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Magnetic ordering in quantum dots: Open versus closed shells
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In magnetically doped quantum dots, changing the carrier occupancy from open to closed shells leads to qualita-
tively different forms of carrier-mediated magnetic ordering. While it is common to study such nanoscale magnets
within a mean-field approximation, excluding the spin fluctuations can mask important phenomena and lead to
spurious thermodynamic phase transitions in small magnetic systems. By employing coarse-grained, variational,
and Monte Carlo methods on singly and doubly occupied quantum dots to include spin fluctuations, we evaluate
the relevance of the mean-field description and distinguish different finite-size scaling in nanoscale magnets.
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I. INTRODUCTION

Nanoscale magnets are fascinating systems displaying
phenomena at the boundary between classical and quantum
physics. They reveal important implications for fundamen-
tal phenomena, such as macroscopic quantum tunneling
[1–3], magnetic polaron formation [4,5], tunable magnetism
[6–8], and strongly correlated states [9], as well as potential
applications in information storage and processing, arising
from the superparamagnetic limit [10], magnetic hardening
induced by nonmagnetic molecules [11], spin-lasers [12,13],
and implementations of qubits [14,15].

Despite the significant differences between nanoscale mag-
nets and their bulk counterparts, a mean-field description that
could be suitable for bulk magnets in the thermodynamic limit,
remains also widely used in describing magnetic ordering in
nanostructures. Unfortunately, the appealing simplicity of the
mean-field approximation (MFA) can often mask important
phenomena. Neglecting thermodynamic spin fluctuations can
lead to spurious thermodynamic phase transitions in small
magnetic systems. Does that imply that the MFA cannot
describe nanomagnets, or that there are situations in which
MFA could yield valuable and unexplored insights?

In this work we show that the applicability of the MFA
varies between different nanomagnets, which also display
different finite-size scaling and lead to distinct thermodynamic
limits. We focus on magnetically doped semiconductor quan-
tum dots (QDs) with the localized impurity spins typically, pro-
vided by Mn ions [4,5,16–42]. These systems are multicarrier
generalizations of the magnetic polaron formation [43–51] that
can be viewed as a cloud of localized impurity spins, aligned
through exchange interaction with a confined carrier spin. The
characteristic signatures of magnetic polarons is the presence
of high-temperature tails in the root-mean-square magnetiza-
tion, rather than an abrupt vanishing of magnetization at the
Curie temperature, TC , expected for bulk magnets [52].

To qualitatively distinguish magnetic ordering in differ-
ent nanomagnets, such as epitaxially grown or colloidal
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FIG. 1. (Color online) Qualitative behavior of magnetic ordering
in nanoscale systems. An example of a system that (a) does not
and (b) does display a phase transition. The free energy, Eq. (1), is
shown as a function of the order parameter at various temperatures
applicable to both (a) and (b). (c) The temperature evolution of the
order parameter for the free energy described in (a) and (b). (d)
For high temperature, there are two qualitatively different finite-size
scalings for the normalized order parameter, which also extrapolate
to distinct thermodynamic limits (circles).

QDs [5,22–30], we introduce a simple description in which the
relevant free-energy functional [44,53] is reduced to a MFA
free energy, F , given as a function of the order parameter X,
and the absolute temperature, T ,

F (X,T ) = g0(T ) + g1(T )X + α(T − TC)

2
X2 + g4(T )

4
X4,

(1)
where the expansion coefficients, g0, g1, α, and g4 are
functions of T . The quadratic and quartic terms in X describe
the entropy of the magnetic ions. Compared to the conventional
Ginzburg-Landau form [52], it is surprising to see in Eq. (1)
the linear term in X in the absence of an applied magnetic
field; we describe the origin of this term in Sec. III.

As shown in Fig. 1 (solid lines), the presence of a linear
contribution in the order parameter, g1 �= 0, has a striking
consequence. For all relevant T [54], the free-energy minimum
is attained for a nonvanishing order parameter [Fig. 1(a)],
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implying the absence of a spurious phase transition. The
magnetic order remains finite for all T [Fig. 1(c)]. In contrast,
for g1 = 0 (broken lines) Figs. 1(b) and 1(c) reveal a behavior
typically associated with bulk ferromagnets displaying a phase
transition for T > 0. Surprisingly, this simple MFA description
provides two qualitatively different finite-size scalings with
number of spins (magnetic ions) in Fig. 1(d), which we
later show accurately reflects the behavior of two classes of
nanoscale magnets by considering a more rigorous approach
including spin fluctuations.

After this introduction, in Sec. II we provide an overview of
the employed theoretical methods and discuss the importance
of the correct choice of the order parameter. We then focus
on the two classes of nanomagnets and the simplest magnetic
QD embodiment: (i) a single occupancy, implying the finite
carrier spin configuration of an open shell in Sec. III, and (ii) a
double occupancy, corresponding to the vanishing carrier spin
configuration of a closed shell in Sec. IV. We explain how
these two classes of nanomagnets are already qualitatively
different at the MF level corresponding to (i) g1 �= 0 and
(ii) g1 = 0 behavior, in Fig. 1 and how they can be viewed
as representing magnetic polarons [4,5,16,34,35,55–57] and
magnetic bipolarons [9,58–60], respectively. We conclude our
presentation with the implications for the relevance of MFA to
nanomagnets and discuss outstanding questions.

II. THEORETICAL OVERVIEW

Magnetically doped QDs are a useful model system to
study magnetic ordering in nanostructures. Even with very
different growth techniques (top-down or bottom-up), such as
epitaxially grown QDs or solution-processed colloidal QDs,
there are striking similarities in the manifestations of their
nanoscale magnetism, as well as in the limitations of their
theoretical description. We illustrate different implications of
magnetic ordering by focusing on (II,Mn)VI QDs, depicted
in Fig. 2. These systems display carrier-mediated magnetism,
extensively studied in bulk dilute magnetic semiconductors.
Since Mn2+ is isovalent with group II ions, carriers must be
created independently; for example, excitation of electron-
hole pairs by interband absorption of light [Fig. 2(a)]. By
changing the intensity of light can thus change the QD
occupancy to realize both open- and closed-shell QDs. A
realization of multiple occupancy in QDs is observed in various
experiments [62–68].

FIG. 2. (Color online) (a) A scheme of QDs grown on a two-
dimensional wetting layer (WL) in which electron-hole pairs are
created by interband absorption of light. Holes are subsequently
captured in the QD. Type-II conduction/valence band (CB/VB)
profile [61] of a II-VI QD doped with Mn spins. [34] ε and ECV

are the confinement and band-gap energies.
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FIG. 3. (Color online) (a) The free energy as a function of
magnetization, ξ , reveals a minimum at low T and vanishes at high
T . MFA will give a second-order phase transition. (b) Corrected free
energy of a nanoscale magnet as a function of observable exchange
energy, X, giving a finite value to the order for any finite T .

From the band alignment of conduction and valence bands
in Fig. 2(b), the ordering of Mn spins located in the QD
region is dominated by the holes, characterized by the Mn-hole
exchange coupling β. The electrons have a negligible influence
on magnetic ordering. They are spatially removed from Mn and
typically have ∼5–6 times smaller exchange coupling with Mn
than holes [47].

We first recall the MFA as known from bulk systems, but
due to its simplicity it is often used in nanomagnets where
its validity is questionable. A conventional mean-field theory
is illustrated in Fig. 3, where the most probable state of
the system is obtained by minimizing the free energy as a
function of the order parameter. For nanoscale systems, one
needs to be careful with the choice of an order parameter.
This often overlooked consideration has striking implications,
as depicted in Figs. 3(a) and 3(b), which we further explain
on the examples of magnetic polarons (MPs) and magnetic
bipolarons (MBPs), discussed in Secs. III and IV. A common
choice of magnetization ξ as the order parameter, shown in
Fig. 3(a) leads to spurious thermodynamic phase transition in
nanoscale magnets. In contrast, if an observable quantity, such
as the exchange energy X, is chosen as the order parameter, the
phase transition can be removed. This is shown in Fig. 3(b),
where there is always a minimum in the free energy at all
T . Based on the choice of the order parameter we can then
recover either the g1 = 0 or the g1 �= 0 behavior of the free
energy depicted in Figs. 1(a) and 1(b).

Some qualitative trends in magnetic QDs can be ob-
tained from the MFA developed for bulk dilute magnetic
semiconductors. The exchange coupling of a carrier (hole)
and magnetic impurity (Mn) spins, s and S, respectively,
can be expressed in terms of two effective magnetic fields.
The resulting self-consistent equations for the average spin
(along the direction of the applied field or spontaneous Mn
magnetization) are different depending on whether the carriers
have nondegenerate or degenerate distribution [69,70]. We will
later discuss how these two bulk cases have similarities with
the MFA applied to MPs and MBPs.

For nondegenerate carriers, the self-consistent equations
are [70],

〈sz〉 = sBs

(
βa3

0ni

kBT
〈Sz〉

)
, (2)

〈Sz〉 = SBS

(
βa3

0nc

kBT
〈sz〉

)
, (3)
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where a3
0 is the unit cell volume, nc and ni are the carrier and

magnetic impurity densities, respectively; kB is the Boltzmann
constant, and BJ (x) is the Brillouin function,

BJ (x) = 2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

( x

2J

)
. (4)

In the high-T limit of a small ratio of the effective magnetic
and thermal energies, the expansion in Eq. (3),

BJ (x) ≈ J + 1

3J
x + O(x3) x � 1, (5)

yields a vanishing magnetic response at a critical temperature,

kBTC = 1
3βa3

0
√

ninc

√
S(S + 1)s(s + 1). (6)

For the degenerate case, the carrier spin is given by

〈sz〉 = s

2nc

∫
dεf (ε)

[
D

(
ε + sβa3

0ni〈Sz〉
)

−D
(
ε − sβa3

0ni〈Sz〉
)]

, (7)

where D(ε) is the density of hole states. In the high-T limit,
the integrand in Eq. (7) can be expanded, using Eq. (3), and
Eq. (5), to give the critical temperature

kBTC = 1
3

(
βa3

0

)2
niS(S + 1)s2D(μ), (8)

where μ is the chemical potential. Interestingly, the difference
between the linear and quadratic β dependence of the TC

in MFA for the two bulk dilute magnetic semiconductors in
Eqs. (6) and (8) is also obtained using the MFA for MPs and
MBPs, respectively.

At low T , where spin fluctuations are small, MFA can ac-
curately describe the thermodynamics of a finite-size system.
However, a careful treatment is needed for a higher T , where
large spin fluctuations could play the dominant role in the
thermodynamics of magnetic QDs [55,71].

Unlike many studies of magnetic QDs that do not go beyond
mean-field theory [8,60,72–74], we will utilize two methods,
which include spin fluctuations. The first is a coarse-grained
approach [9] in which we discretize the QD space into a
number of cells, Nc with Nk being the number of Mn spins
belonging to each grid point where

∑Nk

j=1 Sjz is the projection
of the total spin onto the z axis of the Mn contained at the kth
grid point. Within a given cell the wave function is slowly
varying allowing one to neglect the spatial dependence of
the carrier and spin density. The full partition function is
obtained by summing over all configurations of the normalized
magnetization in a given cell.

The second method is to perform Monte Carlo simulations.
Unlike the coarse-grained method, Mn can be positioned
at many sites allowing for spatial variation in the carrier
spin density. The Monte Carlo simulation seeks approximate
solutions to the Schrödinger equation, for the Hamiltonian
Ĥ , at a fixed T , for a finite orthonormal basis |�〉 at a
given Mn spin {Sz} configuration. The calculation entails
randomly generating a Mn configuration at a given T and
producing a matrix representation of Ĥ ({Sz}) in a finite basis
and solving the eigenvalue problem. A metropolis algorithm
is used to obtain the most probable Mn configuration at a fixed
T [75].

Our model to study magnetic ordering in open- and closed-
shell systems is motivated by the Mn-doped QD with type-II
band alignment in Fig. 2, was shown experimentally to support
robust MPs [34]. We use the total QD Hamiltonian, Ĥ = Ĥc +
Ĥex, with typical two-dimensional (2D) nonmagnetic (carrier)
and magnetic (Mn-hole exchange) parts, where

Ĥc =
Nh∑
i=1

[
− �

2

2m∗ ∇2
i + 1

2
m∗ω2r2

i

]
+ UNh

, (9)

� is the Planck’s constant there are Nh holes at the position ri

and m∗ is their effective mass. A harmonic x-y confinement
of strength ω is much weaker than the confinement along the
growth (z) direction, implying effectively 2D system. UNh

is
the charging energy. The p-d exchange interaction between
spins of Mn and confined holes has the Ising form [17,76–79]
because of the strong z-axis anisotropy, arising from spin-orbit
interaction in the 2D QDs with energetically favorable heavy
holes,

Ĥex = −β

3

Nh∑
i=1

NMn∑
j=1

ŝzi Ŝzj δ(ri − Rj ), (10)

where there are NMn Mn spins at the position Rj . Here, ŝz

is the heavy-hole (pseudo)spin operator with projections sz =
±3/2, while Ŝz is the operator of the z projection of the Mn
spin S = 5/2. Our theory does not include antiferromagnetic
interactions between neighboring Mn ions, which is relevant
for QDs doped with large Mn concentrations [80].

Since Ĥex does not contain spin-flip processes, the total
wave function is a product of the hole and Mn-spin parts [45].
The partition function of the system can be calculated using a
Gibbs canonical distribution,

Z = TrSjz,szi
e−Ĥ /kBT , (11)

which even for a single hole has a prohibitive complexity
to be solved exactly. To calculate Z, in a typical QD with
NMn ∼ 100–1000 and S = 5/2 for Mn spin, one would need
to solve 6NMn replicas of the hole Schrödinger equation.

To overcome this computational complexity and gain
insight in magnetic ordering of open- and closed-shell QDs we
first use the MFA. We next consider a coarse-grained approach
of discretizing the QD space to include spin fluctuations
and examine the limitations of the MFA. We investigate
the thermodynamics of the MP and the MBP formation
and explore the finite-size effects by varying the number of
magnetic impurity spins. We further corroborate our results
and the influence of spin fluctuations using Monte Carlo
simulations.

III. MAGNETIC POLARONS (MPs)

Early studies of MPs considered bulk magnetic semicon-
ductors where the localized carrier spin was provided by the
donor or acceptor [48,49]. For such bound magnetic polarons a
finite extent of the carrier wave function leads to the alignment
of only a small number of a nearby spins of magnetic impurities
having many similarities with MPs in magnetic QDs. While
problems of a conventional MFA in describing experiments
on bound magnetic polarons have been explained over thirty
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years ago [44], (spurious critical behavior and thermodynamic
phase transitions in very small magnetic systems was removed
after including spin fluctuations) such pitfalls continued to be
repeated in describing magnetic QDs.

We begin by considering a singly occupied QD [Nh =
1, UNh

= 0, recall Eqs. (9) and (10)], the simplest realization
of an open-shell QD [81], and study the thermodynamics
of the MP. We build the partition function by constructing
a canonical Gibbs distribution, Eq. (11). The distribution
function, 	S(Nk,ξk), that describes the number of configu-
rations of free spins in a given cell expressed in terms of
the microscopic parameter, ξk (which can be viewed as a
normalized magnetization),

	S(Nk,ξk) =
∑
{Sjz}

δ

⎛
⎝ξk − 1

NkS

Nk∑
j=1

Sjz

⎞
⎠, (12)

where (recall Sec. II)
∑Nk

j=1 Sjz is the projection of the total Mn
spin onto the z axis, and the argument of the δ function defines
the normalization of ξ while the δ function is the distribution of
Mn spins in a cell. We find 	S(Nk,ξk) ∝ exp[−GS(ξk)/kBT ]
(see Appendix A for details) with

GS(ξk) = kBT Nk

{
ξkB

−1
S (ξk) − ln ZS

[
B−1

S (ξk)
]}

, (13)

being the free energy for noninteracting spins, where ZS(x) =
sinh [(1 + 1/2S)x]/ sinh [x/2S], B−1

S (y) is the inverse of the
Brillouin function y = BS(x) [82].

A simple manifestation of a magnetic ordering in an
open-shell QD occupied by a single carrier is the MP formation
depicted in Fig. 4. Through exchange interactions between
the carrier and Mn spins, once random paramagnetic Mn
ions [Fig. 4(a)] acquire their spin alignment [Fig. 4(b)]
(antiferromagnetically coupled to a hole spin) and reduce
the total energy of the carrier-Mn system. As a result of the
hole-Mn exchange term in Eq. (10), the doubly degenerate
heavy-hole energy level is split into two nondegenerate energy
levels, as shown in Fig. 4(c). This corresponds to a red

FIG. 4. (Color online) (a) A magnetic QD doped with random
paramagnetic Mn ions (green arrow) with one carrier spin density
(red arrow). (b) The system lowers its energy through the exchange
interaction and results in an antiferromagnetic alignment between
the hole spin and the Mn spins producing the MP. (c) The doubly
degenerate QD energy level (1) splits with formation of the MP
(2). The difference between the nonmagnetic QD energy and the
ground-state energy is the average exchange energy, EMP.

shift of the interband transition energy as a function of
time, which is observed in time-resolved photoluminescence
experiments [4,5,34,35].

In discrete space, for a given configuration of Mn spins, {ξ},
the two energy eigenvalues of Eq. (10) are, E± = ±
MP/2,
with spin-splitting energy


MP = 2β

3
S

∑
k

NkρMP(Rk)ξk, (14)

where,

ρMP(Rk) = 3|φ(Rk)|2/2, (15)

is the heavy-hole spin density at the kth cell, expressed in terms
of the corresponding wave function φ.

A MFA result for the spin-splitting energy 
MF
MP, is obtained

by inter-relating the carrier and Mn spin densities 〈sz〉 and 〈ξk〉,
respectively, in analogy of Eqs. (2) and (3),

〈sz〉 = 3

2
tanh

(
3

2

∑
k

β|φ(Rk)|2
3kBT

NkS〈ξk〉
)

, (16)

and

〈ξk〉 = BS

(
S

β|φ(Rk)|2
3kBT

〈sz〉
)

. (17)

Substituting Eq. (16) and (17) into Eq. (14) gives


MF
MP

2
= β

3
S

∑
k

NkρMP(Rk)BS

(
βSρMP(Rk)

3kBT
tanh

[

MF

MP

2kBT

])
.

(18)
In the unsaturated limit, 
MF

MP/2kBT � 1, Eq. (18) gives a
vanishing 
MF

MP at a critical temperature,

kBT MF
C,MP = β

3

(
S(S + 1)

3

∑
k

Nkρ
2
MP(Rk)

)1/2

. (19)

The MP energy, EMP, is defined as the expectation value of
Eq. (10). The MFA expression is

EMF
MP = −
MF

MP

2
tanh

(

MF

MP

2kBT

)
. (20)

Having derived a MF theory description for the MP, one
can make a connection between the MP and to that of
a bulk nondegenerate magnetic semiconductors. Comparing
Eqs. (19) and (6), we see in both cases that the critical
temperature has a linear dependence on β. In a nondegenerate
bulk semiconductor the concentration of donor/acceptor atoms
is so small that the Pauli exclusion principle is ineffective and
does not alter the carrier spin distribution, which is described
by the Boltzmann statistics. The magnetic impurity spins tend
to align with one carrier spin and form a bound magnetic
polaron [48]. The carrier spin in a nondegenerate magnetic
semiconductor does not interact with other carriers spins. Thus,
like the carrier in a magnetic QD, the carrier spins are free spins
and will tend to align the spins of magnetic impurities.

Next we turn our analysis to the MP energy. Motivated
by typical QD parameters [71], the blue/dashed line in Fig. 5
shows the MF behavior of the MP energy Eq. (20) as a function
of T . For the chosen parameters, MF predicts a second-order
phase transition at characteristic temperature T MF

C,MP = 29 K.
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FIG. 5. (Color online) A mean-field solution for MP blue/dashed
curve and the result obtained through the fluctuation approach
red/solid. For simplicity, we approximate the hole wave function
as uniform throughout the QD volume V, φ(r) = 1/

√
V [83]. The

parameters are N0β = −1.05 eV, the cation density, N0 = 4/a3
0 with

a0 � 6.1 Å, V = πr2hz, r = 5 nm, hz = 2.5 nm, NMn = 90.

The phase transition occurs at a kBT comparable to the
exchange splitting of hole levels. At this temperature both
hole states of opposite spin are approaching each other with
equal probability. Consequently, yielding vanishing average
MF spin density and average exchange energy at a finite T .

MFA neglects the possibility for the system to deviate from
the minimum configuration, {ξMF

k }, leading to phase transitions
not allowed in nanoscale systems. To demonstrate the removal
of the phase transition, we use the full partition function for
the MP by summing over all configurations of {ξk} [44]. The
partition function is

ZMP =
∑

σ=±1

∫
exp

(
σ
MP[ξ ]

2kBT

) Nc∏
k=1

	S(Nk,ξk)dNcξ, (21)

with the spin index σ = ±1 for the heavy-hole spin sz = 3
2σ .

Since the distribution 	S(Nk,ξk) is an even function of ξk , the
integrals for σ = ±1 yield the same result and

ZMP = 2
∫

exp

(

MP[ξ ]

2kBT

) Nc∏
k=1

	S(Nk,ξk)dNcξ. (22)

Here the summation of σ = ±1 is done exactly, without
neglecting the statistical correlation between σ and {ξk} as
in the MFA. Now, using the steepest descent method as above,
we have

ZMP = 2
Nc∏
k=1

ZS

(
βSρMP(Rk)

3kBT

)Nk

. (23)

The average exchange energy can be evaluated from EMP =
−kBTβd(ln ZMP)/dβ as

EMP = −β

3
S

∑
k

NkρMP(Rk)BS

(
βSρMP(Rk)

3kBT

)
, (24)

where the corresponding results from Eq. (24) include the
fluctuations of Mn spin and are compared in Fig. 5 (red/solid)
with the MFA results (blue/dashed). In many colloidal QDs
the number of magnetic impurities is much smaller than

FIG. 6. (Color online) Illustration of the finite-size effect for the
MP. (a) Spin density (blue/dashed) for fully aligned Mn spins (green).
(b) A flipped Mn spin does not effect the carrier spin density
(red/solid).

used in Fig. 5 (NNm = 90), enhancing the importance of the
fluctuations and the corresponding difference from the MFA
solution.

The MP shows different behaviors in the high- and low-T
limits

EMP ∝
{−β for T → 0

−β2/kBT for βSρMP(Rk)/kBT � 1,
(25)

which correspond to saturated and unsaturated limits of
magnetization, respectively. As shown in Fig. 5, EMP has the
1/T behavior for a wide range of temperatures. This can be
understood as follows. As depicted in Fig. 6, a single carrier
with uncompensated spin couples to a sum of many Mn spins.
Therefore the carrier aligns with the majority of Mn spin, and
a flip of an individual Mn spin would not affect the carrier
spin, and consequently other Mn spins. For this reason, the
Mn spins are in effect weakly interacting, which results in a
1/T Curie-like temperature dependence of EMP.

We now show that the MP does not display a finite-size
effect, when in a fixed QD volume we change the number
of Mn spins. Using the full MP partition function and the
resulting Eq. (23), in Fig. 7(a) we show EMP(T ), normalized
with respect to its fully saturated value for various number of
Mn. Figure 7(b) shows the normalized EMP plotted at fixed T

for various number of Mn ions. The normalized EMP remains
constant. The finite-size effect was accurately predicted by the
MFA. At the saturated and unsaturated limit, EMF

MP ∝ NMn. In
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FIG. 7. (Color online) (a) The MP average exchange energy
normalized by its T = 0 K value for 10 Mn (red/solid) and
20 Mn (black/dashed) as function of T . (b) Normalized MP average
exchange energy as a function of the total number of Mn at fixed T .
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Appendix B we show how EMP will depend on a different
choice of a carrier wave function.

To summarize, we interpret the previous calculations in
terms of the Ginzburg-Landau approach of phase transitions.
While the approach is not reliable due to the nanoscale size
of our system, we may gain important insights. Typically the
partition function is described by a functional integral over
the magnetization ξ [see Eq. (21)]. In the low-T limit (or
|
MP|/2kBT � 1) with e
MP/2kBT + e−
MP/2kBT ≈ e|
MP|/2kBT

in Eq. (21), one can write the free energy

FMP(ξ ) ≈ −g1|ξ | − kBT S(ξ ), (26)

with the entropy S(ξ ) even in ξ . FMP(ξ ) is depicted in Fig. 3(a).
However, the finite potential barrier separating the degenerate
minima at ±ξmin does not prevent the thermal fluctuations
between the local minima. Therefore the correct solution 〈ξ 〉 =
0 is not predicted by the MFA to FMP(ξ ).

We consider the Ginzburg-Landau approach defined with
a different variable, the observable quantity of the exchange
energy X = Eex = σ
MP/2 [see Eq. (14)] with the carrier
spin index σ = ±1. The linear dependence in ξ originates
from the finite carrier spin of the open shell. Since the carrier
spin does not contribute to the entropy, the entropy in X is
directly related to S(ξ ), and we derive the free energy in the
order parameter X = Eex as

FMP(X) ≈ X − T S(X), (27)

as depicted in Fig. 3(b). Again, the entropy S(X) is an
even function of X and Eq. (1) results for the magnetic
polaron. Unlike FMP(ξ ), FMP(X) possesses only one global
minimum at a negative finite X and 〈X〉 < 0 at all T , and
the mean-field interpretation of Eq. (27) gives a qualitatively
correct prediction. The thermodynamic solution of a finite 〈X〉
manifests itself in the finite-scale independence in 〈X〉/NMn

in Fig. 1(d).

IV. MAGNETIC BIPOLARONS (MBPs)

We next turn to a magnetic QD containing two holes
[Nh = 2, U2 = U , Eqs. (9) and (10)]. Closed-shell fermionic
systems, such as noble gases, are known for their stability and
the total spin-zero ground state, making them magnetically
inert. Thus it would seem that this simple example of a
two-hole closed-shell QD doped with Mn would not allow
magnetic ordering. However, the Mn doping does alter the
magnetic properties of closed-shell QDs. The corresponding
ground state, which is neither a singlet nor a triplet, allows
ordering of Mn spins, owing to the spontaneously broken
time-reversal symmetry. [58]

To lower the hole-Mn system energy through exchange
interaction, there needs to be a nonvanishing hole spin density.
During the MBP formation, an initially random Mn spin
orientation [Fig. 8(a)], in the presence of two holes acquires a
spin alignment [Fig. 8(b)]. The emergence of a nonvanishing
local hole spin density, while the total hole spin density
remains zero, is characteristic for a spin pseudosinglet [9,58],
which can be understood from a simple perturbation picture.
The exchange interaction admixes higher (single-particle)
orbitals to the ground-state s orbital. Specifically, as shown
in the Fig. 8(c), the mixing of s and px orbitals leads to

FIG. 8. (Color online) (a) A magnetic QD doped with random
paramagnetic Mn ions spins (green arrows). (b) The system lowers
its energy through the exchange interaction leading to a nonvanishing
spin density and formation of the MBP. Red arrows and lines in (a)
and (b) show how the two-carrier spin density changes due to the
presence Mn. (c) The doubly occupied QD energy level (1) lowers its
energy through the formation of the MBP (2). The difference between
the nonmagnetic QD energy and the MBP ground-state energy is the
average exchange energy Eex.

the spin-Wigner molecule, [9] a spin analog of the Wigner
molecule [84–89]. In contrast to the Wigner molecule, where
the spatial carrier separation originates from the Coulomb re-
pulsion [86], here the dominant contribution of such separation
is typically the carrier-Mn exchange energy.

The corresponding pseudosinglet wave function [58] at
each snapshot of Mn configuration, {ξk}, is

φPS(r1,r2) = N√
2

[u(r1)d(r2) |↑;↓〉 − u(r2)d(r1) |↓;↑〉], (28)

where N = 1/(1 + ε2
x) is the normalization constant,

u(r,{ξk}) = s(r) + εx({ξk})px(r), d(r,{ξk}) = s(r) − εx({ξk})
px(r), and εx({ξk}) is a mixing (variational) parameter that
depends on {ξk}. In choosing our variational wave function we
neglect overlaps between like orbitals, (s-s and px-px), which
results in the loss of fluctuations in the total magnetization at
the site of Mn. These fluctuations are small in the MBP regime.

The variational energy E(εx) is

E = Es + ε2
xEp

1 + ε2
x

+ U − β

3

NMn∑
j=1

ρMBP(Rj ,εx)Sj,z, (29)

where the first term is the sum of the kinetic and potential
energy, the second term is the Coulomb energy, taken to be
constant, and the third term is the average exchange energy
between the MBP spin density,

ρMBP(Rj ,εx) = 6εx

1 + ε2
x

s(Rj )px(Rj ), (30)

at the site of Mn. For a nonmagnetic system, the two-particle
energy for the ground state is Es = 2�ω and for the p state
is Ep = 4�ω. To get close to the eigenstate of the system, we
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seek the εx that minimizes Eq. (29)

εx,min = 
MBP

Eps/2 +
√

E2
ps/4 + 
2

MBP

, (31)

and minimized energy,

Emin = 1

2

(
Es + Ep −

√
E2

ps + 4
2
MBP

) + U, (32)

where Eps = Ep − Es is the energy difference between the s

and px orbital, and the spin splitting due to orbital polarization,


MBP = β

NMn∑
j=1

s(Rj )px(Rj )Sj,z = Eps

NC∑
k=1

χkξk, (33)

with a dimensionless magnetic susceptibility-like term

χk = SNkβs(Rk)px(Rk)

Eps

. (34)

To obtain the full partition function we need to sum over all
configurations of ξk . Since we are in the kBT � Eps regime,
we consider only the spin singlet ground state and neglect the
possibility of a triplet state [90]. The partition function is

ZMBP =
∫

e−Emin/kBT

Nc∏
k=1

	S(Nk,ξk)dNcξ. (35)

For simplicity, to evaluate Eq. (35), we use a two site
model by placing Nk Mn at two opposite sites equally spaced
from the origin along the x axis. The sites are chosen such
that s(R1)px(R1) = −s(R2)px(R2), where R1 and R2 are the
position of the Mn ions at site 1 and site 2, respectively. For
this two-site problem, Eq. (33) reduces to 
MBP = Epsχξ−,
where

ξ− = ξ2 − ξ1, (36)

and χ = |χ1| = |χ2|, N1 = N2 = NMn/2.
To investigate the MBP as a function of T , we begin by

using the MFA. It can be shown that the minimum of the
free energy, FMBP(ξ−) = Emin(ξ1,ξ2) + GS(ξ1) + GS(ξ2), lies
on the ξ1 = −ξ2 line. The free energy becomes

FMBP(ξ−) = Emin(ξ−) + 2GS(ξ−/2). (37)

Minimization of the MBP free energy, Eq. (37), with respect
to ξ− gives a self-consistent equation for 
MF

MBP,


MF
MBP

2
= EpsχBS

⎛
⎝ 4χ
MF

MBP

NMnkBT

√
E2

ps + 4
(

MF

MBP

)2

⎞
⎠, (38)

where 
MF
MBP = EpsχξMF

− . In the unsaturated limit,

MF

MBP/kBT � 1, Eq. (38) gives a vanishing 
MF
MBP at a

critical temperature,

kBT MF
C,MBP = 8S(S + 1)χ2Eps

3NMn
∝ β2. (39)

Unlike the MP, Eq. (19), the MF critical temperature for
MBP is quadratic in β, through χ2, a result similar to that of
degenerate holes in bulk DMS, Eq. (8).

We see that ρMBP(εx) in Eq. (30) is coupled linearly to the
magnetic ordering of the Mn spins via Eqs. (31) and (33),

FIG. 9. (Color online) Illustration of the finite-size effect for the
MBP. (a) Spin density (blue/dashed) for fully aligned Mn spins
(green). (b) A flipped Mn spin changes the carriers spin density
(red/solid).

a result that is analogous to Pauli paramagnetism where the
magnetization of a free electron gas is proportional to the
strength of an external magnetic field. Thus, any small change
in the Mn configuration will result in a linear response in the
distribution of the carriers’ spin density. The strength of the
response is determined by a Pauli-like susceptibly term given
by Eq. (34). Figure 9(a) shows that one Mn spin experiences
the carrier orbital spin while one carrier spin experiences
all Mn collectively. Since the height of the spin density is
determined by εx , which is dependent on the configuration of
Mn spins, if one Mn spin changes, Fig. 9(b), the exchange field
arising from the Mn field is strong so that the carrier responds
to the change. Therefore, inverting one Mn spin, Fig. 9(b),
will change the amplitude of the spin density. Through the
exchange interaction between the holes’ spin density and Mn
spins, all other Mn will respond to the changing spin density.
Thus, the Mn are indirectly interacting with one another
through the hole.

The average exchange energy for the MBP is obtained the
same way as the MP, using the solutions of Eq. (38) to give

EMF
ex = −(


MF
MBP

)2√
E2

ps/4 + (

MF

MBP

)2
. (40)

The green/dashed line in Fig. 10(a) shows the T dependence
of Eq. (40), while Fig. 10(b) shows the mean-field behavior of
the averaged product of the normalized magnetization at the
two sites, 〈m2m1〉. There is an antiferromagnetic correlation
between the product of normalized magnetization at the
two sites. As a consequence of thermal spin fluctuations,
the average exchange energy and the magnitude of 〈m2m1〉
decreases and with increasing T eventually vanishing when the
MFA for the specific parameter set yields a vanishing carrier
spin density resulting in a second-order phase transition at
T MF

C,MBP = 1.5 K.
Exact integration of the MBP partition function Eq. (35),

which correctly includes spin fluctuations, is needed to remove
the phase transitions predicted by MF theory. The average
exchange energy is obtained through

Eex = 1

ZMBP

∫
dξ1

∫
dξ2	S(N1,ξ1)	S(N2,ξ2)

×
[
β

∂Emin(ξ1,ξ2)

∂β

]
e−Emin(ξ1,ξ2)/kBT , (41)

A T dependence of this average exchange energy is shown
by the red/solid lines in Fig. 10(a). With the inclusion of spin
fluctuations, the phase transition is removed resulting in a finite
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FIG. 10. (Color online) (a) T dependence of the average ex-
change energy and the removal of the phase transition for the two-site
model of the MBP, [Eq. (40)] with a nonfluctuating carrier spin density
(green/dashed) and a fluctuating spin density (red/solid) [Eq. (41)].
(b) T dependence of the product of magnetization of each site,
〈m2m1〉, for a fluctuating spin density (red/solid) and nonfluctuating
spin density (green/dashed). The parameters are hz = 2.5 nm, �ω =
30 meV, m∗

h = 0.21, N0β = −1.05 eV, U = 30 meV, R1,2 = ±2 nm,
and NMn = 10.

Eex at T > TC . The product of the normalized magnetization
of each site was calculated numerically to demonstrate the
antiferromagnetic correlation between the Mn spins at the two
sites.

Monte Carlo simulations (see Appendix C for details) verify
the theoretical prediction for the MBP. s-p levels coupled via
Mn spins are directly diagonalized and the variational assump-
tion, Eq. (28), was not used. Mn ions (five per site) were placed
2 nm from the center of the QD along the x axis. We include
s, px , and py orbitals in the simulation. The Coulomb energy,
as before, is a constant. The blue dots in Fig. 10(a) show the T

dependence of the average exchange energy and the product
of the magnetization per site is shown in Fig. 10(b). There is
an excellent agreement between the fluctuation approach and
Monte Carlo simulations. Furthermore, the antiferromagnetic
correlation between the two sites demonstrates the formation
of the MBP.

As we did for the MP, we investigate two limiting cases
for Eex. In the saturated regime, the Mn are maximally
aligned at each site with their spin pointing in opposite
directions with |ξ1 − ξ2| → 2. In this limit, the MF expression,
Eq. (40), is valid. In the opposite unsaturated high-T limit,
e−Emin(ξ1,ξ2)/kBT ≈ 1 can be taken in Eq. (41). Finally, we obtain
the limiting behavior of Eex within the regime χ � 1,

Eex ≈
⎧⎨
⎩

−6 S
S+1NMnT

MF
C,MBP ∝ (NMnβ)2 for T → 0

−T MF
C,MBP ∝ NMnβ

2 for T → ∞
(42)

This shows that, unlike the MP, the coupling dependence is
always in β2. This is due to the fact that the carrier spin density
is polarized from zero by the coupling to Mn spins, unlike the
uncompensated carrier spin in the MP.

The MBP displays a finite-size effect different from the MP.
We plot the T dependence of the average exchange energy,
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FIG. 11. (Color online) The finite-size effect in a doubly occu-
pied QD. (a) T dependence of the normalized MBP average exchange
energy for 10 Mn (red/solid), 20 Mn (black/dashed), and 40 Mn
(blue/dash-dotted), thus 5, 10, and 20 Mn per site, respectively. Mean-
field solution with 10 Mn (black/dotted) and 40 Mn (green/dashed).
(b) The normalized mean-field solution with varying number of Mn
for a fixed T/NMn.

Eq. (41), normalized by its low-T value in Fig. 11(a) with a
varying number of Mn in a given cell. As the number of Mn
increases, the normalized Eex fluctuation tail decays toward the
MF solution. This is demonstrated in Fig. 11(b) at a fixed ratio
of T/NMn. As the number of Mn ion spins increases toward the
thermodynamic limit, the normalized exchange energy decays.
This size dependence is expected from the MF result where a
phase transition to zero exchange energy occurs. The 1/NMn

dependence in Eex reflects the thermodynamic limit towards
the vanishing order parameter.

To summarize, like in the MP case, the MFA can be used
to understand the statistical properties of the MBP. Applying
the variational treatment to the carrier spins, we express the
exchange energy as Eex = −a(ξ1 − ξ2)2 with the Mn spins
ξ1,2 at position 1 and 2. This quadratic dependence (ξ1 − ξ2)2

originates from the carrier spin being linearly polarized out
of the spin singlet in closed-shell systems. With the variable
X ≡ ξ1 − ξ2, the free energy becomes

FMBP(ξ1,ξ2) ≈ −aX2 − T S(ξ1,ξ2). (43)

Confining the discussions to unpolarized states (ξ1 + ξ2 =
0), the entropy becomes an even function of X and Eq. (1)
results with g1 = 0 [see Fig. 1(b)]. We note that, in contrast
to Eq. (1), here the first X2 term in the free energy is
not of an entropic origin. In a finite system 〈X〉 = 0 and
the exchange energy Eex = −a〈X2〉 remains finite. While
the MFA incorrectly predicts a phase transition to Eex = 0
beyond a phase transition temperature, it correctly justifies the
finite-size scaling limit Eex/NMn → 0 as NMn → ∞ as shown
in Fig. 1(d), in a sharp contrast to the MP case. The open-
or closed-shell electronic structures leads to fundamentally
different statistical properties in the quantum dot magnetism.

V. CONCLUSIONS

Many of our findings for magnetic polarons and bipolarons
can be also applied to higher carrier occupancy of quantum
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dots where it is important to distinguish if they form open-
or closed-shell systems, which lead to qualitatively different
classes of magnetic ordering. Performing a thermodynamic
analysis in these nanoscale magnets, we reveal the limitations
of a mean-field approximation and the necessity for a more
accurate theoretical framework that would correctly include
spin fluctuations. Our results show that a careful choice of
the order parameter in the mean-field approximation (using
the exchange energy, rather than magnetization) removes
spurious phase transitions for magnetic polarons, but not for
magnetic bipolarons. In the latter case, the phase transitions
are removed by including spin fluctuations within the coarse-
grained method and Monte Carlo simulations.

The conventional mean-field theory, known from bulk
systems with nondegenerate or degenerate carrier density,
reveals important differences between the magnetic polarons
and bipolarons. Surprisingly, we can introduce a very simple
mean-field form of a free energy to accurately describe qualita-
tively different finite-size effects and distinct thermodynamic
limits in magnetic polarons and bipolarons with the change of
the number of magnetic impurity spins. These findings remain
unchanged once we carefully include spin fluctuations, further
justifying our simple description and a pictorial difference
between the finite-size effects in magnetic polarons and
bipolarons, Figs. 6 and 9, respectively.

Similar to our prediction for an unexpected thermally en-
hanced magnetic ordering in quantum dots [71], a judicious use
of the mean-field approximation and awareness of its artifacts
could provide important insights in unexplored aspects of
nanoscale magnets. For example, we expect that the mean-field
description of the different finite-size scaling in magnetic order
discussed for magnetic polaron and bipolaron will also apply to
other open- and closed-shell quantum dots with higher carrier
occupancy. A mean-field calculation of the critical temperature
could also reveal a different power-law dependence in the
exchange coupling constant for the exchange energy of open-
and closed-shell systems.

In contrast to magnetic polarons, much less is known about
magnetism in closed-shell systems, often simply implying that
the magnetic ordering is completely absent. Therefore, to test
our predictions for magnetic bipolarons it would be important
to focus on the experimental realization of multiple carrier
occupancy in quantum dots. The simple creation of excitons
is not sufficient. A simultaneous presence of single electron
and hole effectively just renormalizes the exchange coupling
with magnetic impurities of magnetic polarons [43]. Instead,
photoexcitation, using chemical and electrostatic doping [91],
should create a pair of holes or electrons.

Another possibility would be to fabricate quantum dots
from novel Mn-doped II-II-V dilute magnetic semiconductors.
These systems provide an independent charge and spin
doping and would therefore be suitable to test formation of
nanoscale magnetism for a wide range of parameters [92–94].
They share with (II,Mn)VIs an isovalent character of Mn
doping, removing the solubility constraint of (III,Mn)Vs an
obstacle for fabricating magnetic quantum dots [40]. Unlike
(II,Mn)VI, Mn-doped II-II-V systems can separately attain
different carrier densities through independent charge doping
and thus readily alter the strength of the Mn-carrier exchange
coupling.
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APPENDIX A: MN DISTRIBUTION FUNCTION

We discretize the QD space with Nk magnetic moments in a
given cell. The distribution function is found by summing over
all configurations of the Mn in a given cell and is determined
by Eq. (12). Using the integral representation of the δ function,
δ(x) = (1/2π )

∫ ∞
−∞ dλe−iλx , the partition function is

	S(Nk,ξk) = NkS

2π

∑
{Sjz}

∫ ∞

−∞
dλe−iλ(NkSξk−

∑Nk
j=1 Sjz). (A1)

Introducing a complex variable h = iλS, Eq. (A1) becomes

	S(Nk,ξk) = Nk

2πi

∫ i∞

−i∞
eNk (ln ZS (h)−hξk)dh, (A2)

where ZS(x) = sinh [(1 + 1/2S)x]/ sinh [x/2S]. The inte-
grand in Eq. (A2) is sharply peaked (Gaussian-like), therefore
we can approximate Eq. (A2) by performing the method of
steepest descent. We deform the contour in the complex plane
to pass through a saddle point in the direction of steepest
descent. By Taylor expansion of the function in the exponent
of Eq. (A2) and performing a Gaussian integral over h we
obtain

	S(Nk,ξk) =
√

Nk

2πχ (hk)
e−GS (ξk,T )/kBT , (A3)

where χ (h) = ∂2 ln ZS(h)/∂h2 and GS(ξk,T ) is the Gibbs
free energy, recall Eq. (13), obtained through a Legendre
transformation [70].

APPENDIX B: MAGNETIC POLARON
RENORMALIZATION

Since the MP is not influenced by the finite-size effect
(recall Figs. 6 and 7), we can employ a variational approach
to study the influence of the wave-function renormalization
on the MP properties in a QD. Starting from the MP partition
function in Eq. (23), we approximate the MP wave function
by a single s orbital of a 2D harmonic oscillator, constant over
the the QD height, hz,

φ(r) = 1/(
√

hzπLMP)e−(x2+y2)/2L2
MP . (B1)

Using a variational approach [44,45] we determine the width,
LMP, that minimizes the total free-energy functional, FMP. The
MP free-energy functional is given by

FMP = �ω

2

(
L2

0

L2
MP

+ L2
MP

L2
0

)
− kBT ln 2

− kBT

NMn∑
j=1

ln

[
ZS

(
βSρMP(Rj )

3kBT

)]
, (B2)
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FIG. 12. (Color online) (a) T dependence of the MP energy
[Eq. (B3)] with the variationally-obtained (renormalized) (red/solid)
and the fixed wave function for a harmonic QD confinement without
Mn spins. (b) The corresponding T dependence of the most probable
width for a renormalized wave function, LMP (red/solid) and fixed
wave function (blue/dashed), LMP ≡ L0, from Eq. (B1). (c) T

dependence of the LMP from a variational method (red/solid) and
Monte Carlo simulations (blue/dotted).

where the first two terms are the sum of the kinetic and potential
energy with L0 = √

�/m∗ω, the third term is from the hole
spin degeneracy, and the final term is due to the exchange
interaction of the hole spin density ρMP(r) at the site of Mn
spins, Rj . As an approximation, we consider a homogeneous
distribution of Mn, and transform

∑
j → N0xMn

∫
d3R (the

continuous limit) where xMn is the Mn fraction per cation
and N0 is the density of cation sites. The average exchange
interaction for the MP, EMP, can be derived to obtain

EMP = −
max

3

∫
d3RρMP(R)BS

(
βSρMP(R)

3kBT

)
, (B3)

where 
max = xMn|N0β|S. EMP is found by numerically
minimizing Eq. (B2) to obtain the most probable width, LMP.
This width determines ρMP by combining Eqs. (B1) and (15)
and yields EMP from Eq. (B3).

It is instructive to now compare how various forms of the
carrier wave function affect the T dependence of the EMP,
shown in Fig. 12(a). We choose xMn = 2.6%, hz = 2.5 nm,
�ω = 30 meV, m∗

h = 0.21, L0 = 3.5 nm–the characteristic
width in the absence of Mn spins, and N0β = −1.05 eV, which
within the classical radius of this harmonic confinement yields
NMn = 90, as in Fig. 5. From Fig. 12(a), where we compare
our results for the variationally obtained LMP(T ) with the wave
function of a fixed width at LMP(T ) ≡ L0, we see that the
wave-function renormalizations have a very small influence on
EMP(T ). In fact, both of them are very similar to the variational
EMP(T ) for a constant wave function in Fig. 5.

From Fig. 12(b) we see that the wave function renormaliza-
tion itself is a small effect. The red/solid curve shows how the
wave function width, normalized to the nonmagnetic width,
L0, varies with T . As the T increases from T = 0 K, the Mn
spins coupled to the tail of the wave function are more prone

to thermal excitation. The wave function shrinks to attain a
more energetically favorable configuration by increasing the
exchange energy gain from the polarized Mn spins near the
center of the QD. Eventually, thermal excitation overcomes
the magnetic energy, and the system relaxes continuously to a
nonmagnetic state resulting in LMP = L0 at large T , as there is
no energy gain from the wave-function renormalization. From
the variational approach we see an additional MP localization:
LMP � L0, while the nonmonotonic LMP(T ) implies also a
nonmonotonic effective exchange field [43] due to the MP
formation.

To further verify the renormalization effect of the MP wave
function, we implement Monte Carlo simulations, removing
the need of a variational calculations of the wave function.
To approximate the MP wave function we include s, p, and
d orbitals in our simulation and allow for mixing of these
orbitals. In Fig. 12(c) we see that both variational (red/solid)
and Monte Carlo (blue/dotted) results agree well with each
other and shown again a nonmonotonic LMP(T ), noted also in
Fig. 12(b). The slightly smaller wave function renormalization
in Fig. 12(c), as compared to that in Fig. 12(b), is a consequence
of fewer Mn spins in the middle region of the QD.

APPENDIX C: MONTE CARLO SIMULATIONS

Monte Carlo simulations were used to approximate solu-
tions to the Schrödinger equation

Ĥ ({S}) |�〉 = E({S}) |�〉 , (C1)

for a fixed finite orthonormal basis |�〉 at a given Mn spin
({S}) configuration. The calculation entails guessing a Mn
configuration at a given T , producing a matrix representation
of Ĥ ({S}) in a finite basis, and solving the eigenvalue problem.

The calculation begins by defining a 2D harmonic QD
and solve for single heavy-hole QD levels and eigenfunctions
without any Mn atoms. We truncate the states up to the first
N orbitals. We obtain N noninteracting wave functions φ0

nσ (r)
at energy E0

n with σ = ↑,↓. For a given configuration of NMn

Mn spins, {Sz1,Sz2, . . . ,SzNMn}, we construct a (2N ) × (2N )
matrix,

Ĥ =
∑
nσ

E0
n

∣∣φ0
nσ

〉 〈
φ0

nσ

∣∣ +
∑
nn′,σ

gnn′σ ({Sz})
∣∣φ0

n′σ
〉 〈

φ0
nσ

∣∣ .
(C2)

The interaction constant g is

gnn′σ ({Sz}) = β

3

NMn∑
j=1

[
φ0

n′σ (Rj )
]∗

(sz,σ Szj )φ0
nσ (Rj ), (C3)

where sz is the spin of the carrier and Rj is the position of the
Mn ion. We diagonalize the single heavy-hole Hamiltonian
at a snapshot of {Sz} and obtain eigenvalues Ei({Sz}) and
eigenvectors ci,nσ ({Sz}). We then propose a different Mn
configuration, {S ′

z1,S
′
z2, . . . ,S

′
zNMn

}, diagonalize Ĥ ({S ′
z}) and

obtain new eigenvalues E′
i({S ′

z}).
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