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Origin of the Norton-type wave scattered by a subwavelength metallic slit
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We clarify analytically and numerically the physical origin and the behavior of the Norton field scattered
by a narrow slit, at optical frequencies. This apparent surface field, which comes in addition to the surface
plasmon-polariton and classic cylindrical light waves, features its own radiation lobe associated with oscillating
induced currents that spread over both horizontal metallic parts forming the slit. Theory is given taking into
account the finite size of the aperture and is illustrated with materials such as gold and amorphous silicon in
different spectral regions.
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I. INTRODUCTION

A famous experiment [1] reporting an abnormal light
transmission (a few percent) through subwavelength hole
arrays, sparked off a great surge of interest in the optical
properties of nanostructured metallic surfaces. The authors
initially advocated the unique role of surface plasmons. It is
true that such modes are significantly present in the visible
range, on noble metals. Nevertheless, subwavelength aper-
tures, intrinsically, behave also as dipole antennas that are sup-
posed to scatter a continuum of evanescent waves and quasi-
omnidirectional space ones. In particular, these light waves
may be preponderant at the close vicinity of the apertures, and
can participate quantitatively to extraordinary transmission [2].
In other cases, taking narrow slits, dipolar interactions are
responsible for some local enhancements and far-field modu-
lations [3,4]. Following many debates [5,6] about the actual
mediation of extraordinary transmission at optical frequen-
cies (plasmon, surface light waves, or a mixture of them,
depending on spectral window and geometry), efforts were
done to finely describe analytically the electromagnetic field
scattered by a slit, often reduced as a punctual source [7–10].
It is difficult to find a closed-form expression when the
(complex) metal permittivity is finite, as known in the antennas
context [11]. An intriguing result is the change of spatial
damping of the nonplasmonic contribution far from the source,
at the metal level [7], which is reminiscent of a Norton-type
wave [10], i.e., a ground radio wave [12]. One could believe
that a kind of surface field with the wave vector of light is
also launched along the metal, together with the polariton, as a
companion wave that exchanges energy, but this terminology
is not really appropriated, as we will see.

In most papers interested in this question, a purely math-
ematical approach of the scattering integral, strictly at the
surface level, and with a punctual scatterer, is only partly
satisfactory as we miss essential features to have a complete
picture of the electromagnetic entity we actually consider. An
analysis discriminating each contribution, in the broad space,
and giving an explicit physical interpretation, is still lacking.
Thus, this paper aims to refresh our vision in a practical way,
and shows that the lateral Norton wave generated by a slit
constitutes a third electromagnetic contribution taking birth
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in the whole horizontal conducting surface. As this radiating
subfield combines with the conventional dipole field in a
special manner, it results in a weak apparent surface wave,
however fundamentally different from a surface polariton. We
will exemplify theoretical results essentially with gold in the
infrared, but for sake of generality, the case of amorphous
silicon (aSi) in the ultraviolet region will be sometimes
illustrated since this material may also exhibit a metal-like
behavior (with strong absorbing properties).

II. THEORETICAL FRAMEWORK: FROM THE PERFECT
METAL CASE TO THE REAL ONE

As a tutorial case, we revisit the problem in the framework
of the simplified, highly instructive modal method, by taking
into account the fundamental waveguide mode inside the sub-λ
one-dimensional (1D) slit, in TM polarization [see Fig. 1(a)].
In this paper we do not consider the indentation as a punctual
scatterer.

Take a material with a permittivity ε strongly negative.
The surface impedance boundary conditions are applicable
while tangential wave vectors of the scattered waves are much
smaller than k|ε| i.e.,

k⊥ = (k2ε − k2
//)1/2 ≈ k

√
ε (1)

in the metal, where k = 2π/λ. This is widely the case for noble
metals in the infrared region and for reasonably subwavelength
geometries. We will note Z = ε−1/2 as the surface impedance
(small and essentially imaginary). After lengthy algebra [3],
and omitting the time dependence e−iωt , we get the following
sequel (for y > 0):

Hz(x,y) =
[
e−iky cos θ + cos θ − Z

cos θ + Z
eiky cos θ

]
eik sin θx

+α(k,Z)
∫ ∞

−∞

Sw,Z(u)

v + Z
eik(ux+vy)du, (2)

where the vector v = √
1 − u2 (arg(v) ∈ [0; π ]), and

Sw,Z(u) = 1

2

{
sec

[
(ν + u)

kw

2

]
+ sec

[
(ν − u)

kw

2

]}
, (3)

with sec(x) = sin(x)/x and ν =
√

1 − n2
g . The effective

index of a fundamental mode which is vertically guided along
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FIG. 1. (Color online) (a) Sketch of the 1D subwavelength slit
with its waveguide mode. When excited by a TM-plane wave, it
scatters surface plasmons (in red) and space light waves (dotted
lines). Arrows indicate the typical orientation of the electric field
components just above the aperture. (b) Modulus of the index ng of
the guided mode (4) and that of the aperture function Sw(u = nsp) (3)
for the polariton wave (7), depending on the slit width, and for three
wavelengths (λ = 1.5,0.6,0.28 μm), taking either the permittivity
of gold or that of amorphous silicon [13]. Let us recall that εaSi =
−3.7 + 13.8i at λ = 282 nm.

the slit is

ng =
(

1 + 2iZ

kw

)1/2

. (4)

This mode is built by the antisymmetric coupling of wall
plasmons. Sw(u) is the Fourier transform of its eigenfunction,
and α its excitation coefficient [3] [α ∝ Eslit

x (y = 0) but it has
no importance in the forthcoming discussion]. The scattering
integral (2), that is to say the field structure, is what interests
us in this paper, and is independent of the slit reaction.
It is worth recalling that Ex(x,y = 0) ∝ ZHz(x,y = 0) at
air/metal interfaces.

First, let us briefly comment on the perfect metal case. When
Z = 0 inside the slit (ε = −∞, ng = 1), we immediately get
Sw(u) = sec(kwu/2). And if the metal is perfect everywhere,
the scattered field may be exactly [14] turned into an integral of
some zero order Hankel function of the first kind H

(1)
0 over the

slit width (see Appendix A for more details). Consequently,

the field scattered in any direction is

Hz(kr > 1) ≈ α(k)

√
2π

kr
ei(kr−π/4), (5)

with r =
√

x2 + y2 and kw < 1. This solution verifies the
Sommerfeld radiation condition. It is a cylindrical, dipole-
type field. Besides, it is possible to show that Ey has an
almost identical expression, so that the power flux Ey × H∗

z
propagating along the perfect metal surface has a 1/x spatial
damping, for kx > 1.

Let us come back to the real metal case and put aside the
specular term in (2). We know the scattered field (2) is the
sum of two main contributions: a surface polariton (SP) mode
(plasmon for a metal, phonon for an ionic crystal in the Rest-
srahlen band, Zenneck wave for other lossy materials [12], ...)
and a “photonic” field resembling the dipole-type field (5) of
the perfect metal case, say

Hz(x,y > 0) = H SP
z (x,y) + H Ph

z (x,y). (6)

The proper pole of the integrand corresponds to the tranverse
plasma oscillation generated by each metallic edge of the
aperture. Applying the residue theorem, for y > 0,

H SP
z (x,y) = α

2iπZ

nSP
Sw,Z(nSP) eik(nSP|x|−Zy), (7)

with nSP = √
1 − Z2 [Re(nSP) > 1]. For |x| < w/2, H SP still

has a plasmonic nature since it is supported by the guided
mode of the cavity. Equation (7) (not really new) explains the
trade-off on the ratio Im(ε)/Re(ε) to generate a strong and
long-range surface polariton mode. Sw(nSP) also implies that
when w ≈ λ/Re(nSP), destructive interferences annihilate the
polariton whatever the slit reaction [see Fig. 1(b)]. However,
for some materials with Im(ε) ∼ −Re(ε), the cutoff-width
condition is never fully fulfilled (see the amorphous silicon
case) and a weak surface polariton can always be launched
from the slit. On the other side, when w 
 λ, the waveguide
index ng exhibits an increasing imaginary part (absorption)
which may attenuate the α coefficient, and then, the SP
generation, as experimentally observed [7].

Before going ahead, Fig. 2 gives a numerical example
showing the weight of each magnetic component scattered
over a gold surface at λ = 1.5 μm (w = 400 nm). While
the plasmon and the photonic field are both proportional
to the coefficient α, H Ph predominates in the neighboring of
the sub-λ aperture, with a damping similar to that of the perfect
metal case. Due to different spatial damping, the polariton is
rapidly the majority mode over many wavelengths. This is a
general behavior provided that |Z| and/or |Sw| [Fig. 1(b)] are
not too small.

However, the underlying physics is far from being com-
plete. Indeed, on the basis of Ref. [8], one can show that
the photonic field near the slit may be expressed analytically
thanks to a fine correction of the field of the perfect metal case
[numerically verified in Fig. 2(b)]. While x|Z|/λ < 1, and for
x > w/2, the real case gives

H Ph
z (x,y = 0) ≈ α sec

(
kw

2

)(√
2π

kx
e−i π

4 − iπZ − Z2
√

2iπkx − πkx

2
Z3

)
eikx. (8)
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FIG. 2. (Color online) Magnetic field scattered on a gold surface
by a slit 400 nm width at λ = 1.5 μm. (a) Field modulus and (b) real
part. Htotal is the scattering integral (2) taking α = 1.

The correction ∼iπZ seems related to some energy transfer
to the surface polariton, when we compare it to Eq. (7). The
propagating terms ∼Z2,Z3 are stranger as they are not linked
to absorption losses, but to small out-of-phase radiations.
Actually, as we will detail hereafter, in the real metal case,
light waves come from at least two contributions, that is to
say H Ph

z (kx > 0) = α
√

2π/kx F (kx)eikx , where F (kx) is an
envelope function comprising always the dipolar (cylindrical)
field, but hiding another radiating subfield which is not
cylindrical. To show this, not only at the surface level but in the
whole space, a relevant approach is to study the asymptotical
behavior of the field far enough from the aperture. This is the
subject of the following section.

III. SCATTERED PHOTONIC FIELD: ANALYTICAL
NORTON AND DIPOLE CONTRIBUTIONS

To find the asymptotical behavior of the far field, a way con-
sists in resorting to a double second-order Taylor expansion.
Indeed, let us consider again the integral (2). One may put the
phase φ(u) = k(ux + vy) and f (u) = Sw,Z(u)/(v + Z). We
will apply the stationary phase method for (Z,y) �= (0,0). It
can be intuitively understood that, although the field results
from the contribution of a whole continuum of wave vectors,
the oscillations of the exponential become extremely rapid at
large distance, with destructive interference of the spectrum,
except when the phase φ(u) is nearly constant, close to an
extremum. The condition φ

′
(u) = 0 is indeed fulfilled for

a unique wave vector (u,v) = (u0,v0) = (x/r,y/r), which
corresponds to a radiated field. Thus, around u0 = x/r:

φ ≈ φ(u0) + (u − u0)2

2
φ

′′
(u0)

= kr

[
1 − (
u)2

2

(
r

y

)2]
. (9)

A Taylor expansion of f (u) is also applied, noticing that
the f

′
(u0) contribution will be null. We are then driven to

calculate different Fresnel integrals. If we introduce polar
coordinates, by naturally putting (u0,v0) = (sin ϕ, cos ϕ), with
ϕ ∈ [−π/2; π/2], an angle defined with respect to the y axis,
we finally get

H Ph
z (kr  1) = H Dip

z (kr) + HN
z (kr) + O(kr−5/2), (10)

with

H Dip
z (kr,ϕ) = αSw,Z(sin ϕ)

cos ϕ

cos ϕ + Z

√
2π

kr
ei(kr− π

4 ), (11)

HN
z (kr,ϕ) = α �(ϕ,Z)

√
2π

(kr)3
ei(kr+ π

4 ), (12)

and

�(ϕ,Z) ≈ Sw,Z(sin ϕ)

(Z + cos ϕ)2

[
1 + 2 cos ϕ sin2 ϕ

Z + cos ϕ

]
. (13)

High order terms or minor ones (see Appendix B) are
neglected. Through several simulations we find a typical
validity threshold x/λ > 10/|Z| over which the asymptotical
expression of HN

z starts to fit with the numerically calculated
field, at the surface.

Let us get insight into both electromagnetic entities ob-
tained. The first contribution H

Dip
z is the conventional dipolar

field, which is actually valid whatever (Z,ϕ). We analytically
see that when Z = 0, we retrieve the perfect metal case with
a far field persisting at the surface (ϕ = π/2) with a 1/

√
kr

damping. But when Z �= 0, H
Dip
z (ϕ ∼ π/2) = 0: we have the

appearance of a shadow zone [10] (adjacent to the surface)
for the radiated power, leaving only the place to the surface
polariton and HN

z , when we are sufficiently far from the cavity.
The second one, noted HN

z , is what has a direct link
with the so-called Norton wave. This light field is not a real
surface one, although spatially concentrated due to its rapid
decrease in radial amplitude. The radiation pattern �(ϕ) is
a meaningful result as it will indicate the physical origin of
these additional light waves. For grazing angles, it is not null
at the surface but proportional to 1/Z2 = ε, which could be
high if it was not counterbalanced by the r−3/2 damping. Other
calculations [7,8,10], made for a punctual scatterer, seem to be
consistent with this ε factor, but this has not been commented.
Besides, HN

z presents an intrinsic phase quadrature with re-

spect to H
Dip
z , hence possible destructive interferences of both

fields in polar directions where they present close amplitudes.
Although HN is not unambiguously given for small kr , Eq. (8)
would be an indication that HN is likely present and immersed
into the preponderant dipole field. It is worth noting that, by
strictly keeping Cartesian coordinates and taking r ≈ x close
to the surface, one gets a y/(x3/2) behavior [9] for H

Dip
z (kr),

but this is misleading: the true wave which is non-null at the
surface with a 1/r3/2 damping is HN

z (kr). We recall that the
fields described here are generated by a scatterer that extends
infinitely in one of the spatial dimensions. For a point scatterer,
like in the well-known Sommerfeld problem [12], the field of
a surface plasmon (or a Zenneck surface mode) behaves as
1/

√
r , whereas the Norton wave is as 1/r2.
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FIG. 3. (Color online) Polar behavior of the analytical expres-
sions H Dip (11), HN (12), and of the sum H Ph (10) taking gold at
λ = 1.5 μm (Z = 0.0058–0.1048i) and kr = 150: (a) w = 0.4 μm
and (b) w = 1.2 μm. (c) |�(ϕ)| (13) for some values of Z or w/λ.

Figure 3(a) shows the behavior of the total light field H Ph
z

and that of its inner components. Unsurprisingly, H
Dip
z is

quasi-isotropic, typical of a Rayleigh scattering. HN
z is clearly

different and presents two horizontal half-lobes at each side
of the cavity, which are physically connected to the metallic
surface. But the remarkable effect is that combination of H

Dip
z

and HN
z strongly modifies the final radiation pattern of H Ph

z :
it gives the impression that a residual surface wave slides
along the metal (y = 0), that is not of plasmonic nature.
We also understand here that the transition from a 1/

√
x

damping (near the cavity) to a 1/
√

x3 (far away from it)
at the surface, already observed [7], is due to a change of
the major scattering contribution (from the dipole/cylindrical
field towards the Norton field), without change of the surface
wave vector k. Purely numerical simulations cannot allow
us to explain such a continuous transition, without analytical
developments. Outside the shadow zone, i.e., quite above the
surface, we find the preponderant dipolar space field. Other
remarks can be made: as exemplified in Fig. 3(b), when
w → λ, HN

z vanishes [the surface polariton vanishes even
more, according to Fig. 1(b)] and the radiation lobe of H Ph

becomes more focused in the normal direction, which may
present some interest to transmit light in a less dispersed beam.
The behavior of �(ϕ) for some arbitrary values of Z or w/λ

is also given in Fig. 3(c). When Z → 0, the semilobes of
HN remain flattened against the surface, and the polar angle
corresponding to their maximum amplitude tends to π/2. The
space of validity of (12) is also rejected to infinity: at end, only
H

Dip
z becomes relevant, and we retrieve the perfect metal case.

IV. PHYSICAL INTERPRETATION
OF THE NORTON FIELD

What is the physical source of HN
z ? If we remind the Ey

arrows in Fig. 1(a), we have an effective vertical electric dipole
at the aperture level (see also Appendix A). This vertical
momentum is responsible for the Norton wave generation,

FIG. 4. (Color online) Maps of field modulus for a slit width
w = 400 nm and gold at λ = 1.5 μm: H total results from the exact
integral (2) taking α = 1, H spp is (7), H Ph

z is (2)–(7), and HN
z results

here from (2)–(7)–(11). Let us recall that calculus of HN
z through this

subtraction is not valid close to the aperture. As H total = 4 just above
the aperture, max of scales are willingly limited to better highlight
the details of the scattering patterns. The white star refers to a spatial
zone where various field components are detailed in Fig. 5.

whereas the horizontal momentum Ex , at the mouth of
the aperture, forms the classic oscillating dipole [hence the
phase quadrature between (11) and (12)]. The electromagnetic
radiation HN

z is linked to induced surface currents occurring in
the skin depth of both metallic parts forming the slit. Indeed,
the cavity can be viewed as a capacity under illumination,
whereas horizontal metallic parts play the role of (dissipative)
inductances [15]. The current component

Jx(kx  1) =
∫ 0

−∞
HN

z (x,y)dy = Z

ik
HN

z (x,y = 0), (14)

which is guided along the surface, corresponds to an oscillating
field having the wave vector of the free space (k). Thus,
while α �= 0, the surface itself radiates (infrared waves, in our
example) and behaves as a uniform leaky wave antenna [16].
The surface polariton has nothing to do with it, but simply su-
perposes to the Norton field, and does not radiate. Thus, a great
difference is that H sp

z is damped due to absorption [see Eq. (7)],
whereas HN

z is dissipated through emission. They have not the
same Z dependence. The ε amplitude of �, when ϕ ≈ π/2,
seems related to a limit of the spreading of the surface charge
around the slit (according to the metal conductivity). Also, as
observed in Fig. 3, there is a grazing angle ϕm for which |�(ϕ)|
meets a maximum. This angle is close to the pseudo-Brewster
angle defined for metals, that is to say the emissivity of the
radiating surface is maximum for polar directions where its
reflectivity should be minimum (in TM polarization).

Figure 4 gathers some fully calculated maps of the
total scattered field (2) and its inner components. The first
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FIG. 5. (Color online) (a) Behavior of the magnetic field perpen-
dicularly to the gold surface, far enough from the cavity at x/λ = 115.
This spatial region is indicated by a white star in the H Ph

z map of Fig. 4.
The plasmonic and photonic contributions are also superposed. The
photonic field comprises the dipolar field (null at the surface) and the
Norton one. Inset (b) gives details of the photonic part near the surface
(numerically and analytically calculated). One can show by hand that
ynodal ≈ 1/[−k Im(Z)] is the ordinate of a plane along which H Ph

z

cancels, whatever x (for large kr).

map clearly shows the conventional dipole-type radiation,
the surface polariton, and the presence of a shadow zone. While
H Ph reveals a non-negligible amplitude near the aperture, the
existence of a radiating field HN localized along the whole
surface is confirmed by simply subtracting the polariton (7)
and the dipolar field (11) from the total field. The new map
exhibits the scattering lobes with a butterfly shape predicted
by the � function. This physical picture has gone unnoticed
in the literature devoted to optics of metallic nanostructures.
Additional details of the photonic component near the surface,
far from the slit, are displayed in Fig. 5. Along a direction
normal to the surface, it well presents a small amplitude at the
metal level [same value given by (12) taking into account
the finite size w], cancels rapidly at the nodal plane y =
[−k Im(Z)]−1, and increases again when one progressively
enters the dipolar lobe, as expected from Fig. 3(a). Whereas
the true Norton field extends over a few wavelengths in the
y direction, its combination with the dipole field reduces to a
virtual “surface” wave. However, the plasmon wave remains
overwhelming at the interface, due to its low damping on gold
surface in the mid-infrared.

V. CASE OF METAL-LIKE, STRONGLY
ABSORBING MATERIALS

On an experimental level, the Norton-type wave will be
really apparent provided that the SP collapses, i.e., faraway
from the source, or for strongly absorbing materials. So,
instead of gold, let us consider the case of amorphous
silicon in the ultraviolet region. Indeed, aSi behaves as a
metal and shows strong absorbing properties in this spectral
domain. Figures 6(a) and 6(b) display the amplitudes of the
field scattered at the surface, for two ranges of distance,
w/2 < x/λ < 5 and 10 < x/λ < 50 (w = 100 nm). The total

FIG. 6. (Color online) Example given with amorphous silicon at
λ = 282 nm, with εaSi = −3.7 + 13.8i [13] (|Z| = 0.26) and w =
100 nm. Modulus of the total field and that of its plasmonic and
radiative components: (a) near the slit (for y = 0), (b) far from the
slit at the surface level, and (c) far from the slit above the silicon
at y = λ/2. We check that the analytical expression (12) of HN at
the surface well reflects the numerically calculated light field, while
x/λ > 10/|Z|. (d) Real part of HN

z .

field (2) is compared to analytical expressions of each physical
contribution (in their domain of validity). Near the slit, the
light field is always predominant. When x/λ > 2/5, the SPP
becomes the stronger contribution but the total field keeps
a lower amplitude. Above x/λ = 12, the total field presents
an amplitude stronger than H SPP. Finally, very far from the
slit [see Fig. 6(b)], for x/λ > 35, the polariton completely
vanishes, whereas the Norton field remains dominant [well
described by Eq. (12)]. This is all the more notable when we
evaluate Hz a little bit above the surface, at y/λ = 0.5 for
instance, as shown in Fig. 6(c). Clearly, HN

z may present an
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amplitude greater than that of the total field. At y/λ = 5 (not
shown), the SP field is negligible, the dipolar field is prevalent,
and the Norton field still exists but with a weaker amplitude.

The chosen example, here, may suggest a challenging
experiment to better observe and quantify the predicted wave
(instead of a gold surface), with a wavefront sensor [17] for
instance. Let us note that, if the surface impedance model
is less rigorous in the visible, with moderate permittivity
moduli, we can meet the same behavior, in the infrared region,
with other materials like titanium nitride (TiN) which behaves
as an absorbing metal (for example, εTiN = −18.2 + 27.1i

at λ = 1.24 μm [13], and a special demonstration at telecom
wavelength could be welcome). The scattered surface fields
should be preferably probed at the opposite side of the slit, in
order to omit the interference of the exciting (incident) wave.
What is more, to enhance the field amplitudes (i.e., α), the
slit height should be roughly λ/2 to generate a well-known
Fabry-Perot resonance. Instead of a narrow slit, a patch antenna
(horizontal cavity) could also launch Norton and plasmon
waves, as the lateral apertures are the sites of vertical electrical
fields.

VI. CONCLUSION

As a conclusion, this paper brings comprehensive analytical
and numerical results which shed light on a particular kind of
electromagnetic wave scattered by a narrow slit on metal (or
highly conducting) surfaces. Its physical source and behavior,
in the broad space and at optical frequencies, had not been
clearly identified in the scientific literature until now. Indeed,
the well-known surface plasmon and the classic dipolar light
field are not the only contributions. A lateral Norton-type wave
also exists, most often immersed within the scattered field.
This is not a cylindrical field, neither a true surface wave, nor
a proper mode of a flat metallic interface, but a reaction to
a polarized excitation: it features a special radiation pattern
(� function) taking its origin into induced surface currents
residing in the metal skin depth and generated by the dipole
aperture (excited by the vertical electrical momentum).

Considering noble metals, this field might generally have
too weak absolute amplitude to be practically exploited in
systems of photonic size, but depending on other frequencies
and permittivities (as illustrated above, in the paper), it may
become a relevant wave to convey information faraway at
interfaces (not necessarily flat). For example, such Norton
waves are expected to be the best candidate to transmit
microwave signals on the (conducting) human skin, because
Zenneck-surface modes are loosely excited [18].

Although the present work does not aim at revisiting
the extraordinary optical transmission (EOT) (taken as a
starting context), an open question could be to know to which
extent [19] radiation from induced currents may be channeled
through diffraction orders and participate to EOT. Indeed,
in some cases, EOT cannot be assisted by plamons, but by
other vectors with materials whose permittivity exhibits an
imaginary part and a positive real part [21]. One can also
wonder if there is an equivalent of the Norton-type surface
radiance in acoustics [22]. Thus, this deeper fundamental
understanding of the canonical slit case, that bridges the
gap between nano-optics and leaky wave antennas, may

inspire further investigations and other ways of light wave
engineering, with structures more elaborate.

APPENDIX A: SCATTERED SURFACE FIELDS IN THE
PERFECT METAL CASE

This Appendix gives some analytical expressions of the
electromagnetic fields scattered at the surface (y = 0) by a
narrow one-dimensional slit (supporting a fundamental guided
mode), in the case of the perfect reflector. Results are based
on the exact integral Eq. (2).

1. Perpendicular electric field Ey

As Ey = (1/ik)∂Hz/∂x (excepting a cε0 factor), this
component may be expressed for all x, and ∀y > 0 as

Escat
y (x,y) = απ

ikw

{
H

(1)
0 [k

√
(x + w/2)2 + y2]

−H
(1)
0 [k

√
(x − w/2)2 + y2]

}
, (A1)

where

H
(1)
0 (k

√
x2 + y2) =

∫ +∞

−∞

eik(ux+v|y|)

πv
du

and v = √
1 − u2. H

(1)
0 is the zero order Hankel function of

the first kind. Given the angular spectrum representation, it
is interesting to separate the respective contributions due to
evanescent waves (|u| > 1) from that due to space waves
(|u| < 1), so that we can write Ey = Eeva

y + E
spa
y . Thus, at

the interface and ∀x:

Eeva
y (x,y = 0) = απ

kw
[Y0(k|x + w/2|) − Y0(k|x − w/2|)],

(A2)

where Y0(a) is the Bessel function of the second kind [also
noted N0(a) in the literature], defined in the sense that a > 0.
For the homogeneous contribution we have

Espa
y (x,y = 0) = απ

ikw
{J0[k(x + w/2)] − J0[k(x − w/2)]},

(A3)

where J0(a) is the Bessel function of the first kind.
To clarify our understanding, the above analytical expres-

sions have the following asymptotical behaviors:

Espa
y (x,y = 0) =

⎧⎨
⎩

iα π
2 kx if |x| < w

2

−iα

√
2π
kx

cos
(
kx + π

4

)
else,

(A4)

Eeva
y (x,y = 0) =

⎧⎨
⎩

(
2α
kw

)
ln

[
x+w/2
w/2−x

]
if |x| < w

2

α

√
2π
kx

sin
(
kx + π

4

)
if x > w

2 .
(A5)

We note that, in the case of a perfect metal, the evanescent
contribution Eeva

y has an intrinsic singularity at the corners
x = ±w/2, which is inherent in a point effect in this polar-
ization. This solution is physically justified since, above the
aperture, the field behaves as ln(w/2 − x) when x → w/2−, so
it is no more singular than 1/

√
w/2 − x: this joins the Meixner
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FIG. 7. (Color online) Exact behavior of Eeva
y along the interface

y = 0, in the case of the perfect metal, depending on the reduced
variable x/w, for kw = 0.75. The slit, centered at x = 0, occupies
the interval [− 1

2 ; 1
2 ]. The excitation coefficient α of the cavity mode

has been fixed to unity here.

edge condition that ensures the field is bounded in energy [23].
Let us emphasize that Ey ∝ σhor, where σhor is the surface

charge density on the horizontal interfaces. As an example,
Fig. 7 displays the behavior of Ey (exact analytical expression)
taking α = 1, and shows that this component is solely intense
around the slit edges: such sites constitute the hot spots
where the electric charges strongly accumulate if a resonance
occurs.

2. Magnetic field Hz at the surface

For the scattered magnetic field we have, for y = 0:

Hz(x,y) = 2α

kw

∫ ∞

0

sin
[
k
(

w
2 + x

)
u
] − sin

[
k
(
x − w

2

)
u
]

u
√

1 − u2
du.

(A6)

We may judiciously rewrite the integral as follows:

Hz(x,y = 0) = πα

kw

∫ k(x+ w
2 )

k(x− w
2 )

[J0(t) + iY0(t)]dt. (A7)

The magnetic field results from the sum of a continuum of line
sources all over the aperture width (according to the Huygens
principle). By separating the contribution due to evanescent
waves (|u| > 1) from that due to space ones (|u| < 1), in the
first integral, we can write Hz(x,y = 0) = H

spa
z + H eva

z . Both
contributions have the respective asymptotical behaviors:

H spa
z

∣∣
x,y=0 =

⎧⎨
⎩

πα(1 − (kx/2)2) if |x| < w
2

α

√
2π
kx

sin
(
kx + π

4

)
for x > w

2 ,
(A8)

H eva
z

∣∣
x,y=0 =

⎧⎨
⎩

2α
i

[1 + 2 ln(2) − ln(kw) − γ ] if |x| < w
2

α
i

√
2π
kx

cos
(
kx + π

4

)
for x > w

2 ,
(A9)

where γ = 0.55721 . . . is the Euler’s constant.

3. Tangential electric field Ex at the surface

Ex = (i/k)∂Hz/∂y. Here again we separate the evanescent and space wave contributions:

Eeva
x |x,y=0 =

∣∣∣∣∣
2α
kw

{Si[k(x + w/2)] − Si[k(x − w/2)]} if |x| > w/2

− 2α
kw

{
π − Si

[
k
(
x + w

2

)] + Si
[
k
(
x − w

2

)]}
if |x| < w/2

(A10)

and ∀x:

Espa
x

∣∣
x,y=0 = − 2α

kw

{
Si

[
k

(
x + w

2

)]
− Si

[
k

(
x − w

2

)]}
,

(A11)

where Si(a) designates the sine integral defined by

Si(a) =
∫ a

0

sin t

t
dt.

By summing E
spa
x + Eeva

x , one actually finds that Ex = 0 on
the perfectly reflecting surface (as expected), except along the
subwavelength aperture:

Ex

(
|x| <

w

2
,y = 0

)
= −αλ

w
. (A12)

This is the amplitude of the horizontal dipolar momentum
existing at the slit output (such a dipole oscillates in time, hence
radiation). Indeed, Ex(x = ±w/2,y) ∝ σvert, where σvert is
the surface charge density on the vertical walls, the charge
distributions on both sides of the slit having opposite signs.

It is possible to show theoretically [4] that the normalized
field modulus |Ex/Einc| cannot overcome 2/kw at the mouth
of a transmitting subwavelength slit, in the perfect metal case,
i.e., |α| � 1/π .

APPENDIX B: CORRECTIVE TERMS OF �

When we calculate the second derivative of f (u) =
Sw,Z(u)/(v + Z), we find a main term for the � function
[already given in Eq. (13)], and other minority terms linked
to the aperture size dependence (regardless of whether the
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metal is perfect or not). These last ones can be neglected to
simplify our analysis and were not essential for a quantitative
description. Both complementary contributions of � will be
called �compl,1 and �compl,2:

�compl,1(ϕ,Z) = 2
dSw,Z(u)

du

∣∣∣∣
u=sin ϕ

sin ϕ cos2 ϕ

(Z + cos ϕ)2
. (B1)

Assuming, for sake of simplicity, that Sw,Z(u) =
sec(kwu/2) as in the perfect metal case, we get

�compl,1(ϕ,Z) ≈ 2[cos(κ) − sec(κ)]

[
cos ϕ

Z + cos ϕ

]2

, (B2)

with κ = (kw/2) sin ϕ. As cos(κ) − sec(κ) ≈ −κ2/3 for small
κ , �compl,1 has only some numerical weight for angles ϕ ∼

π/3, and it is zero when ϕ = 0 or at the surface level. It would
describe some quadrupolar-order scattering lobe of the slit.
It is a geometrical aperture term as �compl,1 does not cancel
when Z = 0 and tends to vanish when w → 0. Also,

�compl,2(ϕ,Z) = d2Sw,Z(u)

d2u

∣∣∣∣
u=sin ϕ

cos3 ϕ

Z + cos ϕ
. (B3)

d2Sw,Z(u)

d2u

∣∣∣∣
u=sin ϕ

= 2[sec(κ) − cos(κ)] − κ2 sec(κ)

sin2 ϕ
. (B4)

Note that �compl,2/�compl,1 ∼ Z + cos ϕ, with |Z| < 1.
These small lacking corrections have no contribution at the

surface, that is why they are not directly included in the Norton
field expression HN .
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(1971).

155404-8

http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1038/nature06762
http://dx.doi.org/10.1038/nature06762
http://dx.doi.org/10.1038/nature06762
http://dx.doi.org/10.1038/nature06762
http://dx.doi.org/10.1103/PhysRevLett.97.036405
http://dx.doi.org/10.1103/PhysRevLett.97.036405
http://dx.doi.org/10.1103/PhysRevLett.97.036405
http://dx.doi.org/10.1103/PhysRevLett.97.036405
http://dx.doi.org/10.1109/JLT.2007.916441
http://dx.doi.org/10.1109/JLT.2007.916441
http://dx.doi.org/10.1109/JLT.2007.916441
http://dx.doi.org/10.1109/JLT.2007.916441
http://dx.doi.org/10.1088/1367-2630/13/8/083025
http://dx.doi.org/10.1088/1367-2630/13/8/083025
http://dx.doi.org/10.1088/1367-2630/13/8/083025
http://dx.doi.org/10.1088/1367-2630/13/8/083025
http://dx.doi.org/10.1038/nphys372
http://dx.doi.org/10.1038/nphys372
http://dx.doi.org/10.1038/nphys372
http://dx.doi.org/10.1038/nphys372
http://dx.doi.org/10.1088/0034-4885/72/6/064401
http://dx.doi.org/10.1088/0034-4885/72/6/064401
http://dx.doi.org/10.1088/0034-4885/72/6/064401
http://dx.doi.org/10.1088/0034-4885/72/6/064401
http://dx.doi.org/10.1016/j.surfrep.2009.07.003
http://dx.doi.org/10.1016/j.surfrep.2009.07.003
http://dx.doi.org/10.1016/j.surfrep.2009.07.003
http://dx.doi.org/10.1016/j.surfrep.2009.07.003
http://dx.doi.org/10.1103/PhysRevB.80.155407
http://dx.doi.org/10.1103/PhysRevB.80.155407
http://dx.doi.org/10.1103/PhysRevB.80.155407
http://dx.doi.org/10.1103/PhysRevB.80.155407
http://dx.doi.org/10.1364/OE.20.002149
http://dx.doi.org/10.1364/OE.20.002149
http://dx.doi.org/10.1364/OE.20.002149
http://dx.doi.org/10.1364/OE.20.002149
http://dx.doi.org/10.1088/1367-2630/11/12/123020
http://dx.doi.org/10.1088/1367-2630/11/12/123020
http://dx.doi.org/10.1088/1367-2630/11/12/123020
http://dx.doi.org/10.1088/1367-2630/11/12/123020
http://dx.doi.org/10.1002/pssr.201004228
http://dx.doi.org/10.1002/pssr.201004228
http://dx.doi.org/10.1002/pssr.201004228
http://dx.doi.org/10.1002/pssr.201004228
http://dx.doi.org/10.1109/MAP.2004.1305535
http://dx.doi.org/10.1109/MAP.2004.1305535
http://dx.doi.org/10.1109/MAP.2004.1305535
http://dx.doi.org/10.1109/MAP.2004.1305535
http://dx.doi.org/10.1109/74.735961
http://dx.doi.org/10.1109/74.735961
http://dx.doi.org/10.1109/74.735961
http://dx.doi.org/10.1109/74.735961
http://dx.doi.org/10.1016/0030-4018(73)90114-4
http://dx.doi.org/10.1016/0030-4018(73)90114-4
http://dx.doi.org/10.1016/0030-4018(73)90114-4
http://dx.doi.org/10.1016/0030-4018(73)90114-4
http://dx.doi.org/10.1063/1.3583561
http://dx.doi.org/10.1063/1.3583561
http://dx.doi.org/10.1063/1.3583561
http://dx.doi.org/10.1063/1.3583561
http://dx.doi.org/10.1109/JPROC.2012.2187410
http://dx.doi.org/10.1109/JPROC.2012.2187410
http://dx.doi.org/10.1109/JPROC.2012.2187410
http://dx.doi.org/10.1109/JPROC.2012.2187410
http://dx.doi.org/10.1364/OL.37.003531
http://dx.doi.org/10.1364/OL.37.003531
http://dx.doi.org/10.1364/OL.37.003531
http://dx.doi.org/10.1364/OL.37.003531
http://dx.doi.org/10.1109/TAP.2009.2031917
http://dx.doi.org/10.1109/TAP.2009.2031917
http://dx.doi.org/10.1109/TAP.2009.2031917
http://dx.doi.org/10.1109/TAP.2009.2031917
http://dx.doi.org/10.1109/TAP.2004.840518
http://dx.doi.org/10.1109/TAP.2004.840518
http://dx.doi.org/10.1109/TAP.2004.840518
http://dx.doi.org/10.1109/TAP.2004.840518
http://dx.doi.org/10.1103/PhysRevB.71.075404
http://dx.doi.org/10.1103/PhysRevB.71.075404
http://dx.doi.org/10.1103/PhysRevB.71.075404
http://dx.doi.org/10.1103/PhysRevB.71.075404
http://dx.doi.org/10.1103/PhysRevLett.99.174301
http://dx.doi.org/10.1103/PhysRevLett.99.174301
http://dx.doi.org/10.1103/PhysRevLett.99.174301
http://dx.doi.org/10.1103/PhysRevLett.99.174301



