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Detection of interactions via generalized factorial cumulants in systems in and out of equilibrium
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We introduce time-dependent, generalized factorial cumulants Cm
s (t) of the full counting statistics of electron

transfer as a tool to detect interactions in nanostructures. The violation of the sign criterion (−1)m−1Cm
s (t) � 0

for any time t , order m, and parameter s proves the presence of interactions. For given system parameters, there is
a minimal time span tmin and a minimal order m to observe the violation of the sign criterion. We demonstrate that
generalized factorial cumulants are more sensitive to interactions than ordinary ones and can detect interactions
even in regimes where ordinary factorial cumulants fail. We illustrate our findings with the example of a quantum
dot tunnel coupled to electronic reservoirs either in or out of equilibrium.
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I. INTRODUCTION

The stochastic nature of electron transfer in mesoscopic
conductors gives rise to both thermal and shot noise [1]. A
deviation of the shot-noise power from the value expected for
Poissonian processes of uncorrelated charge transfer indicates
correlations. In particular, an enhanced, super-Poissonian
shot-noise power is a clear signature of the presence of
interactions [2,3]. Various scenarios for super-Poissonian shot
noise of currents sustained by electron tunneling have been
studied both theoretically [4–10] and experimentally [11–17].

Full information about the counting statistics of charge
transfer [18,19] is contained in the probability distribution
PN (t) that N charges have been transferred through the
system in time t . From its Laplace transform, the moment-
generating function M(z,t) := ∑

N eNzPN (t), one can derive
moments Mm(t) := ∂m

z M(z,t)|z=0 and cumulants Cm(t) :=
∂m
z lnM(z,t)|z=0 as the mth derivative (m � 1) with respect

to z taken at z = 0. The mth moment is the expectation
value of the mth power, Mm(t) = 〈Nm〉(t), with 〈· · ·〉 :=∑

N · · · PN (t). For at least two reasons, however, it is ad-
vantageous to study cumulants Cm(t) = 〈〈Nm〉〉(t) instead of
moments [20]. First, if the charge transport can be separated
into statistically independent subprocesses, the cumulants of
the total transferred charge are simply given by the sum of the
cumulants of all channels. Second, in the long-time limit, all
the cumulants Cm(t) ∝ t grow linearly in t while the moments
Mm(t) ∝ tm grow with different powers [19]. Higher-order
cumulants have been calculated for electron transport through
various interacting systems [21–38]. Experimentally, the cu-
mulants of electron tunneling through quantum dots have been
measured up to 20th order by monitoring the charge occupancy
of the quantum dot via a capacitively coupled quantum point
contact [39–47].

An enhancement of the shot-noise power due to interactions
can be quantified by the Fano factor, i.e., the ratio of the
second to the first cumulant. This raises the question whether
there is additional information about interactions contained
in the higher-order cumulants m � 3. Higher-order cumulants
have been shown [43] to oscillate, as a universal feature, as
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a function of any system parameter, measurement time t ,
or order m, independent of whether or not interactions are
present. As an alternative probe of interactions, factorial
cumulants have been suggested instead [48,49]. The latter
are defined as cumulants 〈〈N (m)〉〉 of the factorial power
N (m) := N (N − 1) · · · (N − m + 1). For noninteracting sys-
tems, factorial cumulants do not change sign as a function
of any system parameter or time t and display only trivial
sign changes (−1)m−1 as a function of m. Any deviation from
this behavior proves the presence of interactions. Interactions
are, however, only a necessary but not a sufficient criterion to
obtain nontrivial sign changes of factorial cumulants. In fact,
the results of a recent measurement of hole transfer through
an interacting quantum dot [47] could be explained within an
effectively noninteracting model.

II. GENERALIZED FACTORIAL CUMULANTS

In this paper, we present a more sensitive and versatile
indicator of interactions based on generalized factorial cumu-
lants. To this end, we define the generalized factorial-moment-
generating function

Ms(z,t) :=

∞∑
N=0

(z + s)NPN (t)

∞∑
N=0

sNPN (t)
, (1)

where N is the number of transferred charges, counting
the charges that, say, leave the central part of the system
(e.g., quantum dot) into some leads while not counting those
entering; therefore, by definition, N � 0. From the generating
function, we obtain generalized factorial moments Mm

s (t) :=
∂m
z Ms(z,t)|z=0 and cumulants Cm

s (t) := ∂m
z lnMs(z,t)|z=0.

Defining an s-dependent expectation value 〈· · ·〉s (t) :=∑
N · · · sNPN (t)/

∑
N sNPN (t), one can show that Mm

s (t) =
〈s−mN (m)〉s (t) and Cm

s (t) = 〈〈s−mN (m)〉〉s(t), where 〈〈Nm〉〉s is
related to 〈Nm〉s via the same recursive relation that relates
〈〈Nm〉〉 to 〈Nm〉 [20,50]. The factorial cumulants are recovered
by setting s = 1, i.e., Cm

1 (t) = 〈〈N (m)〉〉(t).
The generalized factorial cumulants with real s can be

expressed in terms of the zeros zj (t) of Ms(z,t) with
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degeneracies αj via the formula [51]

Cm
s (t) = (−1)m−1(m − 1)!

∑
j

αj cos [m arg(−zj )]∣∣zj

∣∣m . (2)

The zeros are either real or appear in complex conjugated pairs.
By varying s, their positions are simply shifted in the complex
plane, i.e., zj (s) + s is independent of s.

For a noninteracting fermionic system, the
generating function has the form Ms(z,t) =
(
∏

j [1 − pj + pj (z + s)])/
∑

N sNPN (t), where pj with
0 � pj � 1 is the probability for a single-particle transfer
to occur [52,53]. Hence, all zeros zj = 1 − 1/pj − s lie on
the real axis with −zj � s and positive αj . If s � 0, then
arg(−zj ) = 0, which fixes the sign of all generalized factorial
cumulants,

(−1)m−1Cm
s (t) � 0. (3)

If s < 0, this criterion still holds for all even orders m. Any
violation of this behavior is a clear indication of the presence of
interactions. Equation (3), which holds for any noninteracting
fermionic system, constitutes the main result of our paper. For
s = 1 and m = 2, it reduces to the well-known criterion that
a super-Poissonian Fano factor, C2(t)/C1(t) > 1, indicates
interactions.

What are the conditions on t , m, and s to observe a violation
of Eq. (3) and thus prove the presence of interactions for a
given system? First, at very short times t , all charge-transfer
processes become independent from each other. Thus, all
zeros of Ms(z,t) are on the real axis and Eq. (3) holds. As
a consequence, t must be larger than a minimal time span
tmin. Second, higher-order generalized factorial cumulants
are favorable since in Eq. (2) deviations of arg(−zj ) from
0 are amplified by the multiplication with m such that
cos [m arg(−zj )] can become negative. Third, with decreasing
s, the zeros zj (s) are shifted towards the positive real direction
in the complex plane. Again, deviations of arg(−zj ) from 0
become larger. Moreover, Eq. (2) is dominated by the zeros
with the largest |zj (s)|−m. Thus, by varying s, different zeros
can be brought into focus.

III. EXAMPLES

In the following, we illustrate our findings on a single-level
quantum dot tunnel coupled to electronic reservoirs either in
or out of equilibrium (cf. Fig. 1). A large Coulomb interaction
ensures that double occupation of the dot is forbidden.
For weak tunneling (sequential tunneling), electron transfer
through the dot is described by the master equation [see
Fig. 1(c)]

Ṗ 0
N (t) = −(γ↑0 + γ↓0)P 0

N (t) + γ0↑P
↑
N−1(t) + γ0↓P

↓
N−1(t),

Ṗ
↑
N (t) = γ↑0P

0
N (t) − γ0↑P

↑
N (t), (4)

Ṗ
↓
N (t) = γ↓0P

0
N (t) − γ0↓P

↓
N (t),

for the probability P
χ

N (t) that N electrons have left the quantum
dot in time t and the dot is in a state χ = 0,↑,↓ (electrons
entering the dot are not counted, i.e., N is not the net charge
transfer between the dot and some lead). The transition rates
γχχ ′ from state χ ′ to χ are given by Fermi’s golden rule.

FIG. 1. (Color online) (a) Equilibrium scenario: A single-level
quantum dot subject to a Zeeman field is tunnel coupled to one
normal lead. (b) Nonequilibrium scenario: A single-level quantum
dot is tunnel coupled to two ferromagnetic leads with finite bias
voltage. (c) Sketch of the states and transition rates.

Making use of the z-transform P
χ
z (t) := ∑

N zNP
χ

N (t), we
obtain

Ṗz(t) = WzPz(t), (5)

with the vector Pz = (P 0
z ,P

↑
z ,P

↓
z )

T
and the matrix

Wz =

⎛
⎜⎝

−γ↑0 − γ↓0 zγ0↑ zγ0↓
γ↑0 −γ0↑ 0

γ↓0 0 −γ0↓

⎞
⎟⎠. (6)

The solution of Eq. (5) is Pz(t) = exp (Wzt)P(0), where
P(0) is the initial probability distribution. Assuming that
electron counting starts when the system has reached its
steady state, P(0) is given by the stationary probability dis-
tribution, determined by W1P(0) = 0 and eT · P(0) = 1, with
eT = (1,1,1). The moment-generating function Ms(z,t) =
Pz+s(t)/Ps(t), with Pz(t) = eT · Pz(t), can be expressed in
terms of the three eigenvalues λj,z (j = 1,2,3) of the matrix
Wz = ∑

j λj,zrj,z ⊗ lTj,z by making use of the decomposition
into left and right eigenvectors lj,z and rj,z with normalization
lTj,z · rj ′,z = δjj ′ . We find

Ms(z,t) =
3∑

j=1

cj,z+s exp(λj,z+s t)/Ps(t), (7)

where we defined the amplitudes cj,z := (eT · rj,z)(lj,z · P(0)).
The generalized factorial cumulants are then evaluated by
performing derivatives of lnMs(z,t) with respect to z at z = 0.

A. Equilibrium scenario

As a first example, we consider an equilibrium scenario with
a quantum dot coupled to one normal lead [see Fig. 1(a)]. Spin
degeneracy of the dot level is lifted by a Zeeman field, εσ =
ε ± 
/2, where the quantum-dot level ε measured relative to
the Fermi energy of the lead may be tuned by a gate voltage.
The positive (negative) sign corresponds to σ = ↑ (↓). Fermi’s
golden rule yields γσ0 = �f (εσ ) and γ0σ = �[1 − f (εσ )] with
the Fermi function fσ = [1 + exp(εσ /kBT )]−1 and tunnel-
coupling strength �. Weak tunneling corresponds to �� 

kBT .
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(a)

(b)

(c)

FIG. 2. (Color online) Zeros zj for the equilibrium scenario with

 = kBT/2, ε = −
, and times t = 5/�,8/�,15/�. For times t �
tmin ≈ 6.83/�, the zeros remain on the real axis. For t > tmin, zeros
leave the real axis and interactions can be detected by generalized
factorial cumulants.

For a vanishing Zeeman field, 
 = 0, the model can be
mapped onto a noninteracting one in which a single, spinless
quantum-dot level (χ = 0,1) is filled with rate γ10 := γ↑0 +
γ↓0 and emptied with rate γ01 := γ0↑ = γ0↓. Only two cj,z

are nonvanishing. As a consequence, all zeros of Ms(z,t) lie
on the real axis and Eq. (3) holds. For a finite Zeeman field,

 �= 0, the zeros of Ms(z,t) remain on the real axis for short
times [54]. However, after a minimal time span tmin, which
depends on the system parameters and can be larger or smaller
than 1/�, the first pair of zeros moves from the real axis into
the complex plane (cf. Fig. 2). Beyond this time, the presence
of interactions can be detected from the full counting statistics,
as we will detail in the following.

In Fig. 3(a), we show the factorial cumulants (s = 1) as a
function of time for fixed values of ε/kBT and 
/kBT . While
for the first four generalized factorial cumulants Eq. (3) holds,
there is a sign change for higher orders m, which indicates
the presence of interactions. With increasing m, the time at
which the sign change occurs decreases and approaches tmin.
However, when considering generalized factorial cumulants,
we observe that already C2

0 (t) violates the sign criterion
Eq. (3). In Fig. 3(b), the gate-voltage dependence of the
factorial cumulants is depicted. We find that the criterion

(a)

(b)

FIG. 3. (Color online) (Generalized) factorial cumulant Cm
s nor-

malized by C1
1 = C1 = 〈N〉 > 0 for the equilibrium scenario as a

function of (a) time t and (b) dot-level energy ε. The parameters are

 = kBT/2 and (a) ε = −
 or (b) t = 100/�. Negative values of
(−1)m−1Cm

s (t) indicate the presence of interactions. Interactions can
be detected (a) for times larger than tmin ≈ 6.83/� and (b) for level
positions ε � kBT ln 2.

Eq. (3) is violated for low-lying level energies ε, indicating that
interactions are more important in the regime when both spin
states in the quantum dot have a finite occupation probability.
Again, for generalized factorial cumulants with s = 0, the
possibility to detect the presence of interactions is dramatically
enhanced.

Figure 4(a) illustrates the possibility to detect interactions
via different generalized factorial cumulants. To the right of
the dashed line, given by ε

kBT
= ln 2 + ( 


kBT
)
2
/72 + O( 


kBT
)
4
,

all zeros of Ms(z,t) remain on the real axis [see Fig. 5(a)]
and tmin is infinite [see Fig. 4(b)]. Therefore, a violation of
the sign criterion Eq. (3) and thus a detection of interactions
is only possible for ε � kBT ln 2. The second-order factorial
cumulant, s = 1 and m = 2, violates Eq. (3) only for rather
large values of the Zeeman energy and a low-lying quantum-
dot level. With increasing m, the region in which interactions
can be detected is gradually increased to lower Zeeman
splitting |
| and larger level positions ε. For generalized
factorial cumulants with s = 0, already the second order,
m = 2, covers a much larger region of violation of Eq. (3). This
clearly demonstrates the enhanced sensitivity of generalized
factorial cumulants to the presence of interactions.
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(a)

(b)

FIG. 4. (Color online) (a) Parameter space and (b) minimal time
span tmin of the system in equilibrium. (a) To the left of the colored
lines, the sign criterion for the respective Cm

s (t) is violated at some
time t . To the right of the dashed line, Ms(z,t) has only real zeros
such that the sign criterion cannot be violated. (b) Minimal time span
tmin increases with increasing ε and decreasing |
| and diverges at
the dashed line in (a) and for 
 = 0.

B. Nonequilibrium scenario

As a second example [see Fig. 1(b)], we consider a spin-
degenerate quantum dot, 
 = 0, coupled to two ferromagnetic
leads with parallel magnetizations and tunnel couplings �r ,
r = L, R. A finite bias voltage V applied symmetrically
between the two ferromagnets gives rise to a nonequilibrium
scenario. Each ferromagnet is characterized by its spin
polarization pr ranging from pr = 0 for a normal metal to
pr = 1 for a half-metallic ferromagnet with majority spins
only. In the limit |ε ± eV/2|  kBT ,�, transport through
the quantum dot is supported by unidirectional sequential
tunneling with rates γ↑0 = (1 + pL)�L, γ↓0 = (1 − pL)�L,
γ0↑ = (1 + pR)�R, and γ0↓ = (1 − pR)�R. We denote the
asymmetry of tunnel couplings to source and drain by a =
(�L − �R)/(�L + �R).

In Fig. 6(a), we demonstrate the possibility to de-
tect the presence of interactions in this nonequilib-
rium scenario. Below the dashed line, given by a =
(3p2

R + 4pLpR + 1)/(3p2
R − 3), all zeros of Ms(z,t) re-

main on the real axis [see Fig. 7(c)], i.e., neither facto-
rial nor generalized factorial cumulants indicate the pres-
ence of interactions. The same is true for the trivial

(a)

(b)

(c)

FIG. 5. (Color online) Zeros zj for the equilibrium scenario with

 = kBT/2, t = 100/�, and ε/kBT = −1.5,0.0,1.0. For ε/kBT �
ln 2, zeros leave the real axis after some time and interactions can be
detected by generalized factorial cumulants.

case pR = 0 and the dotted-dashed line, given by a =
(p2

R + 2pLpR + 1)/(p2
R − 2pLpR − 3), where the system can

be mapped onto a noninteracting Hamiltonian, described by
a two-state model. Of course, tmin diverges at these system
parameters [see Fig. 6(b)]. Above the dotted-dashed line,
all the zeros move into the complex plane [see Fig. 7(a)],
including the rightmost zeros which dominate the behavior of
the factorial cumulants, s = 1. For large values of the spin
polarization p = pL = pR or the asymmetry a of the tunnel
couplings, Eq. (3) is already violated for the second-order
factorial cumulant (m = 2). With decreasing p or a, higher
orders m of the factorial cumulants are needed to detect
interaction.

An interesting regime resides between the dashed and
dotted-dashed line. Here, the rightmost zeros remain on the
real axis, but zeros further to the left move into the complex
plane [see Fig. 7(b)]. As a consequence, a violation of Eq. (3)
cannot be found for any ordinary (s = 1) factorial cumulant.
This limitation is overcome by generalized factorial cumulants.
By an appropriate choice of s, they can probe the position
of any zero of Ms(z,t) in the complex plane and thus
detect interactions where ordinary factorial cumulants fail.
Furthermore, as in the equilibrium case, for a given order
m, generalized factorial cumulants can detect interactions in a
larger area of parameter space.
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(a)

(b)

FIG. 6. (Color online) (a) Parameter space and (b) minimal time
span tmin of the system out of equilibrium. The polarizations are
pL = pR = p, however, a different polarization pL (even pL = 0)
does not change the results qualitatively. (a) Above the colored lines,
the sign criterion for the respective Cm

s (t) is violated at some time t .
Below the dashed line, Ms(z,t) has only real zeros such that the sign
criterion cannot be violated. (b) For a � −1/3, the minimal time tmin

increases with decreasing p and decreasing a and diverges at p = 0;
for a < −1/3, the minimal time tmin diverges both at the dashed and
the dotted-dashed line in (a).

IV. CONCLUSIONS

In summary, we proposed generalized factorial cumulants
Cm

s (t) of the full counting statistics of electron transport
through nanostructures as a sensitive and versatile tool to
detect the presence of interactions via the violation of Eq. (3).
We found that generalized factorial cumulants are superior to
ordinary ones: With decreasing s, interaction effects already
show up in lower order m and at earlier times. This may be
crucial for overcoming experimental limitations. Furthermore,
there are regimes in which general factorial cumulants can
detect interactions while ordinary ones completely fail. We
illustrated our theoretical findings with two examples of a
quantum dot tunnel coupled to electronic reservoirs. Impor-

(a)

(b)

(c)

FIG. 7. (Color online) Zeros zj for the nonequilibrium scenario
discussed in Fig. 6 with pL = pR = 0.35, t = 50/(�L + �R), and a =
(�L − �R)/(�L + �R) = −0.8, − 0.5,0.0. For a = −0.8, all zeros
remain on and for a = 0.0 all zeros leave the real axis. For a = −0.5,
the rightmost zeros remain on the real axis, but zeros further to
the left move into the complex plane. While factorial cumulants are
insensitive to interactions in this case, generalized factorial cumulants
can detect their presence.

tantly, we demonstrated that, already in a simple equilibrium
case of experimental relevance, interactions can be detected
via generalized factorial cumulants. Finally, we emphasize the
general validity of the criterion Eq. (3). It is not restricted to
any specific type of interaction or transport regime and also
covers multilevel and multichannel setups. It also applies to
systems where coherences described by off-diagonal elements
of the reduced density matrix have to be taken into account.
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[30] C. Flindt, T. Novotný, A. Braggio, M. Sassetti, and A.-P. Jauho,
Counting Statistics of Non-Markovian Quantum Stochastic
Processes, Phys. Rev. Lett. 100, 150601 (2008).

[31] D. Urban, J. König, and R. Fazio, Coulomb-interaction effects
in full counting statistics of a quantum-dot Aharonov-Bohm
interferometer, Phys. Rev. B 78, 075318 (2008).

[32] S. Lindebaum, D. Urban, and J. König, Spin-induced charge
correlations in transport through interacting quantum dots with
ferromagnetic leads, Phys. Rev. B 79, 245303 (2009).

[33] T. L. Schmidt and A. Komnik, Charge transfer statistics of a
molecular quantum dot with a vibrational degree of freedom,
Phys. Rev. B 80, 041307(R) (2009).
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