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Quantum description of exciton-light coupled states for a thin film
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The superposition coefficients of the coupled states of a photon and an exciton confined in a thin film are
provided using Fano’s method [U. Fano, Phys. Rev. 124, 1866 (1961)], in which the exciton interacts with
continuum photon states. The coupled states are classified into leaky and surface modes, the latter of which are
investigated with a focus on the dispersion relation, the exciton component, and their film-thickness dependence.
The obtained coupled states enable us to study exciton-mediated optical properties that cannot be described by a
semiclassical scheme, such as photoluminescence and the radiative decay of a biexciton. As applications of the
coupled states, we calculate the population decay dynamics and photoluminescence spectra of an exciton in a
thin film.
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I. INTRODUCTION

Various types of exciton-light coupled states have been
predicted and observed since the seminal work by Hopfield
on the bulk exciton polariton [1]. For a quantum well (QW)
or a semiconductor thin film embedded in a microcavity, the
exciton-light coupled state is called a cavity polariton [2–5].
The dispersions of the bulk and cavity polaritons consist of
upper and lower branches showing anticrossing behavior, and
the level splitting of the cavity polariton is called a vacuum
Rabi splitting. Recently, the vacuum Rabi splitting has been
observed for a single quantum dot (QD) in a microcavity [6–8],
and the exciton-light coupled states are called dressed states.

These exciton-light coupled states are intermediate states in
the radiative decay processes of a biexciton, and polarization
entangled photon pairs are generated through these processes
[9–12]. The entangled photons are the key components of
quantum computation [13], quantum teleportation [14], and
quantum key distribution [15]. The cavity polaritons and
dressed states provide the characteristic features of entangled
photons and their generation conditions [16–23], which have
been studied using the quantum description of the coupled
states. The quantum description enables us to calculate the
other optical properties of excited states in matter, such as
photoluminescence and the radiative lifetime of a biexciton.
In a semiclassical scheme, the induced exciton polarization
causing light emission is calculated as the expectation value
with respect to the ground state. Consequently, the photoemis-
sion processes starting from the exciton cannot be described
in the semiclassical scheme, and a full-quantum treatment is
indispensable.

Among the exciton–photon coupled states, an exciton
polariton in a bulk semiconductor consists of an exciton and
a photon with the same wave vector, and a cavity polariton
or dressed state in a microcavity consists of an exciton and
a single-mode cavity photon. For these coupled states, the
energies and superposition coefficients of the exciton and
photon can be calculated by diagonalizing a small-size matrix.
For a semiconductor film, however, confined excitons interact
with a photon having any wave-vector component qz in the
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thickness direction (z direction). Namely, the exciton-light
coupled state consists of discrete exciton states and continuous
photon modes with respect to qz. So far, such an exciton-light
coupled state has not been obtained in a semiconductor film.

In this paper, the exciton and photon components of the
exciton-light coupled states in the film structure are derived.
The coupled states are designated by a wave vector q‖ parallel
to the film surface because of the translational symmetry in
this direction (x and y directions). Each coupled state with q‖
is classified into leaky and surface modes, the latter of which is
also called a surface exciton polariton. Both leaky and surface
modes contain continuum photon states and discrete exciton
states, where only the lowest exciton state is considered in this
study. The theory for the eigenstates of the interacting discrete
and continuum states has been developed by Fano [24] to
analyze the asymmetric peak of a discrete autoionization level
in continuous spectra, which is observed in forward inelastic
electron scattering by He. The exciton-light coupled states are
obtained using this theory.

This paper is organized as follows. After introducing the
Hamiltonian of the exciton-light coupled states in Sec. II A, the
coupled states of the leaky and surface modes are described in
Secs. II B and II C, respectively, and the thickness dependence
of the energy dispersion and the exciton component of the
surface modes are numerically investigated in the latter section.
In Sec. III, a quantum description of the leaky modes is applied
to the calculations of the population decay dynamics and
photoluminescence spectra of an exciton in a semiconductor
film. A summary and conclusion are given in Sec. IV.

II. EXCITON-LIGHT COUPLED STATES

A. Hamiltonian

We assume that the background dielectric constant outside
the film is the same as that inside, and is denoted by εb. In
addition, we consider the exciton-light coupled states with the s

polarization, which allows us to neglect the polarization degree
of freedom for light and exciton in the following calculations.
In this situation, the electric field of light is quantized as

Ê(r) =
∑

q‖

∫ ∞

−∞
dqzi

√
�ωq

Sεb

e−iq·r (a−q − a†
q), (1)
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where S is the surface area of the film, �ωq is the one-photon
energy with wave vector q:

�ωq = �c√
εb

√
q2

‖ + q2
z , (2)

and aq is the annihilation operator of the photon. The
continuous wave vectors q‖ in the x and y directions are
discretized by enclosing the photons in a square with S and by
imposing periodic boundary conditions, while wave vectors
qz in the z direction remain continuous. The commutation
relations are given by

[aq,a
†
q ′] = δq‖,q ′

‖δ(qz − q ′
z), (3)

[aq,aq ′] = [a†
q,a

†
q ′] = 0. (4)

Here, we consider an inorganic semiconductor thin film
whose electronic states near the surface are not appreciably
modified. In addition, the film thickness is larger than the
Bohr radius of an exciton in bulk (weak confinement regime).
In this situation, the exciton wave function is approximately
expressed as �(ρ,r) = φ(ρ)G(r), where φ(ρ) and G(r) are the
wave functions of relative and center-of-mass (CM) motions,
respectively. The transition polarization d(r) of an exciton is
calculated as [25]

d(r) = μcvφ(0)G(r), (5)

with

μcv =
∫

d rqϕ∗
c (r)ϕv(r)r, (6)

where ϕc(r) and ϕv(r) are the Wannier functions of conduction
and valence bands, respectively. We define the intensity of
the transition polarization as μ = |μcvφ(0)|. In the weak
confinement regime, μ in the film is approximately the same
as that in bulk, and is related to the longitudinal and transverse
splitting energy �LT in bulk. The relationship is obtained as
follows: in bulk with volume V , the wave function of the CM
motion is given by G(r) = exp(ik · r)/

√
V , and the transition

polarization is written as d(r) = μ exp(ik · r)/
√

V . There are
longitudinal (μ ‖ k) and transverse (μ ⊥ k) excitons, and the
energy of the longitudinal exciton is higher than that of the
transverse one by �LT. This energy difference comes from
the electron-hole (e-h) exchange interaction, which has the
same form as the Coulomb interaction between polarization
charge −∇ · d(r) [26]. The e-h exchange energy of the
transverse exciton is zero, while the exchange energy of
the longitudinal exciton is 4πμ2/εb. Therefore we have the
relationship μ2 = εb�LT/4π [25,27].

The wave function of the CM motion G(r) is obtained
by imposing boundary conditions at the surfaces. The film
thickness d is sufficiently less than the light wavelength of the
exciton resonance; thus we can safely restrict ourselves to the
lowest confinement of the CM motion, and G(r) is given by

G(r) =
√

2

Sd
eik‖·r‖ sin

(
π

d
z

)
, (7)

where k‖ and r‖ are the wave vector and position parallel to
the surface, respectively. Neglecting the polarization degree of

freedom and using Eq. (5), the transition polarization operator
d̂ is written as

d̂(r) = μ

√
2

Sd

∑
k‖

eik‖·r‖ sin

(
π

d
z

)
(bk‖ + b

†
−k‖), (8)

where bk‖ is the annihilation operator of the exciton.
The interaction between the exciton and photon is given by

Hint =
∫

drd̂(r)Ê(r)

=
∑

q‖

∫ ∞

−∞
dqzgq[bq‖ (a

†
q − a−q) + b

†
−q‖(a

†
q − a−q)],

(9)

where

gq = −i

√
�LT�ωq

2πd

∫ d

0
dze−iqzz sin

(
π

d
z

)
. (10)

Because the spatial variation in the electric field is taken into
account in gq , the following calculations are beyond the long-
wavelength approximation (LWA), which is valid for d � λ,
where λ is the wavelength of light. The total Hamiltonian is
given by

H =
∑

q‖

∫ ∞

−∞
dqz�ωqa

†
qaq +

∑
k‖

Eex
k‖b

†
k‖bk‖ + Hint, (11)

where Eex
k‖ is the energy of the lowest exciton with k‖ and is

given by

Eex
k‖ = Eex + �

2

2Mex

[
k2
‖ +

(
π

d

)2]
, (12)

where Eex and Mex are the band-edge energy and the
translational mass of an exciton, respectively

The eigenstates of the Hamiltonian H (exciton-light cou-
pled states) are designated by q‖, while qz is not a good
quantum number because of the lack of the translational
symmetry in the z direction. For a fixed q‖, the photon
energy continuously distributes greater than or equal to
(�c/

√
εb)q‖ as found from Eq. (2). The exciton-light coupled

states consisting of such photons have continuous eigenenergy
E � (�c/

√
εb)q‖, and the coupled states expand outside the

semiconductor film. We call these coupled states leaky modes.
By introducing a wave vector qE defined as

qE =
√

εb

�c
E, (13)

the leaky-mode condition is expressed as qE � q‖. For
qE < q‖, on the other hand, qz satisfying E = �ωq becomes
imaginary; thus, the coupled states exponentially decay outside
the film and are called surface modes.

B. Leaky modes

Because the leaky modes have continuous energy for a fixed
q‖ as mentioned before, their states are uniquely designated by
q‖ and E . To obtain the eigenstates of the leaky modes with the
use of Fano’s prescription [24], we introduce the annihilation
operator Aq‖ (E) of the leaky modes. The leaky modes are
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represented as superposition of photons with various qz and
the exciton; thus, Aq‖ (E) is expressed as

Aq‖(E) =
∫ ∞

−∞
dqz[αq(E)aq + α′

q(E)a†
−q] + βq‖(E)bq‖ , (14)

where αq(E), α′
q(E), and βq‖ (E) are superposition coefficients.

In the expression (14) the rotating-wave approximation (RWA)
is applied, and the counter-rotating term β ′

q‖ (E)b†−q‖ is ne-
glected. The second term including α′

q(E), which corresponds
to the counter-rotating term of a photon, is usually neglected
in the RWA. However, we also take into account the second
term, because the integration in Fq‖(E) [see Eq. (25)] can
be analytically performed owing to the counter-rotating term.
Because both aq and a

†
−q are included in Aq‖ , the Maxwell’s

equations are rigorously treated in the following calculations.
Since the leaky modes are eigenstates of the Hamiltonian

in Eq. (11), the operator Aq‖ (E) satisfies the eigenoperator
equation [28]:

i�
dAq‖(E)

dt
= [Aq‖(E),H ] = EAq‖ (E). (15)

It is easily found from this equation that the time evolution of
Aq‖ (E) is described by only a dynamic phase exp[−i(E/�)t],
which indicates Aq‖(E) to be the eigenoperator. We impose the
standard commutation relations:

[Aq‖ (E),A†
q ′

‖
(E ′)] = δq‖,q ′

‖δ(E − E ′), (16)

which represent the orthonormality conditions for the leaky
modes. The superposition coefficients αq(E), α′

q(E), and
βq‖(E) can be determined from Eqs. (15) and (16).

By substituting Eq. (14) into Eq. (15) and taking the
commutator with aq , a

†
−q , and bq‖ , we obtain the following

equations:

�ωqαq(E) + g∗
qβq‖(E) = Eαq(E), (17)

− �ωqα
′
q(E) − g∗

qβq‖ (E) = Eα′
q(E), (18)

Eex
q‖βq‖ (E) +

∫ ∞

−∞
dqzgq[αq(E) + α′

q(E)] = Eβq‖(E), (19)

where we use g−q = −g∗
q and �ω−q = �ωq .

From Eq. (17), αq(E) is obtained as

αq(E) =
[

1

E − �ωq
+ zq‖(E)δ(E − �ωq)

]
g∗

qβq‖ (E), (20)

where the function zq‖(E) is determined later. Using the
property of the delta function, αq(E) is rewritten as

αq(E) = g∗
qβq‖(E)

E − �ωq
+ pEzq‖(E)

∑
s=±

gqβq‖ (E)δ(qz − sqEz),

(21)

where qEz =
√

q2
E − q2

‖ and

pE =
√

εb

�c

qE
qEz

. (22)

From Eq. (18), we have

α′
q(E) = −g∗

qβq‖(E)

E + �ωq
. (23)

By substituting Eqs. (20) and (23) into Eq. (19), we obtain[
Eex

q‖ + Fq‖(E) + 1

π
q‖(E)zq‖(E)

]
βq‖(E) = Eβq‖(E), (24)

where

Fq‖(E) = P

∫ ∞

−∞
dqz

2�ωq

E2 − (�ωq)2
|gq |2, (25)

which is analytically expressed in Appendix A, and

q‖(E) = 2πpE |gqE |2

= �LT
(2π )2

d3

q2
E

qEz

cos2(qEzd/2)[
q2
Ez − (π/d)2

]2 , (26)

where |gqE |2 ≡ |g(q‖,sqEz)|2 is independent of s. It is noted that
q‖(E) corresponds to the radiative width of the exciton with
q‖. In fact, Eq. (26) can be derived by evaluating the radiative
lifetime of the exciton. We denote the state consisting of a
photon with q and the material ground state by |g; q〉 and
denote the exciton with q‖ by |Xq‖ 〉. From Fermi’s golden
rule, the radiative lifetime τ of the exciton is calculated as

1

τ
= 2π

�

∫
dqz|〈g; q|Hint|Xq‖ 〉|2δ(E − �ωq)

= 2π

�

∫
dqz|gq |2δ(E − �ωq) = 2

2π

�
pE |gqE |2. (27)

From the relationship between τ and the radiative width ,
i.e., τ = �/(2), Eq. (26) is derived. The function zq‖ (E) is
obtained from Eq. (24) as

zq‖ (E) = π

q‖(E)

[
E − Eex

q‖(E) − Fq‖ (E)
]
. (28)

Let us determine βq‖(E). By substituting Eq. (14) into
Eq. (16), we obtain∫ ∞

−∞
dqz[αq(E)α∗

q(E ′) − α′
q(E)α′∗

q (E ′)]

+ βq‖(E)β∗
q‖(E

′) = δ(E − E ′). (29)

From Eqs. (20) and (23), the sum of the first and second terms
of Eq. (29) is calculated as∫ ∞

−∞
dqz[αq(E)α∗

q(E ′) − α′
q(E)α′∗

q (E ′)]

= 1

π
q‖ (E)|βq‖(E)|2[π2 + z2

q‖(E)
]
δ(E − E ′)

+
βq‖(E)β∗

q‖(E
′)

E − E ′

{
Eex

q‖ + Fq‖ (E ′) + 1

π
q‖ (E ′)zq‖ (E ′)

−
[
Eex

q‖ + Fq‖(E) + 1

π
q‖ (E)zq‖(E)

]}
, (30)
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where the relationships

1

(E − �ωq)(E ′ − �ωq)

= π2δ(E − E ′)δ(E − �ωq)

+ 1

E − E ′

(
1

E ′ − �ωq
− 1

E − �ωq

)
, (31)

and �ω(q‖,sqEz) = E are used. By substituting Eq. (24) into
Eq. (30), we obtain∫ ∞

−∞
dqz[αq(E)α∗

q(E ′) − α′
q(E)α′∗

q (E ′)]

= 1

π
q‖ (E)|βq‖(E)|2[π2 + z2

q‖ (E)
]
δ(E − E ′)

− βq‖(E)β∗
q‖(E

′). (32)

Therefore Eq. (29) is calculated as

1

π
q‖(E)|βq‖ (E)|2[π2 + z2

q‖ (E)
] = 1. (33)

From Eq. (28), |βq‖(E)|2 is expressed by a normalized Lorentz
function:

|βq‖(E)|2 = 1

π

q‖(E)[
E − Eex

q‖ − Fq‖(E)
]2 + 2

q‖(E)
. (34)

The expression for αq(E) [Eq. (20)] is obtained using Eqs. (28)
and (34), and that for α′

q(E) [Eq. (23)] is obtained using
Eq. (34). In this way, the operator Aq‖(E) [Eq. (14)] for the
exciton-light coupled state is determined.

C. Surface modes (surface exciton polariton)

Here, we consider the surface modes appearing for qE <

q‖. The surface modes are classified into X, Y , and Z

modes in accordance with the light polarization [29,30]. The
s-polarized surface mode in this study corresponds to the
Y mode. Although the dispersion relation of the surface
exciton polariton has been derived [29–32], the superposition
coefficients of the exciton and photon have not been obtained.
In this section, we calculate the superposition coefficients
in addition to the dispersion relation of the surface exciton
polariton.

In contrast to the leaky modes, the surface modes are
designated by only q‖ because the eigenenergy is uniquely
determined for each q‖. Thus the eigenenergy and annihilation
operator for the surface mode are represented by Eq‖ and Aq‖ ,
respectively. The eigenoperator equation for Aq‖ is given by

[Aq‖ ,H ] = EAq‖ . (35)

Similar to the case of the leaky modes, we impose the
commutation relations

[Aq‖ ,A
†
q ′

‖
] = δq‖,q ′

‖ . (36)

The operator Aq‖ is expressed as

Aq‖ =
∫ ∞

−∞
dqzαqaq +

∫ ∞

−∞
dqzα

′
qa

†
−q + βq‖bq‖ , (37)
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FIG. 1. (Color online) (a) The dispersions and (b) |βq‖ |2 of the
surface modes of a CuCl film with d = 50, 200, 500, and 1000 nm.

where αq , α′
q , and βq‖ are superposition coefficients of the

surface modes. These coefficients can be determined from the
following equations:

�ωqαq + g∗
qβq‖ = Eq‖αq, (38)

− �ωqα
′
q − g∗

qβq‖ = Eq‖α
′
q, (39)

Eex
q‖βq‖ +

∫ ∞

−∞
dqzgq(αq + α′

q) = Eq‖βq‖ . (40)

From Eq. (38), αq is obtained as

αq = g∗
qβq‖

Eq‖ − �ωq
. (41)

In contrast to Eq. (20), the term including the delta function
does not appear because there is no q‖ satisfying Eq‖ = �ωq

for qE < q‖. From Eq. (39), we have

α′
q = − g∗

qβq‖

Eq‖ + �ωq
. (42)

By substituting Eqs. (41) and (42) into Eq. (40), we obtain

Eex
q‖ + F (Eq‖) = Eq‖ , (43)

where

F (Eq‖) =
∫ ∞

−∞
dqz

2�ωq

E2
q‖ − (�ωq)2

|gq |2. (44)

An analytical expression for F (Eq‖) is presented in
Appendix B.

The dispersion relation of the surface mode is calculated
by solving the nonlinear equation in Eq. (43). Figure 1(a)
shows the dispersions of the surface modes of CuCl films
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with various thicknesses. We choose Eex = 3.202 eV, Mex =
2.3me, where me is the electron mass, �LT = 5.7 meV, and
εb = 5.59 as the parameters of CuCl. With an increase in the
film thickness, the dispersion largely deviates from photon
and exciton dispersions in the vicinity of their crossing region
because of the increase in the exciton-light interaction, and
the dispersion approaches that of the surface polariton of a
semi-infinite crystal, as expected.

The superposition coefficients αq , α′
q , and βq‖ are evaluated

by using Eq. (36) in a similar manner for the leaky-mode case.
The resulting coefficients are given by

αq = g∗
q

Eq‖ − �ωq

1√
Cq‖ + 1

, (45)

α′
q = − g∗

q

Eq‖ + �ωq

1√
Cq‖ + 1

, (46)

βq‖ = 1√
Cq‖ + 1

, (47)

where

Cq‖ = 4
∫ ∞

−∞
dqz

Eq‖�ωq[
E2

q‖ − (�ωq)2
]2 |gq |2. (48)

An analytical expression for Cq‖ is presented in Appendix C.
Figure 1(b) shows the calculated exciton component |βq‖ |2

of the surface polariton for the CuCl films with various
thicknesses. Surface polaritons have both exciton and photon
components in the vicinity of the crossing region of the photon
and exciton dispersions, whereas they are almost photonic
(|βq‖ |2 ∼ 0) or almost excitonic (|βq‖ |2 ∼ 1), apart from the
crossing region. The region where the surface polariton has
both exciton and photon components is extended with an
increase in the film thickness because of the increase in the
exciton-light interaction.

The dispersions of the surface modes have been calculated
without the RWA in the LWA [29,30]. In the present calcula-
tion, the RWA is partially applied, i.e., the counter-rotating
terms of a photon in Eqs. (14) and (37) are taken into
account. This means that Maxwell’s equations are rigorously
treated. Figure 2 shows the dispersion relations calculated
including and excluding the counter-rotating term, and we
find that these dispersions show good agreement with each
other. Nevertheless, the counter-rotating term is taken into
account in this study because Fq‖(E), F (Eq‖), and Cq‖ can be
analytically calculated. It is also noted that the present method
is applicable beyond the LWA in contrast to the conventional
method in Refs. [29,30]. The dispersions of the surface modes
have been calculated at the same level approximation, in which
the susceptibility in the RWA and the full Maxwell’s equations
are used [31,32].

The exciton component of the surface mode has been
calculated in a bipolariton picture [33], which qualitatively
shows the same behavior as Fig. 1(b). In contrast to Ref. [33],
we can also calculate the photon components of the surface
modes as Eqs. (45) and (46) in the present method.
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FIG. 2. (Color online) The dispersions of the surface modes of a
CuCl film with d = 1000 nm calculated including (black solid line)
and excluding (red dotted line) the counter-rotating term of a photon.

III. APPLICATIONS OF EXCITON-LIGHT
COUPLED STATES

In a light scattering process by an exciton, the incident
light induces exciton polarization, and the induced polarization
emits light. Such a light scattering process can be calculated
semiclassically. However, the photon emission process starting
from an exciton as the initial state cannot be described in
the semiclassical scheme, and a full-quantum description is
necessary. In this section, the population-decay dynamics of
an exciton and its photoluminescence are obtained using the
derived exciton-light coupled states.

A. Population decay dynamics of an exciton

Let us consider the population decay dynamics of the
exciton |Xq‖ 〉 with the use of the exciton-light coupled state
|Eq‖〉 for the leaky mode. From the completeness relation of
|Eq‖〉 with respect to E and the conservation law of q‖, |Xq‖ 〉
is expanded as

|Xq‖ 〉 =
∫

dE |Eq‖〉 〈Eq‖|Xq‖ 〉 =
∫

dEβ∗
q‖(E) |Eq‖〉 , (49)

and its time development is given by

|Xq‖(t)〉 =
∫

dEe−i(E/�)t β∗
q‖(E) |Eq‖〉 . (50)

The time dependence of the exciton population PXq‖ (t) is
calculated as

PXq‖ (t) = |〈Xq‖ |Xq‖(t)〉|2

=
∣∣∣∣
∫

dE |βq‖(E)|2e−i(E/�)t

∣∣∣∣
2

. (51)

Here, we approximate as Fq‖ (E) ≈ Fq‖(E
ex
q‖) ≡ Fq‖ and

q‖(E) ≈ q‖(E
ex
q‖ ) ≡ q‖ , and the poles of |βq‖(E)|2 are ap-

proximately obtained as E = Eex
q‖ + Fq‖ ± iq‖ [see Eq. (34)].

By integrating with respect to E using a contour integral in the
complex plane shown in Fig. 3(a), we obtain

PXq‖ (t) = exp[−2(q‖/�)t], (52)
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)b()a(

FIG. 3. The contours in the complex plane for evaluating the
integrals (a) in Eq. (51) and (b) in the first term of Eq. (54), where
Ed = Eex

q‖ + Fq‖ − iq‖ .

and thus, the exciton exponentially decays with the radiative
decay rate q‖ (E

ex
q‖).

B. Photoluminescence of an exciton

A photon |q〉 emitted from an exciton |Xq‖ 〉 has the
same q‖ but has various values of qz, and the probability
of photon emission in the range of dqz around qz is given
by | 〈q|Xq‖(t)〉 |2dqz. This probability of photon emission is
converted to that in the range of d(�ωq) around �ωq as

P (ωq,t)d(�ωq) = 2
√

εb

�c

q

qz

|〈q|Xq‖ (t)〉|2d(�ωq). (53)

The factor 2 comes from the fact that qz and −qz provide the
same value of �ωq . The photon probability density P (ωq,t)
in the t → ∞ limit corresponds to the photoluminescence
spectrum P (ωq).

By inserting the completeness relation for |Eq‖〉 to
〈q|Xq‖(t)〉, we have

P (ωq) = lim
t→∞ 2

√
εb

�c

q

qz

∣∣∣∣
∫

dEαq(E)β∗
q‖ (E)e−i(E/�)t

∣∣∣∣
2

= lim
t→∞ 2

√
εb

�c

q

qz

∣∣∣∣P
∫

dE
|βq‖(E)|2
E − �ωq

g∗
qe

−i(E/�)t

+ zq‖(�ωq)|βq‖(�ωq)|2g∗
qe

−iωq t

∣∣∣∣
2

. (54)

The principal value of the integral of the first term can be
evaluated by integrating along the contour shown in Fig. 3(b),
in which the first-order singularity �ωq is avoided by going
around it along the infinitesimally small semicircle ε . Inside
the contour, there is a singular point of Ed originating from
|βq‖ (E)|2. The residue at Ed contains the damping factor of
≈exp[−2q‖(Eex

q‖ )t/�], as shown in the calculation of the
population decay dynamics, and the contribution becomes zero
in the t → ∞ limit. By evaluating the contour integral along
ε , the principal value in the t → ∞ limit is obtained as

P

∫ ∞

−∞
dE

|βq‖(E)|2
E − �ωq

g∗
qe

−i(E/�)t = iπ |βq‖(�ωq)|2g∗
qe

−iωq t .

(55)
As a result, we obtain

P (ωq) = 2
√

εb

�c

q

qz

[
π2 + z2

q‖(�ωq)
]|βq‖(�ωq)|4|gq |2. (56)

From (�ωq) = 2π (
√

εb/�c)(q/qz)|gq |2 and Eq. (28), the
photoluminescence is obtained as

P (ωq) = |βq‖(�ωq)|2, (57)

which has Lorentzian form, as shown in Eq. (34). The peak
energy of the luminescence spectrum is determined as a
solution EL of E = Eex

q‖ − Fq‖(E) and is shifted from Eex
q‖ .

This peak shift Fq‖(EL) is called a radiative shift. The half
width at the half maximum (HWHM) q‖(EL) of the spectrum
comes from the radiative width. Because Eex

q‖ � Fq‖(EL), the
radiative width is approximated as q‖ (E

ex
q‖ ), which agrees with

the radiative decay rate of the exciton.
Although the photoluminescence spectra cannot be ob-

tained with a semiclassical treatment, the elastic light-
scattering spectra can be calculated semiclassically. Among
the semiclassical methods, microscopic nonlocal theory makes
it possible to include the effects of the radiative shift and
width beyond the LWA [34,35]. In Appendix D, the reflection
spectrum of the semiconductor thin film is calculated using
microscopic nonlocal theory, and the radiative shift and width
are shown to be the same as those of the photoluminescence
spectrum.

IV. SUMMARY AND CONCLUSION

The superposition coefficients of an exciton and a photon
of exciton-light coupled states have been obtained for a semi-
conductor film. Using the coupled states, we can theoretically
investigate exciton-mediated optical properties that cannot be
described by a semiclassical scheme. The coupled states are
classified into leaky modes for qE � q‖ and surface modes
or surface exciton polaritons for qE < q‖. The leaky modes
are uniquely designated by E and q‖. The exciton component
|βq‖(E)|2 of the leaky modes is given by a Lorentz function,
which has a peak at an energy slightly shifted from Eex

q‖ and
has an HWHM corresponding to the radiative width of the
exciton. As applications of the leaky modes, the population
decay dynamics and photoluminescence spectra of an exciton
are calculated.

The surface modes are only designated by q‖, and their
dispersion relations and superposition coefficient of exciton
have been studied as a function of the film thickness. The
superposition coefficient of photon has also been obtained
for the first time. The radiative decay process of a biexciton
toward the surface mode can be calculated using the present
results. This problem is important to study the generation
efficiency of entangled photons from the film, because the
entangled photons cannot be generated outside the film in the
radiative decay processes via surface modes. The decay rate
is calculated using the Fermi’s golden rule. In the calculation,
both coefficients of the exciton and photon are necessary to
evaluate the transition matrix elements between the biexciton
and surface modes, and the dispersion relation of the surface
mode is necessary to find q‖ satisfying the energy conservation.
The radiative decay rate of the biexciton via surface modes will
be presented near future.

We only consider the lowest exciton as a material excitation
to obtain the exciton-light coupled states. Although the
coupled states are calculated beyond the LWA, higher-level
exciton states become significant with an increase in the film
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thickness [36,37]. Therefore the present study is valid for
a thin film. An extension of the present study will include
higher-level exciton states as future work.
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APPENDIX A: ANALYTICAL EXPRESSION FOR Fq‖ (E)

The function Fq‖ (E) related to the radiative shift in the leaky
mode, which is defined in Eq. (25), is rewritten as

Fq‖ (E) = �LT

πd
P

∫ ∞

−∞
dqz

q2
‖ + q2

z

q2
Ez − q2

z

∣∣∣∣
∫ d

0
dze−iqzz sin

(
π

d
z

)∣∣∣∣
2

= �LT

πd

∫ d

0
dz

∫ d

0
dz′ sin

(
π

d
z

)
sin

(
π

d
z′

)
Ia(z,z′),

(A1)

where

Ia(z,z′) = P

∫ ∞

−∞
dqz

q2
‖ + q2

z

q2
Ez − q2

z

eiqz(z−z′). (A2)

To evaluate Ia(z,z′) for z > z′, we integrate along the contour
in the complex plane, which is shown in Fig. 4(a). There is no
singular point inside the contour, and the integral along AB is
zero. Using the residue theorem, Ia(z,z′) is given by

Ia(z,z′) = −
∫

ε−+ε+

q2
‖ + q2

z

q2
Ez − q2

z

eiqz(z−z′)

= π
q2
E

qEz

sin[qEz(z − z′)] (for z > z′). (A3)

For z < z′, we integrate along the similar contour shown in
Fig. 4(a) in the lower half plane, and we have

Ia(z,z′) = −π
q2
E

qEz

sin[qEz(z − z′)] (for z < z′). (A4)

Using these results, we obtain

Fq‖(E) = �LT
2π2

d3

q2
E

qEz

sin(qEzd)[
q2
Ez − (π/d)2

]2 + �LT
q2
E

q2
Ez − (π/d)2

.

(A5)

AB

(a)

AB

(b)

FIG. 4. The contours for evaluating the integrals (a) Ia(z,z′) for
z > z′ and (b) Ib(z,z′) for z > z′.

APPENDIX B: ANALYTICAL EXPRESSION FOR F(Eq‖ )

The function F (Eq‖ ) related to the radiative shift in the
surface mode, which is defined in Eq. (44), is rewritten as

F (Eq‖ ) = − �LT

πd

∫ ∞

−∞
dqz

q2
‖ + q2

z

q̄2
Ez + q2

z

×
∣∣∣∣
∫ d

0
dze−iqzz sin

(
π

d
z

)∣∣∣∣
2

= − �LT

πd

∫ d

0
dz

∫ d

0
dz′ sin

(
π

d
z

)

× sin

(
π

d
z′

)
Ib(z,z′), (B1)

where q̄Ez =
√
q2

‖ − qE and

Ib(z,z′) =
∫ ∞

−∞
dqz

q2
‖ + q2

z

q̄2
Ez + q2

z

eiqz(z−z′). (B2)

To evaluate Ib(z,z′) for z > z′, we integrate along the contour
shown in Fig. 4(b). There is a singular point qz = iq̄Ez inside
the contour, and the integral along AB is zero. Using the
residue theorem, we obtain

Ib(z,z′) = π
q2
E

q̄Ez

e−q̄Ez(z−z′) (for z > z′). (B3)

For z < z′, we integrate along the similar contour shown in
Fig. 4(b) in the lower half plane, and we have

Ib(z,z′) = π
q2
E

q̄Ez

eq̄Ez(z−z′) (for z < z′). (B4)

Using these results, we obtain

F (Eq‖) = − �LT
2π2

d3

q2
E

q̄Ez

1 + e−q̄Ezd[
(π/d)2 + q̄2

Ez

]2

− �LT
q2
E

(π/d)2 + q̄2
Ez

. (B5)

APPENDIX C: ANALYTICAL EXPRESSION FOR Cq‖

The superposition coefficients αq , α′
q , and βq‖ of the surface

mode are calculated from Cq‖ , which is defined in Eq. (48) and
calculated as

Cq‖ = 2

πd

εb

(�c)2
�LTEq‖

∫ ∞

−∞
dqz

q2
‖ + q2

z(
q̄2
Ez + q2

z

)2 |Ic(qz)|2, (C1)

where

Ic(qz) =
∫ d

0
dze−iqzz sin

(
π

d
z

)
= −π

d

e−iqzd + 1

q2
z − (π/d)2

. (C2)

Thus, Cq‖ is rewritten as

Cq‖ = 2π

d3

εb

(�c)2
�LTEq‖ (J+ + J−), (C3)
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AB

(a) AB(b)

FIG. 5. The contours for evaluating the integrals (a) J+ and (b) J−.

where

J± =
∫ ∞

−∞
dqz

q2
‖ + q2

z(
q̄2
Ez + q2

z

)2

1 + e±iqzd[
q2

z − (π/d)2
]2

≡
∫ ∞

−∞
dqzf±(qz). (C4)

To evaluate the integrals J+ and J−, we integrate along the
contours shown in Figs. 5(a) and 5(b), respectively, where two
first-order singular points ±π/d are avoided by going around
them along infinitesimally small semicircles ε±. First, we
calculate J+. There is a second-order singularity at qz = iq̄Ez

inside the contour in Fig. 5(a), and the integral along AB is
zero. Therefore J+ is given by

J+ =
∮

dqzf+(qz) −
∫

ε−+ε+
dqzf+(qz). (C5)

The first integration is calculated as∮
dqzf+(qz)

= π

2

q2
E + 2q̄2

Ez

q̄3
Ez

1 + e−q̄Ezd[
q̄2
Ez + (π/d)2

]2

+ π

2

q2
Ed

q̄2
Ez

e−q̄Ezd[
q̄2
Ez + (π/d)2

]2 + 2π
q2
E

q̄Ez

1 + e−q̄Ezd[
q̄2
Ez + (π/d)2

]3 ,

(C6)

and the second and third integrations are calculated as∫
1

dqzf+(qz) =
∫

2

dqzf+(qz) = − d3

4π

q2
‖ + (π/d)2[

q̄2
Ez + (π/d)2

]2 .

(C7)

Using these results, we obtain

J+ = d3

2π

q2
‖ + (π/d)2[

q̄2
Ez + (π/d)2

]2 + π

2

q2
E + 2q̄2

Ez

q̄3
Ez

1 + e−q̄Ezd[
q̄2
Ez + (π/d)2

]2

+ π

2

q2
Ed

q̄2
Ez

e−q̄Ezd[
q̄2
Ez + (π/d)2

]2 + 2π
q2
E

q̄Ez

1 + e−q̄Ezd[
q̄2
Ez + (π/d)2

]3 .

(C8)

In a similar way, we have

J− = d3

2π

q2
‖ + (π/d)2[

q̄2
Ez + (π/d)2

]2 + π

2

q2
E + 2q̄2

Ez

q̄3
Ez

1 + e−q̄Ezd[
q̄2
Ez + (π/d)2

]2

+ π

2

q2
Ed

q̄2
Ez

e−q̄Ezd[
q̄2
Ez + (π/d)2

]2 + 2π
q2
E

q̄Ez

1 + e−q̄Ezd[
q̄2
Ez + (π/d)2

]3 .

(C9)

Thus we obtain Cq‖ as

Cq‖ =2π

d3

εb

(�c)2

�LTEq‖[
q̄2
Ez + (π/d)2

]2

{
d3

π
[q2

‖ + (π/d)2]

+ π
1 + e−q̄Ezd

q̄Ez

[
2 + q2

E
q̄2
Ez

+ 4q2
E

q̄2
Ez + (π/d)2

]

+ π
q2
Ed

q̄2
Ez

e−q̄Ezd

}
. (C10)

APPENDIX D: REFLECTION SPECTRUM CALCULATED
USING A SEMICLASSICAL TREATMENT

In this Appendix, the reflection spectrum for s-polarized
light is calculated using microscopic nonlocal theory [34,35].
The nonlocal theory is a semiclassical method, and linear
and nonlinear optical responses can be calculated beyond the
LWA. In the nonlocal theory, the scattered light and exciton
polarization are obtained in a self-consistent manner; thus,
the effects of the radiative shift and width are included in the
resulting spectra. The purpose of this Appendix is to analyt-
ically compare the radiative shift and width of the reflection
spectrum and those of the photoluminescence spectrum.

We consider a uniform background dielectric with εb. We
set the electric field of the s-polarized incident light to be
E0

q‖ = (0,E0
q‖,0), and the electric field and induced exciton

polarization can be treated as scalar functions. Because of the
translational symmetry in the direction parallel to the surface,
the induced exciton polarization dq‖(r,ω) has the same q‖ as
that of the incident light. Within the linear response regime,
the induced polarization is expressed as

dq‖(r,ω) =
∫

d r ′χ (r,r ′; ω)Eq‖(r ′), (D1)

where χ (r,r ′; ω) is the susceptibility in the RWA:

χ (r,r ′; ω) = 〈g| d̂(r) |Xq‖ 〉 〈Xq‖ | d̂(r ′) |g〉
Eex

q‖ − �ω − iγ
, (D2)

|g〉 is the material ground state, and γ is the phenomenological
dissipation constant excluding the radiative decay.

From Maxwell’s equations, the electromagnetic wave equa-
tion is obtained as

∇ × ∇ × Eq‖(r) − q2
b Eq‖(r) = 4πq2dq‖(r), (D3)

where qb = √
εbq and q = ω/c. Using ∇ · Eq‖ = ∂Eq‖/

∂y = 0, this wave equation is rewritten as(
∂2

∂z2
+ ∂2

∂x2
+ q2

b

)
Eq‖ (r) = −4πq2dq‖(r). (D4)

A formal solution of this equation is expressed as

Eq‖(r) = E0
q‖ (r) +

∫
d r ′G(r,r ′)dq‖ (r ′), (D5)

where G(r,r ′) is the Green’s function satisfying the following
equation:(

∂2

∂z2
+ ∂2

∂x2
+ q2

b

)
G(r,r ′) = −4πq2δ(r − r ′). (D6)
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By substituting Eq. (D1) into Eq. (D5), we have

Eq‖ (r) = E0
q‖(r) +

∫
d r ′

∫
d r ′′G(r,r ′)χ (r ′,r ′′)Eq‖(r ′′).

(D7)
By multiplying 〈Xq‖ | d̂(r) |g〉 from the left-hand side of
Eq. (D7) and integrating both sides with respect to r , the
following linear algebraic equation is obtained:

(Eex
q‖ − �ω − iγ )Fq‖ + A(ω)Fq‖ = F 0

q‖ , (D8)

where

Fq‖ = 1

Eex
q‖ − �ω − iγ

∫
d r 〈Xq‖ | d̂(r) |g〉 Eq‖(r), (D9)

F 0
q‖ =

∫
d r 〈Xq‖ | d̂(r) |g〉E0

q‖(r), (D10)

A(ω) = −
∫

d r
∫

d r ′ 〈Xq‖ | d̂(r) |g〉

× G(r,r ′) 〈g| d̂(r ′) |Xq‖ 〉 , (D11)

where Eq. (D2) is used. The solution of Eq. (D8) is obtained
as

Fq‖ =
F 0

q‖

Eex
q‖ − �ω + A(ω) − iγ

. (D12)

The light reflected from the semiconductor film is obtained
from Eq. (D7) with E0

q‖(r) = 0:

Eq‖(r) =
∫

d r ′G(r,r ′)
〈g| d̂(r ′) |Xq‖ 〉

Eex
q‖ − �ω + A(ω) − iγ

F 0
q‖ , (D13)

where Eqs. (D2) and (D12) are used.
Here, we calculate the Green’s function by solving Eq. (D6).

The Fourier expansions of G(r,r ′) and δ(r − r ′) are written
as

G(r,r ′) =
∑

q‖

∫
dqzG(q)eiq‖·(r‖−r ′

‖)eiqz(z−z′), (D14)

δ(r − r ′) = 1

S

∑
q‖

eiq‖·(r‖−r ′
‖) 1

2π

∫
dqze

iqz(z−z′). (D15)

By substituting these Fourier expansions into Eq. (D6), we
obtain the Fourier component of the Green’s function as

G(q) = 2q2

S

1

q2
z − q2

bz

, (D16)

where we choose the x axis in the direction of q‖ and

define qbz =
√
q2

b − q2
‖ . By substituting it into Eq. (D14) and

integrating with respect to z with the use of the residue
theorem, the Green’s function is obtained as

G(r,r ′) = 2πi

S

q2

qbz

∑
q‖

eiq‖·(r‖−r ′
‖)eiqbz|z−z′ |. (D17)

From Eq. (8), the matrix element of the induced exciton
polarization is given by

〈Xq‖ | d̂(r) |g〉 = μ

√
2

Sd
e−iq‖·r‖ sin

(
π

d
z

)
, (D18)

and F 0
q‖ defined in Eq. (D10) is calculated as

F 0
q‖ = −μ

√
2S

d

π

d

eiqbzd + 1

q2
bz − (π/d)2

, (D19)

for an incident plane wave of E0
q‖(r) = eiq‖·r‖eiqbzz. When

the incident field is applied from the left-hand side of the
semiconductor film, the position detecting the reflected field
z is smaller than the position z′ in the film region. For z < z′,
we perform the integration of r ′ in Eq. (D13) as follows:∫

d r ′G(r,r ′) 〈g| d̂(r ′) |Xq‖ 〉

= −2πiμ

√
2

Sd

π

d

q2

qbz

eiqbzd + 1

q2
bz − (π/d)2

eiq‖·r‖e−iqbzz. (D20)

Using Eqs. (D19) and (D20) and μ2 = εb�LT/4π , we obtain
the reflection spectrum

|Eq‖(r)|2 =
{
�LT

(2π)2

d3
q2

b

qbz

cos2(qbzd/2)
[q2

bz−(π/d)2]2

}2

[
�ω − Eex

q‖ − ARe(ω)
]2 + [ĀIm(ω) + γ ]2

,

(D21)

where ARe(ω) = Re[A(ω)], and ĀIm(ω) = −Im[A(ω)]. The
function of A(ω) defined in Eq. (D11) represents the self-
interaction of the induced exciton polarization via the elec-
tromagnetic field, i.e., the self-energy of an exciton, and is
calculated as

ARe(ω) = �LT
2π2

d3

q2
b

qbz

sin(qbzd)[
q2

bz − (π/d)2
]2

+�LT
q2

b

q2
bz − (π/d)2

, (D22)

and

ĀIm(ω) = �LT
(2π )2

d3

q2
b

qbz

cos2(qbzd/2)[
q2

bz − (π/d)2
]2 . (D23)

Thus the reflection spectrum is expressed by

|Eq‖ (ω)|2 = [ĀIm(ω)]2[
�ω − Eex

q‖ − ARe(ω)
]2 + [ĀIm(ω) + γ ]2

,

(D24)

where Eq‖(r) is renamed Eq‖ (ω). The peak energy of the
reflection spectrum is determined as the solution of E for
E = Eex

q‖ + ARe(E). The peak value of the reflection becomes

1 for γ = 0, and the HWHM of the spectrum is ĀIm(E). The
value of ARe(E) indicates the peak-energy shift in the reflection
spectrum. When we set qb = qE , it leads to qbz = qEz, and
consequently, ARe(ω) and AIm(ω) agree with Fq‖(E) given
by Eq. (A5) and q‖ (E) given by Eq. (26), respectively. In
other words, the analytical expressions of the peak energy and
spectral width of the photoluminescence have the same form
as those of the reflection spectrum. It is noted that the reflection
spectrum does not have the Lorentzian form and has a different
shape from that of the photoluminescence spectrum.

155316-9



H. AJIKI PHYSICAL REVIEW B 92, 155316 (2015)

[1] J. J. Hopfield, Phys. Rev. 112, 1555 (1958).
[2] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa,

Phys. Rev. Lett. 69, 3314 (1992).
[3] T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi, and T. Saitoh,

Phys. Rev. Lett. 92, 256402 (2004).
[4] D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S.

Skolnick, and S. Walker, Phys. Rev. Lett. 82, 3316 (1999).
[5] G. Oohata, T. Nishioka, D. Kim, H. Ishihara, and M. Nakayama,

Phys. Rev. B 78, 233304 (2008).
[6] J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn,

S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L.
Reinecke, and A. Forchel, Nature 432, 197 (2004).

[7] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs,
G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature 432,
200 (2004).

[8] E. Peter, P. Senellart, D. Martrou, A. Lemaı̂tre, J. Hours, J. M.
Gérard, and J. Bloch, Phys. Rev. Lett. 95, 067401 (2005).

[9] K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, Nature 431,
167 (2004).

[10] G. Oohata, R. Shimizu, and K. Edamatsu, Phys. Rev. Lett. 98,
140503 (2007).

[11] R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A.
Ritchie, and A. J. Shields, New J. Phys. 8, 29 (2006).

[12] N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron,
D. Gershoni, B. D. Gerardot, and P. M. Petroff, Phys. Rev. Lett.
96, 130501 (2006).

[13] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
2010).

[14] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter,
and A. Zeilinger, Nature (London) 390, 575 (1997).

[15] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin,
Phys. Rev. Lett. 88, 127902 (2002).

[16] H. Ajiki and H. Ishihara, J. Phys. Soc. Jpn. 76, 053401
(2007).

[17] H. Oka and H. Ishihara, Phys. Rev. Lett. 100, 170505 (2008).
[18] R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov,

I. A. Shelykh, and G. Malpuech, Phys. Rev. Lett. 100, 240404
(2008).

[19] H. Ajiki, H. Ishihara, and K. Edamatsu, New J. Phys. 11, 033033
(2009).

[20] P. K. Pathak and S. Hughes, Phys. Rev. B 79, 205416 (2009).
[21] K. Shibata and H. Ajiki, Phys. Rev. A 86, 032301 (2012).
[22] E. del Valle, New J. Phys. 15, 025019 (2013).
[23] K. Shibata and H. Ajiki, Phys. Rev. A 89, 042319 (2014).
[24] U. Fano, Phys. Rev. 124, 1866 (1961).
[25] H. Ajiki and K. Cho, Phys. Rev. B 62, 7402 (2000).
[26] K. Cho, Phys. Rev. B 14, 4463 (1976).
[27] H. Haug and S. W. Koch, in Quantum Theory of the Optical

and Electronic Properties of Semiconductors (World Scientific,
Singapore, 2009), p. 197.

[28] S. M. Barnett and P. M. Radmore, Opt. Commun. 68, 364 (1988).
[29] M. Nakayama, Sol. Stat. Commun. 55, 1053 (1985).
[30] M. Nakayama and M. Matsuura, Surf. Sci. 170, 641 (1986).
[31] F. Tassone, F. Bassani, and L. C. Andreani, Nuovo Cimento D

12, 1673 (1990).
[32] F. Tassone, F. Bassani, and L. C. Andreani, Phys. Rev. B 45,

6023 (1992).
[33] A. L. Ivanov, H. Wang, J. Shah, T. C. Damen, L. V. Keldysh,

H. Haug, and L. N. Pfeiffer, Phys. Rev. B 56, 3941 (1997).
[34] K. Cho, Prog. Theor. Phys. Suppl. 106, 225 (1991).
[35] K. Cho, Optical Response of Nanostructures: Microscopic

Nonlocal Theory (Springer, New York, 2003).
[36] H. Ishihara and K. Cho, Phys. Rev. B 53, 15823 (1996).
[37] L. Q. Phuong, M. Ichimiya, H. Ishihara, and M. Ashida,

Phys. Rev. B 86, 235449 (2012).

155316-10

http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevLett.92.256402
http://dx.doi.org/10.1103/PhysRevLett.92.256402
http://dx.doi.org/10.1103/PhysRevLett.92.256402
http://dx.doi.org/10.1103/PhysRevLett.92.256402
http://dx.doi.org/10.1103/PhysRevLett.82.3316
http://dx.doi.org/10.1103/PhysRevLett.82.3316
http://dx.doi.org/10.1103/PhysRevLett.82.3316
http://dx.doi.org/10.1103/PhysRevLett.82.3316
http://dx.doi.org/10.1103/PhysRevB.78.233304
http://dx.doi.org/10.1103/PhysRevB.78.233304
http://dx.doi.org/10.1103/PhysRevB.78.233304
http://dx.doi.org/10.1103/PhysRevB.78.233304
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1038/nature02838
http://dx.doi.org/10.1038/nature02838
http://dx.doi.org/10.1038/nature02838
http://dx.doi.org/10.1038/nature02838
http://dx.doi.org/10.1103/PhysRevLett.98.140503
http://dx.doi.org/10.1103/PhysRevLett.98.140503
http://dx.doi.org/10.1103/PhysRevLett.98.140503
http://dx.doi.org/10.1103/PhysRevLett.98.140503
http://dx.doi.org/10.1088/1367-2630/8/2/029
http://dx.doi.org/10.1088/1367-2630/8/2/029
http://dx.doi.org/10.1088/1367-2630/8/2/029
http://dx.doi.org/10.1088/1367-2630/8/2/029
http://dx.doi.org/10.1103/PhysRevLett.96.130501
http://dx.doi.org/10.1103/PhysRevLett.96.130501
http://dx.doi.org/10.1103/PhysRevLett.96.130501
http://dx.doi.org/10.1103/PhysRevLett.96.130501
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1103/PhysRevLett.88.127902
http://dx.doi.org/10.1103/PhysRevLett.88.127902
http://dx.doi.org/10.1103/PhysRevLett.88.127902
http://dx.doi.org/10.1103/PhysRevLett.88.127902
http://dx.doi.org/10.1143/JPSJ.76.053401
http://dx.doi.org/10.1143/JPSJ.76.053401
http://dx.doi.org/10.1143/JPSJ.76.053401
http://dx.doi.org/10.1143/JPSJ.76.053401
http://dx.doi.org/10.1103/PhysRevLett.100.170505
http://dx.doi.org/10.1103/PhysRevLett.100.170505
http://dx.doi.org/10.1103/PhysRevLett.100.170505
http://dx.doi.org/10.1103/PhysRevLett.100.170505
http://dx.doi.org/10.1103/PhysRevLett.100.240404
http://dx.doi.org/10.1103/PhysRevLett.100.240404
http://dx.doi.org/10.1103/PhysRevLett.100.240404
http://dx.doi.org/10.1103/PhysRevLett.100.240404
http://dx.doi.org/10.1088/1367-2630/11/3/033033
http://dx.doi.org/10.1088/1367-2630/11/3/033033
http://dx.doi.org/10.1088/1367-2630/11/3/033033
http://dx.doi.org/10.1088/1367-2630/11/3/033033
http://dx.doi.org/10.1103/PhysRevB.79.205416
http://dx.doi.org/10.1103/PhysRevB.79.205416
http://dx.doi.org/10.1103/PhysRevB.79.205416
http://dx.doi.org/10.1103/PhysRevB.79.205416
http://dx.doi.org/10.1103/PhysRevA.86.032301
http://dx.doi.org/10.1103/PhysRevA.86.032301
http://dx.doi.org/10.1103/PhysRevA.86.032301
http://dx.doi.org/10.1103/PhysRevA.86.032301
http://dx.doi.org/10.1088/1367-2630/15/2/025019
http://dx.doi.org/10.1088/1367-2630/15/2/025019
http://dx.doi.org/10.1088/1367-2630/15/2/025019
http://dx.doi.org/10.1088/1367-2630/15/2/025019
http://dx.doi.org/10.1103/PhysRevA.89.042319
http://dx.doi.org/10.1103/PhysRevA.89.042319
http://dx.doi.org/10.1103/PhysRevA.89.042319
http://dx.doi.org/10.1103/PhysRevA.89.042319
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevB.62.7402
http://dx.doi.org/10.1103/PhysRevB.62.7402
http://dx.doi.org/10.1103/PhysRevB.62.7402
http://dx.doi.org/10.1103/PhysRevB.62.7402
http://dx.doi.org/10.1103/PhysRevB.14.4463
http://dx.doi.org/10.1103/PhysRevB.14.4463
http://dx.doi.org/10.1103/PhysRevB.14.4463
http://dx.doi.org/10.1103/PhysRevB.14.4463
http://dx.doi.org/10.1016/0030-4018(88)90233-7
http://dx.doi.org/10.1016/0030-4018(88)90233-7
http://dx.doi.org/10.1016/0030-4018(88)90233-7
http://dx.doi.org/10.1016/0030-4018(88)90233-7
http://dx.doi.org/10.1016/0038-1098(85)90131-0
http://dx.doi.org/10.1016/0038-1098(85)90131-0
http://dx.doi.org/10.1016/0038-1098(85)90131-0
http://dx.doi.org/10.1016/0038-1098(85)90131-0
http://dx.doi.org/10.1016/0039-6028(86)91033-2
http://dx.doi.org/10.1016/0039-6028(86)91033-2
http://dx.doi.org/10.1016/0039-6028(86)91033-2
http://dx.doi.org/10.1016/0039-6028(86)91033-2
http://dx.doi.org/10.1007/BF02451267
http://dx.doi.org/10.1007/BF02451267
http://dx.doi.org/10.1007/BF02451267
http://dx.doi.org/10.1007/BF02451267
http://dx.doi.org/10.1103/PhysRevB.45.6023
http://dx.doi.org/10.1103/PhysRevB.45.6023
http://dx.doi.org/10.1103/PhysRevB.45.6023
http://dx.doi.org/10.1103/PhysRevB.45.6023
http://dx.doi.org/10.1103/PhysRevB.56.3941
http://dx.doi.org/10.1103/PhysRevB.56.3941
http://dx.doi.org/10.1103/PhysRevB.56.3941
http://dx.doi.org/10.1103/PhysRevB.56.3941
http://dx.doi.org/10.1143/PTPS.106.225
http://dx.doi.org/10.1143/PTPS.106.225
http://dx.doi.org/10.1143/PTPS.106.225
http://dx.doi.org/10.1143/PTPS.106.225
http://dx.doi.org/10.1103/PhysRevB.53.15823
http://dx.doi.org/10.1103/PhysRevB.53.15823
http://dx.doi.org/10.1103/PhysRevB.53.15823
http://dx.doi.org/10.1103/PhysRevB.53.15823
http://dx.doi.org/10.1103/PhysRevB.86.235449
http://dx.doi.org/10.1103/PhysRevB.86.235449
http://dx.doi.org/10.1103/PhysRevB.86.235449
http://dx.doi.org/10.1103/PhysRevB.86.235449



