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Magnetic-field control of the exciton quantum beats phase in InGaAs/GaAs quantum dots
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We demonstrate here the phase control of the neutral exciton quantum beats in InGaAs/GaAs quantum dots. A
longitudinal magnetic field is used as a tuning parameter to change the phase of the oscillations in a deterministic
way. This effect arises from the competition between the Zeeman splitting and the electron/hole exchange
interaction on the exciton dipole symmetry. To explore this mechanism, we have developed a pump-probe setup
based on the optical heterodyne detection of the quantum dots reflectivity allowing one to measure the exciton
dynamics from a small quantum dots ensemble (∼300). Particular attention is paid to give a detailed theoretical
analysis of the measurements. The experimental results are in excellent agreement with the model.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) have revealed very
promising and conclusive demonstrations of the quantum
control of the exciton coherence by optical means. The
possibility to drive the QD in the Rabi-flopping regime with
resonant ultrashort laser pulses has been shown, yielding
a precise determination of the quantum phase between the
ground and excited states [1,2]. However, neutral quantum
dots exhibit richer physics than a two-level system, as the
exciton states present a level-degeneracy lifting induced by
electron/hole anisotropic exchange interaction (few tens of
μeV); this fine structure splitting (FSS) naturally builds up
a V-shaped system, offering the extra possibilities to write
and read the coherent superposition of the two excited states.
The resulting quantum beats associated to the FSS have been
already reported, showing a coherence time lasting over few
hundreds of picosecond [3–5].

Recent progresses have shown the possibility to tune the
magnitude of the FSS with external parameters, providing new
degrees of freedom for manipulating the quantum beats. For
example, applying electric field leads to a progressive and
deterministic cancellation of the FSS up to its inversion [6].
Boyer de la Giroday et al. have used this FSS electric-field
tuning control in order to manipulate the quantum beats phase
at subnanosecond time scale with electric pulses of duration
shorter than the coherence time [7]. In this way, they achieved a
phase-shift operation close to unit fidelity, provided the native
FSS magnitude is small enough to increase the electric-field
tuning sensitivity.

Resonant or quasiresonant excitation allows one to transfer
an optical coherence to the V-shaped system with respect to the
optical selection rules. The two exciton states denoted |X〉 and
|Y 〉 are related to optical dipoles mainly aligned respectively
along [110] ≡ X and [110] ≡ Y crystallographic axes [8–10].
As a consequence, a resonant optical field with a polarization
having both X and Y components imprints a determinate initial
phase in between the |X〉 and |Y 〉 states [11].
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We propose here a more sophisticated experimental proto-
col allowing the quantum-beat phase manipulation, not only
by means of light polarization control, but also by applying a
longitudinal magnetic field. The key role of the magnetic field
consists in changing the symmetry of the linear dipoles into
elliptic ones (see Fig. 1): the optical selection rules evolution
results in a competition between the longitudinal magnetic
field and the effective in-plane electron/hole exchange field,
providing a magnetic field tuning of the exciton quantum beats
phase. At this point, it is worth noting that an Overhauser field
aligned with the [001] direction, coming from a significant
nuclear spin polarization inside the quantum dot, can play a
similar role to the applied magnetic field we mentioned above
[12–14].

We present here an experimental study confirming
the magnetic-field tuning of the quantum-beats phase. A
pump/probe setup is employed where the reflectivity is
measured by optical heterodyne detection allowing one simul-
taneously to increase the detection of photoinduced signal, and
to perform various experimental polarization configurations.
The paper is organized as follows. We will present in Sec. II
the sample and the experimental pump-probe heterodyne
setup; then Sec. III is devoted to the theoretical analysis
of the experiments. Finally, the last section will present the
experimental results, in good agreement with the theoretical
model.

II. SAMPLE AND EXPERIMENTAL SETUP

The studied sample contains three layers of neutral In-
GaAs/GaAs QDs, with a nominal density of ∼5 × 1010 cm−2.
The QDs were embedded inside a λ-planar GaAs cavity made
of 24 AlGaAs/GaAs Bragg pairs for the bottom mirror and
12 for the top mirror. The role of the cavity is to increase the
detection sensitivity of the signal [15] and its Q factor is close
to ∼2000.

To measure the exciton dynamics, we use a reflection-
type pump-probe setup, as depicted in Fig. 2. A picosecond
mode-locked Ti:Sa laser is split into three beams (pump,
probe, and reference beams) with energy matching the optical
mode of the cavity centered at 1.337 eV. The pump and
probe beams are focused on the sample with a microscope
objective (N.A. = 0.5) giving a spot diameter of ∼1 μm. In
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FIG. 1. (Color online) Scheme of the V-shape system, as a
function of the Zeeman splitting δz. When δz = 0, the optical dipoles
are linearly polarized and parallel respectively to the X and Y axes.
Their energies are split by the FSS δ1. In the limit δz � δ1, the optical
dipoles become circularly polarized, whereas in the intermediate
regime defined by δz ∼ δ1 and delimited by the dashed circle, the
dipoles show elliptic symmetry with principle axes still aligned
with X and Y directions. Their energy separation simply writes
δ =

√
δ2

1 + δ2
z . �x(t) and �y(t) denote the optical pulse couplings

with respect to the excitons dipole symmetry at zero magnetic field.

this way, we estimate that only NQD ∼ 300 QDs spectrally in
resonance with the cavity mode contribute to the reflectivity
signal. The standard deviation of the probed QDs sample√

NQD/NQD � 5% is small enough to catch the essential
aspects of the exciton dynamics with average values [16].
New experimental strategies are required to increase the
signal-to-noise ratio of the small number of probed QDs. In
this sense, we developed an optical heterodyne amplification of
the reflectivity signal [17,18]. The probe and reference beams
are passed through acousto-optic modulators leading to an
optical frequency shift of the first diffraction order: the probe
optical frequency becomes ωpr = ωL + ω1 and the reference
ωref = ωL + ω2, with ω1 = 110 MHz and ω2 = 112 MHz.
We note here that ω1, ω2 are several orders of magnitude
less than the cavity-mode linewidth. Then, the reflected part
of the probe pulse having interacted with the QDs and the
reference beam are temporally overlapped onto the avalanche

FIG. 2. (Color online) Scheme of the pump/probe setup with
heterodyne amplification of the reflectivity signal. AOM: acousto-
optics modulator; HWP: half-wave plate; NPCBS: nonpolarizing
cube beam splitter; APD: avalanche photodiode; �t : pump-probe
delay.

FIG. 3. (Color online) Description of the experimental polariza-
tion configurations. (a) The linear polarization of the probe and
reference fields are parallel and aligned with the crystallographic
axes X, whereas they are set perpendicular in (b). (c) Dynamics of the
reflectivity signal: the pump polarization is parallel to an eigenstate
direction X or Y , and the polarization of the probe and reference are
specified in the legend. The signal detected with orthogonal reference
and probe polarizations has been multiplied by five.

photodiode, giving rise to the two-wave mixing signal, i.e., the
heterodyne signal beating at |ω1 − ω2| = 2 MHz in our case.

To go further in describing the advantage of the heterodyne
detection, we can express the whole intensity contributions
received by the APD:

〈( 	Ep,r (t)eiωLt + 	Eref(t)e
i(ωL+ω2)t + ( 	Epr,r (t)

+ 	EQD(t))ei(ωL+ω1)t ) × c.c.〉
� 〈 	E2

p,r

〉 + 〈 	E2
ref

〉 + 2〈( 	Epr,r + 	EQD) · 	Eref〉
× cos(ω1 − ω2)t,

where 	Ep,r (t), 	Eref(t) are the electric field associated respec-
tively to the reflected pump and reference pulse envelopes.
In the same way, 	EQD(t) refers to the envelope of the probe
pulse field reflected by the QDs, of which exact derivation
is given further, and 	Epr,r stands as the inherent reflected
probe component that has not interacted with the QDs.
〈· · · 〉 finally denotes the detector time averaging. As an
optical chopper modulates the pump intensity at a frequency
ωp = 1.7 kHz, a double stage lock-in amplifier is then able
to isolate |〈( 	Epr,r + 	EQD) · 	Eref〉| with a high pump-signal
rejection, where 	Eref plays both the role of an amplification
and a polarization analysis of the QDs reflectivity signal. The
average probe power is set at 0.1 μW, whereas the reference
and pump powers are close to 5 μW.

The polarization configurations used in this work are
described in Figs. 3(a) and 3(b) for the three beams: the
pump linear polarization makes an angle ξ with the X axes,
while the probe polarization is aligned with one of the
eigenstate directions and the reference could be either parallel
or perpendicular to the probe polarization direction.

Figure 3(c) provides a first insight into the experimental
results. This preliminary experiment consists in measuring the
decay of the reflectivity signal associated to both |X〉 and |Y 〉
exciton eigenstates, which are addressed selectively by an X

(i.e., ξ = 0) and Y (i.e., ξ = π/2) linearly polarized pump.
In the same way, the population dynamics of the |X〉 (|Y 〉)
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exciton is recorded with the corresponding probe polarization
along X (Y ), and finally the reference is set parallel to the
probe in order to amplify the probe reflectivity change. The
heterodyne signals are shown in Fig. 3(c) and the dynamics
for the |Y 〉 state has been artificially set negative for clarity.
Remarkably both dynamics present almost the same amplitude
and are well fitted with the same monoexponential decay of
710 ± 10 ps, giving with good approximation the radiative
lifetime, assuming the exciton relaxation rate is negligible over
the radiative time scale as already confirmed in Refs. [19,20].
From this experimental result, we conclude that the two optical
exciton transitions have nearly the same oscillator strength; this
assumption will deeply simplify the derivation of the reflected
probe pulse onto the QDs in the following section.

Lastly, to verify that the polarization configurations men-
tioned here permit one to selectively study the exciton eigen-
state population dynamics, the reference linear polarization
is now rotated by π/2 and set perpendicular to the probe.
The heterodyne signal is shown by the continuous gray line
in Fig. 3(c) and appears to be vanishingly small, confirming
that the reflected probe acquires no significant orthogonal
polarization, when the probe polarization is aligned with one
of the exciton eigenstate directions.

III. MODELIZATION OF THE PHOTOINDUCED
HETERODYNE SIGNAL

This pump-probe experiment offers a lot of possible
polarization configurations giving each different aspect of the
exciton dynamics, as three independent beams are involved.
Before presenting a complete experimental study, this section
is devoted to modelizing the photoinduced heterodyne signal,
in various polarization configurations. First, we will pay
attention to writing the exciton eigenstates basis in the presence
of a longitudinal magnetic field. Then, the reflected probe
pulsed 	EQD(t) will be calculated, and its mixing with the
reference having different linear polarization direction and
giving rise to the optical heterodyne beats will be discussed.

A. Exciton eigenstates symmetry in the presence
of a longitudinal magnetic field

When applying a magnetic field along the growth direction,
the Hamiltonian describing the exciton states is written as [21]

Ĥ =
(

�ω0 − δ1

2

)
|X〉〈X| +

(
�ω0 + δ1

2

)
|Y 〉〈Y |

+ δz

2
(|+1〉〈+1| − | − 1〉〈−1|), (1)

where | ± 1〉 are written in Fig. 1, δ1 is the FSS value,
and δz is the Zeeman splitting given by gzμBBz with gz

being the exciton longitudinal g factor. Diagonalization of
the Hamiltonian leads to new eigenstates denoted |EL+〉 and
|EL−〉, with their corresponding energies:

|EL+〉 = sin α|X〉 + i cos α|Y 〉, E+ = �ω0 + 1
2

√
δ2

1 + δ2
z ,

|EL−〉 = cos α|X〉 − i sin α|Y 〉, E− = �ω0 − 1
2

√
δ2

1 + δ2
z .

α is the angle defined as 1
2 arctan (δz/δ1). When the

condition δz � δ1 is fulfilled, α tends to π/4 and the circular
symmetry of the exciton states is restored. It is now clear that
for the intermediate regime of Zeeman splitting, the states
present an elliptic symmetry.

When regarding more precisely the interaction with the
resonant linearly polarized pump pulse, the Hamiltonian is
given by

Ĥp(t) = −��p(t)e−iωLt [cos ξ cos α + i sin ξ sin α]σ̂−0

− ��p(t)e−iωLt [cos ξ sin α − i sin ξ cos α]σ̂+0

+ H.c., (2)

where σ̂±0 = |EL±〉〈0| and [22] �p(t) = μxEp(t)
�

= μyEp(t)
�

.
The optical coupling coefficients in Ĥp(t) expressed in

the {|0〉,|EL−〉,|EL+〉} basis are complex functions of (ξ ,
α), and differ for each optical transition |0〉 → |EL+〉 and
|0〉 → |EL−〉. The key point is that their arguments are
different, yielding the possibility to control the initial phase
(i.e., just after the passage of the pump pulse) between |EL+〉
and |EL−〉 by changing α (i.e., the magnetic field) when fixing
ξ . At this stage, it is easy to check on Eq. (2) that, for ξ = 0 or
ξ = π/2, both optical couplings have the same arguments and
are simultaneously either purely imaginary or real, preventing
the phase manipulation by applying the magnetic field.

The more intriguing case is for ξ = π/4. When this pump
polarization configuration is employed, the argument of the
optical coupling to |EL+〉 state, Arg[sin α − i cos α], is α −
π/2, whereas the other one, Arg[cos α + i sin α], is α, so that
the difference of both arguments becomes α independent. This
also means that the ξ = π/4 configuration renders inoperative
the magnetic field control of the exciton quantum beats phase.
From this very preliminary analysis, we conclude that low-
symmetry pump polarization direction ξ is required to validate
the magnetic field induced phase control protocol (i.e., for ξ

different from 0, π/4, and π/2).
All these aspects which lie at the heart of this publication

will be specified in the following and illustrated experimen-
tally.

B. Expressions of the reflectivity signals

We propose here to express the probe electric field 	EQD(t)
reflected by the QDs; this latter should be a function of ξ , α,
and the pump-probe delay �t but also depends on the probe
polarization, while the heterodyne signal depends in addition
on the reference polarization. First we consider the density
operator evolution given by the Liouville equation:

dρ̂

dt
= − i

�
[Ĥ ,ρ̂(t)] −

(
∂ρ̂

∂t

)
rad

−
(

∂ρ̂

∂t

)
decoh

. (3)

We use the eingenstates basis {|0〉,|EL−〉,|EL+〉}. Be-
fore the pulse arrival, the density operator is written as
ρ̂(0−) = Diag[1,0,0] and becomes after pump pulse ρ̂(0+) =
W (∞)ρ̂(0−)W †(∞), where the unitary pump operator [23] is

W (t) = e
i
�

∫ t

−∞ Ĥp(t ′)dt ′ and Ĥp(t) exists in the interval of the
pump pulse duration τp ∼ 2 ps. The corresponding spectral
width of the laser 1/τp is on the one hand much larger than the
exciton splitting energy, and on the other hand comparable with
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the cavity-mode linewidth. ρ̂(0+) naturally serves as the initial
condition to solve Eq. (3). Then we find for the population
terms⎧⎪⎨

⎪⎩
ρ00(t) = 1 − e−t/τr sin2 θ/2,

ρ−−(t) = 1
2e−t/τr (1 + cos 2α cos 2ξ ) sin2 θ/2,

ρ++(t) = 1
2e−t/τr (1 − cos 2α cos 2ξ ) sin2 θ/2,

and for the coherence terms of interest{
ρ+−(t) = 1

2e−i( δ
�

−iγ )t [cos 2ξ sin 2α − i sin 2ξ ] sin2 θ/2,

ρ−+(t) = ρ∗
+−(t),

where θ = ∫
�p(t)dt is the Rabi area of the pump pulse, γ =

1/τr + 1/T2, T2 is the coherence time of the excitons beatings,
and δ =

√
δ2

1 + δ2
z .

While ρ̂(t) describes the free evolution of the system after
the pump pulse, we note σ̂ (t) the density matrix taking into
account the interaction between the QDs and the probe field
for a given pump-probe delay �t . As the pulse duration τp is
much shorter than the interband coherence time [24], σ̂ (t) is
governed by the coherent evolution equation:

dσ̂

dt
= − i

�
[Ĥ + Ĥpr (t − �t),σ̂ ], (4)

where Ĥpr (t)=−[��pr (t)e−iωpr t cos α]σ̂−0−[��pr (t)e−iωpr t

sin α]σ̂+0 + H.c. for a probe polarization direction along X.
The solution of Eq. (4) is calculated in the first order in the
probe field and can be expressed by

σ̂ (t) � ρ̂(�t) − i

�

∫ t

−∞
[Ĥpr (t ′ − �t),σ̂ ]dt ′, (5)

with the conditions −τp/2 � t ′ − �t � τp/2 and σii(�t) =
ρii(�t) indicating that the probe field does not change
significantly the population terms under the experimental
precautions |�pr (t)| � |�p(t)| and |�pr (t)|τp � 1. Only the
second term in Eq. (5) mixes the interactions with the pump
and probe fields and participates to the photoinduced signal,
whereas the first term solely describes the pump-induced
resonant fluorescence. As the reference beam is polarized
along the crystallographic axes, it is very convenient to express
σ̂ in the {|0〉,|X〉,|Y 〉} basis, by applying the change-of-basis
operator P according to σ̂ � = P · σ̂ · P † with

P =
⎛
⎝1 0 0

0 cos α i sin α

0 sin α −i cos α

⎞
⎠.

Due to this operation, the coherence elements in σ̂ � result
in a mixing with population and coherence terms of σ̂ .
Then the probe-induced stimulated QDs emission—or in the
classical point of view, the reflected part of the probe by
the QDs—is now calculated by first expressing the quantum
average dipole 〈dj 〉(t) = μj [σ �

j0(t) + c.c.] with j = {X,Y }.
In the classical far-field approximations, the QD radiated
field is proportional to the oscillating dipole, and the two

orthogonal components are

E
QD
X (t) = AX(t)

{
− [3 + cos 2ξ cos2 2α]e−�t/τr + e−γ�t

×
[

sin 2ξ sin
δ�t

�
− cos 2ξ sin 2α cos

δ�t

�

]

× sin 2α

}
eiωpr t + c.c. (6)

and

E
QD
Y (t) = AY (t)

{
i cos 2ξ cos 2α sin 2αe−�t/τr − e−γ�t

×
[

cos
δ�t

�
(sin 2ξ + i cos 2ξ sin 2α cos 2α)

+ sin
δ�t

�
(cos 2ξ sin 2α − i sin 2ξ cos 2α)

]}

× eiωpr t + c.c., (7)

with Aj (t) = μ0ω
2
prβ × iμj (

∫ t

−∞�pr (t ′ − �t)dt ′) × sin2 θ
2 ,

where μ0 is the magnetic permeability and the complex coeffi-
cient β takes into account the cavity effect on the probe reflec-
tion, and contains the phase factor due to the wave propagation
from the QDs to the photodetector. Depending on the reference
polarization, the experiment is then sensitive selectively to the
QD fields polarized along the X or Y direction. At this stage,
it is easy to verify on Eq. (7) that for (ξ = 0,α = 0) (i.e., the
pump parallel to the probe polarization direction along X and
no applied magnetic field), the Y component of the QDs emit-
ted field E

QD
Y (t) is zero giving no heterodyne signal when the

reference polarization is along Y as demonstrated in Fig. 3(c).
As a lock-in amplifier detection is used, one needs to

calculate the amplitude of the harmonic beating at |ω1 − ω2|,
noted R. We will consider a perfect alignment of the reference
and probe polarization directions with the crystallographic
axes. In our measurement, the probe polarization is kept
constant along X and only the pump and reference polarization
change, so that we write the signal R(�t,ξ,X) (R(�t,ξ,Y ))
when the reference polarization is aligned with the X (Y )
direction. Then we find, omitting the amplitude prefactor,

R(�t,ξ,X)

= (3 + cos 2ξ cos2 2α)e−�t/τr

+ e−γ�t

(
cos 2ξ sin 2α cos

δ�t

�
− sin 2ξ sin

δ�t

�

)
× sin 2α (8)

and R(�t,ξ,Y ) is of the form
√

R2
x + R2

y with

Rx = e−γ�t

(
cos

δ�t

�
sin 2ξ + sin

δ�t

�
cos 2ξ sin 2α

)
, (9)

Ry = cos 2α

{
cos 2ξ sin 2α e−�t/τr

+
[

sin
δ�t

�
sin 2ξ − cos

δ�t

�
cos 2ξ sin 2α

]
e−γ�t

}
.

(10)
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FIG. 4. (Color online) (a) Evolution of the exciton quantum beats
phase with the ratio δz/δ1 for different pump polarization directions ξ .
(b) Evolution of the beats amplitude versus δz/δ1 for different values
of the parameter ξ .

At this stage of the analysis, it is important to comment
more on the expression R(�t,ξ,X) written in (8), in which
we can clearly distinguish two components: one decaying
with the radiative lifetime refers to the population term, and
the other one having a γ decay corresponds to the coherent
term oscillating with a period h/δ. The relative amplitude
of both components depends only of (ξ,α). Regarding more
particularly the coherent term in Eq. (8), this latter can
be rewritten under the form −A(ξ,α) sin ( δ�t

�
+ ψX(ξ,α))

defining a phase and an amplitude associated to the quantum
beats, which are plotted respectively in Figs. 4(a) and 4(b) as
a function of the ratio δz/δ1 for different angles ξ .

Figure 4(a) confirms the qualitative arguments discussed
previously in Sec. III A, where the phase remains inde-
pendent of the applied magnetic field for high-symmetry
pump polarization, i.e., ξ = 0,π/4,π/2. However, for low-
symmetry pump polarization, the phase becomes sensitive to
the magnetic field and saturates to −π/2 + 2ξ for 0 < ξ <

π/2 and −3π/2 + 2ξ for π/2 < ξ < π . For example, for
ξ = π/8[π/2] (3π/8[π/2]), the phase of the quantum beats
saturates to −π/4 (π/4). The amplitude related to the coherent
beating shown on Fig. 4(b) increases with the magnetic field
up to the saturation and looks largely independent of the angle
ξ . When no magnetic field is applied, the coherent signal
amplitude vanishes whatever the angle ξ is, and only the
population signal remains [see Fig. 3(c)].

To overcome this limitation, one can turn to another
experimental configuration where the probe and reference po-
larizations are set orthogonal, giving the signal R(�t,ξ,Y ), as
the oscillating terms present in Rx or Ry [see Eqs. (9) and (10)]
do not cancel for α = 0. However, the expression R(�t,ξ,Y )
indicates that the recorded signal would be positive and would
show a period of oscillation twice shorter than the one imposed
by the sole exciton splitting energy. These observations are not
corroborated by the measurements. Actually, we can show that
a slight angular deviation between the probe and reference
from the ideal crossed-polarization configuration as small
as few tens μrad leads to a dramatic change of the signal
shape R(�t,ξ,Y ), whereas an experimental misalignment does

not alter R(�t,ξ,X). The Appendix will provide a detailed
description of this subtle effect.

IV. RESULTS AND DISCUSSION

We present in this section the experimental results showing
the reflectivity signals gathered in Fig. 5 and obtained when
the probe and reference polarization directions are the same
and parallel to the X direction. The purpose of this work
is to compare the phase of the exciton quantum beats when
changing the magnitude of the longitudinal magnetic field; that
is why we choose to plot the reflectivity signals in the phase
domain � defined for each magnetic field as

√
δ2

1 + δ2
z

�t
�

,
rather than in the time domain �t . Our choice renders the
phase evolution more clear. This has required first to measure
the FSS δ1 and the gz values.

Figure 5(a) shows the experimental results for ξ = 0 and
ξ = π/2. When the reference polarization is set parallel to
the probe one, we have demonstrated that the coherence
signal is a modulation of the decaying population signal [see
expression of R(�t,ξ,X) in Eq. (8)], which is confirmed
experimentally. The period of oscillations as a function of
the magnetic field can be easily fitted and finally be converted
into exciton splitting energy in Fig. 5(d). Therefore, we deduce
from the splitting evolution that the average values describing
the probed QDs sample δ1 and gz are respectively [25]
15 μeV and 2.8. The magnetic field value satisfying the
condition δ1 = δz(= gzμBBz) is then Bz ∼ 100 mT.

The continuous lines in Fig. 5(a) represent the fitting
curves, which match very well the experimental data for
all the magnetic field values. During the fitting procedure
using the expression of R(�t,ξ,X), τr , δ1, and gz are
maintained fixed as constant parameters, whereas only two
free parameters are used: the coherence time T2 and a global
renormalization prefactor. In particular, it is remarkable
that the amplitudes of both the population and coherence
components which are deeply correlated, are very well
reproduced simultaneously. As expected, the amplitude of
the oscillating part tends to zero for δ1 > δz and saturates
in the regime δ1 � δz, as predicted in Fig. 4(b). Finally, the
experimental results in Fig. 5(a) show in very good agreement
with the modelization that the ξ = 0 and ξ = π/2 reflectivity
signals oscillate in phase opposition whatever the magnetic
field amplitude is, as demonstrated in Fig. 4(a).

Figures 5(b) and 5(c) show the reflectivity dynamics
evolution with the magnetic field, for a pump polarization
corresponding to ξ = π/4 and [26] ξ = 7π/12. Once again, as
the probe and reference polarizations are set parallel, the quan-
tum beats are in addition to the monoexponential population
signal. However, this latter contribution was removed from the
experimental data after the fitting procedure in Figs. 5(b) and
5(c) in order to center the oscillations and make the magnetic
field dependence of the phase more clear.

Figure 5(b) shows the two main features in good agreement
with the theoretical model: first, the amplitude of the oscillating
component grows up when increasing the magnetic field,
and secondly no phase shift is observable when changing
the magnetic-field magnitude, as expected from the ξ = π/4
experimental configuration. A dashed line joining the intersec-
tions of the curves with their respective zero-baselines centered
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FIG. 5. (Color online) Reflectivity signals obtained when the probe and reference polarization are set parallel. (a) The pump polarization
angle is ξ = 0 and ξ = π/2. (b) ξ = π/4. (c) ξ = 7π/12. (d) Evolution of the exciton splitting energy with the magnetic field, extracted from
the period of oscillation. The red points come from Fig. 5(a) and ξ = π/2, whereas the black triangles come from Fig. 7 in the Appendix.
(e) Evolution of 1/T2 as a function of the applied magnetic field. The blue dashed fitting curve takes into account the inhomogeneities of the
FSS and exciton Landé-g factor gz, whereas for the black dotted curve, only the g-factor dispersion is considered with the following numerical
values: �g = 0.62 and T 0

2 = 220 ps.

at � = π appears then vertical, and is a guide for the eyes to
note the absence of the magnetic-field induced phase shift.

The ξ = 7π/12 case in Fig. 5(c) is the more interesting ex-
perimental configuration, as it differs from the high-symmetric
pump polarization directions in respect of the exciton dipole
polarization, and provides the evidence of the magnetic-field
control of the quantum beats phase. The reflectivity signal is
plotted over a half-period of oscillation (i.e., 0 < � < π ). We
select only two data for clarity: one measured at low magnetic
field (Bz = 53 mT corresponding to αmin � 0.26), and the
other one at high magnetic field (Bz = 343 mT corresponding
to αmax � 0.65, close to its maximum limit of π/4). In both
cases, the theoretical model fits the data satisfactorily. For the
higher magnetic field the curve intersects the zero baseline
for � � π/3 (see Sec. III B). A vertical line is added on the
plot, as a cursor pointing at this specific angle. The second
vertical line points to the zero of the second curve. It is
clear that the distance between these two lines reveals the
magnetic-field induced phase shift in the exciton quantum
beats. The corresponding amplitude of the phase shift is simply
written as |�X(αmax,7π/12) − �X(αmin,7π/12)| and has a
value of � 0.38 rad (close to π/8).

Until now, the inhomogeneities inherent to the probed QDs
sample have been overlooked. In this regard, the coherence
rate 1/T2 evolution with the magnetic field gives quantitative
details on the dispersion of the δ1 and gz related distribu-
tions. Figure 5(e) shows the 1/T2 evolution as a function
of the applied magnetic field, extracted from the ξ = π/2
experiments. Very similar trends are found with other pump
linear polarizations ξ . The dependence looks linear for the
highest magnetic fields and deviates substantially from the
linear behavior for Bz < 150 mT. These observations are
then compatible with the following description: when Bz >

150 mT, the dispersion of the exciton Landé g factor dominates
the quantum beats damping providing a linear dependence of
1/T2 versus Bz, with a slope close to ∼μB�g/2�, where �g

is the FWHM of a Lorentzian distribution associated to gz;
for the lowest magnetic fields, i.e., Bz < 150 mT, both δ1

and gz dispersions combine. To go further quantitatively, the
dispersions �g and �δ1 can be simultaneously evaluated, under
the reasonable assumptions of uncorrelated distributions, by
averaging numerically the coherent part of the reflectivity
signal over both distributions for each magnetic field, as
follows:

e−�t/T 0
2

∫∫
sin2 2α cos

δ�t

�
L

(δ1)
δ1,�δ1

L
(gz)
gz,�g

dgzdδ1, (11)

where L
(x)
x,�x

is the Lorentzian distribution centered on x and
with a dispersion �x ; T 0

2 is the expected coherence time
at zero magnetic field. Equation (11) is then numerically
approximated by e−�t/T �

2 sin2(2α) cos(δ�t/�), where α and
δ are the quantities used in the fitting procedure as constant
parameters for a fixed magnetic field and evaluated with the
average values δ1 and gz; T �

2 is the inhomogeneous coherence
time taking into account the whole dispersed parameters. It is
then possible to find the best set of parameters T 0

2 , �g , and �δ1 ,
which makes the 1/T �

2 dependence with the magnetic field
as close as possible to the measured one. The blue dashed
curve in Fig. 4(e) shows the 1/T �

2 evolution for T 0
2 = 310 ps,

�g = 0.62, and �δ1 = 5.9 μeV, and presents the same trends
as the experimental results. More precisely, the fast increasing
of the coherence rate below Bz = 150 mT is well reproduced.
Then we can conclude that, for our sample, δ1 is closed to
15 ± 3 μeV and gz = 2.8 ± 0.31.
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V. CONCLUSION

We have demonstrated the possibility to tune the exciton
quantum beats phase by applying a longitudinal magnetic field.
The experiments are described by the model with a very good
accuracy.

The magnitude of the FSS δ1, as well as the pump
polarization direction ξ define the range where the phase
becomes sensitive to the magnetic field. In our sample, δ1

being only 15 μeV, the magnetic field reaching the saturation
of the phase is then restricted to ∼100 mT [see Fig. 2(a)].
However, a relatively small value of the FSS, indicating
moderate anisotropic QDs seems to ensure similar oscillator
strength of the |X〉 and |Y 〉 exciton states.

Finally, heterodyne amplification of the reflectivity should
provide an efficient tool to study exciton dynamics at the level
of a single quantum dot.
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APPENDIX: ON THE REFLECTIVITY SIGNAL OBTAINED
IN THE CROSS-POLARIZED PROBE-REFERENCE

CONFIGURATION

This Appendix is devoted to finely analyze the experimental
results when the probe and reference beams are cross-
polarized. We will show that the reflectivy signal can be fully
understood by taking into account a nonperfect orthogonality
between the probe and reference polarizations. This angular
deviation amplifies an extra contribution to the heterodyne
detection by mixing the reference and the reflected probe onto
the sample defined as 	Epr,r in Sec. II.

FIG. 6. (Color online) (a) Amplitude of the heterodyne signal as
a function of the reference polarization direction γ , when the pump is
turned off. The data is fitted by | cos γ |. (b) Angular deviations of the
reference and probe polarization used to express the reflectivity signal
measured with the reference-probe cross-polarization configuration.
(c) Angular deviations of the reference and probe polarization in the
case of the quasicollinear configuration.

FIG. 7. (Color online) Reflectivity signals obtained when the
probe and reference beams are (quasi)cross-polarized, for a pump
polarization direction ξ = π/4.

Figure 6(a) shows the heterodyne signal amplitude by
rotating the reference linear polarization by an angle γ when
the probe polarization is parallel to X and the pump beam is
switched off. This signal analyzed at the frequency |ω1 − ω2|
with the first stage of the lock-in amplifier,confirms that a
substantial part of the probe (i.e., 	Epr,r ) is inevitably reflected
back to the photodiode. This is due, on the one hand, to
the cavity mode linewidth being comparable with the pulse
spectral width, and on the other hand to the focusing onto
the microcavity with a high numerical aperture objective lens
(N.A. = 0.5). Changing the experimental configuration from
reference and probe beams copolarized to cross-polarized
moves the operating point represented by the two blue arrows
on Fig. 6(a), upon which the photoinduced signal lies on. On
the other hand, the two orange arrows correspond to the real
operating points relative to the two polarization configurations
when considering a reference polarization angle deviation θref

to the ideal alignment [27], as depicted on Fig. 6(b). The
main point is that the reference cannot distinguish along
its polarization direction between the reflected probe field
	Epr,r and the quantum dot field 	EBQ, leading to a dramatic
modification of the measured reflectivity. In order to deal with
the real experimental conditions, we consider also a small
angular deviation noted θpr of the probe polarization with
respect of the X direction [see Fig. 6(b)]. We focus on the cross-
polarized configuration and find that the heterodyne amplitude
taking into account the whole electric fields contributions on
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the photodetector∣∣∣∣
〈[

Epr,r

(
cos θpr

sin θpr

)
ei(ωpr t+χ) +

(
E

QD
X

E
QD
Y

)
eiωpr t

]

×E∗
ref

(− sin θref

cos θref

)
e−iωref t

〉∣∣∣∣. (A1)

χ is the phase difference between 	Epr,r and 	EQD. Expression
(A1) is then calculated with the use of reasonable assumptions:
(i) 	Epr,r keeps the same polarization as the incident probe
beam; (ii) |Epr,rE

∗
ref| � |EQD

j E∗
ref|; (iii) |θref| and |θpr | � 1.

We find then in first order in θref and θpr :

� |E∗
ref|

[
|Epr,r ||�θ | + Re

(
�θEpr,re

iχE
QD,∗
Y

|�θ ||Epr,r |
)]

, (A2)

where �θ = θref − θpr . As expected, the first term in (A2)
corresponds to the change of the operating point, and carries
no photoinduced signal which is present in the second term.
This latter can be expressed using Eq. (7), giving the real
experimental signal R(�t,ξ,Y ) by calculating the harmonic
amplitude at |ω1 − ω2|:

R(�t,ξ,Y ) = �θ

|�θ |
[

cos χ cos 2ξ sin 2α cos 2αe−�t/τr + e−γ�t

{
(sin χ sin 2ξ−cos χ cos 2ξ sin 2α cos 2α) cos

δ�t

�

+ (sin χ cos 2ξ sin 2α + cos χ sin 2ξ cos 2α) sin
δ�t

�

}]
. (A3)

This expression, taking into account realistic experimental
conditions, shows that the phase of the reflectivity signal,
measured in the cross-polarization configuration, depends on
an extra parameter χ , which should be considered in the
experimental data analysis. In particular, Eq. (A3) allows
one to define a phase �Y (ξ,α,χ ) in the reflectivity signal.
A good illustration of this is presented in Fig. 7 showing the
reflectivity signal evolution with the applied magnetic field
for a pump polarization direction ξ = π/4. This figure has to
be compared with Fig. 5(b). The fits using Eq. (A3) give a
very good accordance with the experimental data for a single
value of χ (0.61 rad), whatever the magnetic field is [28]. The
effect of the additional parameter χ appears immediately when
looking at the dashed line joining the intersection of the curves

with their respective zero baselines. The line is not vertical,
as opposed to the one in Fig. 5(b); this traduces the fact that
�Y (ξ = π/4,α,χ ) depends on the magnetic field, contrary to
�X(ξ = π/4,α) which does not.

Moreover, when following the same method for the copo-
larized configuration, and taking into account polarization
misalignment [see Fig. 6(c)], the resulting reflectivity signal
keeps the same form as expression (8), and the phase χ

enters in the amplitude prefactor and thus plays no signif-
icant role (i.e., the small deviations θref and θpr have no
influence).

In conclusion, despite possible axis misalignment, without
consequence on the physical analysis, both configurations
permit one to study with accuracy the exciton phase control.
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Stevenson, N. Sköld, R. B. Patel, I. Farrer, D. A. Ritchie, and A.
J. Shields, Phys. Rev. B 82, 241301 (2010).
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