 2

4γ

(
δh

v

)2

, (63)

shown by the black dotted line, and is independent of the
number of control pulses. This approximation holds well down
to δh ∼ 10v, while the full analytical results given by Eqs. (58)
and (59) are valid for an extended regime (strictly they are
correct to third order in v/δh). As δh becomes comparable to
v, dephasing times drop by more than two orders of magnitude,
remaining indifferent of the number of control pulses up to
N = 100. We note that nuclear polarization cycles have been
successfully employed to generate stabilized interdot field

gradients in excess of 5 mT [24,26], well above δh = 0.1 μeV ,
demonstrated here to induce extended coherence at the optimal
point.

Figure 7(b) examines the robustness of the noise immunity
given by δh, as one moves away from the optimal point. For
the S-T0 qubit, this is particularly relevant since a convenient
idle point in this system is at large negative detuning, where
J is as small as a few neV but not strictly zero. For relatively
large δh = 0.1 μeV (red lines), the long coherence times of
over 200 msec, obtained at the optimal point, drop rapidly by
a factor of 500 with J = 1 neV, only 1% of δh. Dephasing
times retain their order of magnitude thereafter all the way to
J = δh (θ = π/4). Increasing the number of control pulses
extends the regime of enhanced coherence (dashed red line).
As δh reduces, the noise immunity is gradually removed, as
well as the sensitivity to the qubit working position. For δh � v

(blue lines), dephasing times are virtually indifferent to change
in J .

Figures 7(c) and 7(d) depict the maximum value of the
transverse (y) Bloch vector component and the time to reach
it, respectively, versus δh. At the limit δh � v � γ , where
�(1) ≈ �(2), Eq. (62) takes a simple form and we find

ymax = 16γ v2

δh3

[
3 − (−1)N

]
, (64)

Tmax(y) = 4πN

δh
. (65)

This result suggests a factor of 2 reduction in the transverse
component amplitude with an even number of CPMG control
pulses, as compared with odd N , similarly to the even-odd
effect found for the weak coupling regime (see Sec. III A 1).
We note that, while Eq. (64) works well for both even and odd
extended pulse sequences, Eq. (65) is strictly correct only for
SE. The competition between the two terms in Eq. (62) results
in oscillatory behavior that typically has nonmonotonous
amplitude for extended pulse protocols. Equation (65) reflects
the position of the first maximum, which is also the global
maximum for the SE case, but not necessarily so for longer
N -pulse sequences.

2. Two or more fluctuators

In the strong coupling regime the sensitivity of the
contribution of one TLF to qubit dephasing to switchings
of other TLFs is heightened, resulting in striking collective
effects. The scaling of noise with the number of TLFs is,
therefore, nontrivial and the individual TLF decay rates do
not simply add up as in the weak coupling case. Here, we
present both numerical and analytical results for identical
TLFs, restricting our analytical results to the optimal point,
and to the quasistatic regime δh � v � γ , where single-TLF
formulas were provided in the previous subsection.

Considering first the two-TLF case, we follow the proce-
dure presented above, by diagonalizing the evolution matrix
T = LeM1τ , where M1 is given in Eq. (35). We employ
first-order perturbation theory in γ /v, and expand our results
to third order in v/δh. The resulting PDD solution for two
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FIG. 8. (Color online) Qubit dephasing due to two or more iden-
tical TLFs in the strong coupling regime, at the optimal point (J = 0).
(a) Bloch longitudinal component decay due to two identical TLFs,
under 11-pulse PDD (blue lines) and 11-pulse CPMG (red lines)
sequences. Solid lines depict the results of exact diagonalization,
whereas dashed lines correspond to Eqs. (66)–(68). Plots (b)–(d)
depict scaling of T2 times with the number of TLFs under 6-pulse
CPMG, for three values of δh. Red crosses represent results of exact
diagonalization up to nT = 11, and blue circles and green squares
represent the results of multiple RTN simulations, detailed in the
main text. Plot (b) also shows the analytical single-rate approximation
(black line), valid for δh � nT v. The TLFs parameters in all plots
are γ −1 = 0.5 msec and v = 2 neV.

identical TLFs can be approximated with two decay rates:

�(1) = 2γ

[
1 + sinc

(
v2τ

�

)]
,

�(2) = 2γ

[
v2

�2
+ 1 − sinc

(
v2τ

�

)]
, (66)

with corresponding weights

wz
1 = sin2

(
v2τ

2�

)
, wz

2 = cos2

(
v2τ

2�

)
. (67)

For CPMG, the weight of the faster decay rate �(1) is eliminated
and we obtain, as before, a single-rate dephasing:

zCP ≈ e−�(2)t , (68)

with superior performance as compared with PDD.
Figure 8(a) depicts qubit dephasing at the OP, due to two

identical TLFs with δh � v � γ , where the approximate
solutions given by Eqs. (66) and (67) (dashed blue line),
and Eq. (68) (dashed red line) are compared against exact
numerical diagonalization. Coherence under 11-pulse CPMG
is somewhat improved (T2 = 0.72 ms) as compared with 11-
pulse PDD (T2 = 0.64 ms). The most important observation,
though, is a dramatic, 300-fold reduction in dephasing time, as

compared with the single-TLF case, shown in Fig. 7(a) (recall
that at the OP, in the limit δh � v, single-TLF dephasing is
indifferent to the number of control pulses). Evidently, the
addition of a second (and subsequent) TLF(s) results in a loss
of the noise immunity provided by δh at the OP, when it is
much greater than v. The explanation is similar to the one
given in Sec. III A 2. When two or more TLFs are present,
there cannot be a single OP around which all TLFs work.
Switching one TLF effectively moves the working position
away from the OP for the other TLFs, resulting in a dramatic
drop in coherence time, when sensitivity to the working point
is high. Such sensitivity is demonstrated for the considered
case in Fig. 7(b), where a slight deviation from the OP in
the single-TLF case results in a similarly dramatic drop in
coherence time.

The generalization of the above results to nT > 2 is far
from trivial. We have diagonalized the evolution operator
for the case of three identical TLFs, using first-order degen-
erate perturbation, but the expressions are lengthy and not
very illuminating. Analytical diagonalization beyond nT = 3
becomes intractable, and we find through exact numerical
diagonalization that the solution comprises an increasing
number of distinct decay rates with nonvanishing weight as
nT grows [55]. In the limit of δh � nT v � nT γ , the full
analytical solutions for nT = 2 and nT = 3 (not shown) can be
approximated by a single-rate decay solution, which is found
to hold well up to a large number of TLFs. For PDD, we find
the approximate decay rate to be

�PDD = 2γ v4

3δh2
τ 2n2

T , (69)

and for CPMG we find �CP = �PDD/2. The resulting dephas-
ing times are

T PDD
2 =

(
3 ln 2δh2N2

2γ v4n2
T

)1/3

(70)

for PDD and T CP
2 = 21/3T PDD

2 for CPMG. Equation (70)
suggests that the same N2/3 power law, found in the weak
coupling regime, holds for two or more (identical) TLFs in the
strong coupling regime.

Figures 8(b)–8(d) show the scaling of qubit dephasing times
with the number of (identical) TLFs under 6-pulse CPMG at
the OP, with δh = 0.1 μeV , δh = 10 neV, and δh = 1 neV,
respectively. Our exact diagonalization method is limited to
nT = 11 due to the exponential increase of matrices size. In
order to investigate the dynamics with larger ensembles, we
employ a direct numerical simulation of the TLFs random
switchings, using many realizations of Poisson processes for
the RTN sources. The resulting dephasing times and their error
bars, shown in the figures by blue circles and green squares, are
obtained from the noise realization averages and their standard
deviations. We have found that 106 realizations are typically
sufficient to provide results with errors below 5%, and often
fewer realizations are needed. The results of these simulations
compare well with the results of exact diagonalization (red
crosses) for nT � 11, giving us confidence to rely on them for
larger nT , where exact results are unavailable.

Figure 8(b) shows T2 times with large field gradient,
where the power-law scaling with nT , predicted by the

155422-14



NON-GAUSSIAN SIGNATURES AND COLLECTIVE . . . PHYSICAL REVIEW B 92, 155422 (2015)

FIG. 9. (Color online) Qubit dephasing times due to strongly
coupled identical TLFs, as a function of its working point. (a) T2

times (signal drops to 50%; (b) times to drop to 95%. Qubit working
position is varied from J = 0.01δh (very close to OP) to J = δh

(θ = π/4). The TLFs parameters γ −1 = 0.5 msec and v = 2 neV,
and δh = 0.1 μeV .

single-rate analytical result (70), is expected to be valid. This
approximation holds well up to 20–30 TLFs, at which
point nT v ≈ �. For larger nT , the noise effects begin to
saturate. The qubit dynamics becomes more complicated as
the field gradient is reduced in Figs. 8(c) and 8(d), exhibiting
a nonmonotonous dependence on δh, also found for the
single-TLF case [see Fig. 7(a)], as well as a surprising
nonmonotonous dependence on nT . Moreover, an even-odd
effect with respect to the number of fluctuators develops as
δh reduces, showing markedly improved performance with
odd nT , when δh = 1 neV [55]. A qualitative explanation to
the latter phenomenon is as follows. Each TLF in an odd
nT ensemble sees an even number of TLFs that can average
their switchings such that it will approximately operate at the
optimal point. In contrast, for even nT the environment of
each TLF will have a leftover TLF that will cause operation
further away from the OP, thereby reducing coherence time.
This effect should be more pronounced for smaller ensembles,
where each TLF has a more prominent role in the total
dynamics, as observed in the figures. In addition, the difference
between even and odd nT ensembles will be evident only when
v is not much smaller than δh, so that the addition of a single
TLF makes a substantial difference in the field about which
the qubit precesses. We also stress that this effect is not likely
to be apparent for nonidentical TLF ensembles, particularly
those with wide parameter distributions.

Finally, in Fig. 9 we examine dephasing times in the
regime � � v � γ , as one moves away from the OP, by
ramping up J from 0.01δh (θ → π/2) to J = δh (θ = π/4).
Equation (70) works well up to J ≈ 0.05δh, at which point
the scaling of noise with nT breaks down. Figure 9(a) exhibits
a nonmonotonous dependence on J , with T2 times rapidly in-
creasing as the θ = π/4 point is approached. At this point, the
qubit precesses about a tilted axis, such that its z component (as
well as its x component) decays to 0.5 rather than to zero. This
results in an artificial extension of T2 times, which is accompa-
nied by a substantial buildup of the x component. This behavior
is absent in the initial 5% drop, shown in Fig. 9(b), as expected.

IV. CONCLUSION

In this work, we have studied the dynamics of a qubit cou-
pled to a collection of two-level fluctuators, under dynamical
decoupling control pulses. We have presented a theory that
provides exact solutions for the Bloch vector by finding a
set of coupled stochastic rate equations and diagonalizing the
qubit resulting evolution operator during a full control cycle.

At pure dephasing, we obtained exact analytical solutions
for asymmetric fluctuators under N -pulse PDD and CPMG
sequences. These solutions were shown to deviate substantially
from the Gaussian approximation for strongly coupled TLFs,
particularly at the long-time limit. Gaussianity was shown to
be restored as the number of TLFs is increased or the interpulse
time interval τ becomes shorter. Lastly, we found simple
formulas for noise scaling in the asymptotic limits of short
time, and weak and strong coupling.

At the general working position, we obtained analytical
solutions for the weak and strong coupling regimes, and
examined collective effects within the TLF ensemble that
were manifested by the deviation of the exact solution from
an approximate factorized solution comprised of single-TLF
solutions. These effects originate from the nonlinear nature
of the qubit-TLF couplings that generates fluctuations of the
OP for a given TLF due to the switchings of other TLFs.
Only at pure dephasing (θ = 0), where the nonlinearity of the
qubit-TLF couplings is eliminated, is the solution found as a
product of single-TLF-induced decays. Collective effects are
particularly dominant in the strong coupling regime, due to
heightened sensitivity to the qubit working point, resulting in
a nontrivial noise scaling with the number of TLFs.

An additional implication of operating the qubit outside the
pure dephasing regime is the appearance of dissipative dynam-
ics, evident by the buildup of transverse Bloch vector compo-
nents. We have quantified these effects and demonstrated that
the superiority of CPMG over PDD, well established at pure
dephasing, extends to the general working point, with up to
two-orders-of-magnitude reduction of transverse component
buildup for CPMG. Furthermore, we confirmed the existence
of an even-odd effect with respect to the number of CPMG con-
trol pulses N demonstrating reduced dissipation for even N .

In this paper, we have focused on deriving analytical
solutions for the dynamics of a generic qubit system coupled
to classical charge fluctuators, operating at general working
position. The different asymptotic limits that we have found, as
well as the decoherence scaling with ensemble size and number
of control pulses, allow for a direct experimental testing,
provided that the charge environment can be characterized.
Alternatively, the results of this work can aid in such an
experimental characterization, as they connect measurable,
qubit quantities with controllable parameters. An approach
complementary to this study would be to carry out numerical
simulations of TLF ensembles with particular parameter dis-
tributions. Whereas our analysis is relevant to the mesoscopic
regime with a relatively small number of TLFs, the latter
approach should be useful for larger ensembles, where it
is experimentally impossible to determine individual TLF
parameters. It would be interesting to determine the minimal
set of TLF-ensemble characteristics, necessary to predict
qubit performance or, alternatively, to what extent can one
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characterize the charge environment, based on noise spectrum
measurements.

Finally, in this paper we have used the spin-fluctuator
model, treating the TLFs as classical sources of RTN. Several
previous works studied the validity domain of this model in
predicting qubit decoherence at pure dephasing [17,20]. It
would be interesting to extend these studies to the general

working position by formulating a quantum telegraph model
that allows for qubit energy relaxation, and to consider the
effects of TLF interactions.
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APPENDIX A: COMPARISON WITH CUMULANT EXPANSION

In this Appendix, we calculate the second and fourth cumulants of a single random telegraph noise for the CPMG sequence
and confirm the convergence of our exact results for pure dephasing with the cumulant expansion in the weak coupling limit
η = v/γ � 1, where non-Gaussian effects are reduced [30]. Including the first two nonvanishing cumulants, we have

χ (t) ≈ e− C2(t)
2 + C4(t)

24 , (A1)

where

C2(t) = 〈�2(t)〉, C4(t) = 〈�4(t)〉 − 3〈�2(t)〉2. (A2)

〈�n(t)〉 is the nth moment given by

〈�n(t)〉 = n! vn

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtnf (t1) . . . f (tn)e−2γ [t1−t2+...−(−1)ntn], (A3)

where f (t) is the pulse sequence function [30]. In the Gaussian approximation, all terms higher than C2 vanish, thus, the ratio
between C4 and C2 provides a measure for the non-Gaussianity of the RTN. Calculating the cumulants [Eq. (A2)] for a small
number of pulses, one obtains a pattern that allows a full summation within each cumulant order leading to general N formulas.
Denoting x ≡ γ τ we find for a symmetric TLF

C2(t) = −η2

2
{[1 − (−1)Ne−2γ t ](1 − sechx)2 + 2N (tanh x − x)} (A4)

and

C4(t) = 3η4

4
{(1 − e−4γ t )(sechx − 1)4 + 4[1 − (−1)Ne−2γ t ][tanh4 x − 2x tanh x sechx(1 − sechx)]

+ 4N [2(1 + e−2γ t )(tanh x − x)(1 − sechx)2 + (tanh x − x)(4sechx − 1) + tanh3 x]}. (A5)

These expressions reduce to the fourth cumulant results for SE and 2-pulse CPMG reported in Ref. [30,56].
Expanding Eq. (18) to fourth order in η, the eigenvalues are

λ± = ±e±x − η2

2
(xe±x ± sechx) + η4

8
[±e±xx(x ∓ 1) ∓ sechx(sech2x + 2x tanh x)] + O(η6), (A6)

and the expansion of χCP(t) in Eq. (17) matches Eqs. (A1) and (A5) to fourth order in η. We note that while there seem to be
differences in the cumulant expressions between even and odd number of pulses, these differences cancel out when the cumulants
are summed to infinite order to provide the exact result of Eq. (17).

APPENDIX B: TWO FLUCTUATORS AT PURE DEPHASING

In this Appendix, we show how to extend the single-TLF theory to two or more TLFs for the case of pure dephasing.
Considering two symmetric TLFs, we split the probability to accumulate a phase φ at time t into four partial probabilities,
corresponding to the possible combinations of two TLF states at that time:

p(φ,t) = p++(φ,t) + p+−(φ,t) + p−+(φ,t) + p−−(φ,t).

Taking a short-time increment τ , during which the switching probabilities are γiτ , we have

p++(φ,t + τ ) = (1 − γ1τ )(1 − γ2τ )p++(φ − v1τ − v2τ,t) + (1 − γ1τ )(γ2τ )p+−(φ − v1τ + v2τ,t)

+ (γ1τ )(1 − γ2τ )p−+(φ + v1τ − v2τ,t) + (γ1τ )(γ2τ )p−−(φ + v1τ + v2τ,t)

+
∫ t+τ

t

dt1{p−+[φ + v1(t + τ − t1),t1] + p+−[φ + v2(t + τ − t1),t1]}, (B1)
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and similar equations for the other three partial probabilities. The four rate equations are found by taking infinitesimal τ and
keeping only linear terms in τ :

ṗ++ = −(γ1 + γ2)p++ + γ1p−+ + γ2p+− − (v1 + v2)∂φp++
ṗ+− = −(γ1 + γ2)p+− + γ1p−− + γ2p++ − (v1 − v2)∂φp+−
ṗ−+ = −(γ1 + γ2)p−+ + γ1p++ + γ2p−− + (v1 − v2)∂φp−+
ṗ−− = −(γ1 + γ2)p−− + γ1p+− + γ2p−+ + (v1 + v2)∂φp−−. (B2)

Denoting χij (t) as the phase factors averaged over switching histories ending at TLF states (i,j ), where (i,j ) = {+,−}, we
construct four combinations of phase factors:

χ (t) = χ++(t) + χ+−(t) + χ−+(t) + χ−−(t)

χ1(t) = χ++(t) + χ+−(t) − χ−+(t) − χ−−(t)

χ2(t) = χ++(t) − χ+−(t) + χ−+(t) − χ−−(t)

χ3(t) = χ++(t) − χ+−(t) − χ−+(t) + χ−−(t) (B3)

where χ (t) corresponds to the qubit decay and the other three χi(t) generalize δχ , introduced below Eq. (3), to the two-TLF
case. The rate equations (B2) are translated to a set of coupled equations, analogous to Eq. (4):⎛

⎜⎝
χ̇

χ̇1

χ̇2

χ̇3

⎞
⎟⎠ = M1

⎛
⎜⎝

χ

χ1

χ2

χ3

⎞
⎟⎠, (B4)

where M1 is given by

M1 =

⎛
⎜⎝

0 −iv1 −iv2 0
−iv1 −2γ1 0 −iv2

−iv2 0 −2γ2 −iv1

0 −iv1 −iv2 −2(γ1 + γ2)

⎞
⎟⎠. (B5)

After a π pulse, the qubit evolves under M2, defined by substituting vi → −vi in M1. As in the single-TLF case, the qubit signal
under N -pulse sequence is calculated by diagonalizing the evolution operator T , defined by Eq. (7), with L = diag(−1,1,1,−1).
The eigenvalues of T are found to factor out for the two fluctuators, as stated in Eq. (24). For nT fluctuators, the evolution
operator is a square matrix of size 2nT and it can be shown by induction that Eq. (24) holds for any number of fluctuators.
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