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Chiral route to spontaneous entanglement generation
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We study the spontaneous entanglement generation between two qubits chirally coupled to a waveguide. The
maximum achievable concurrence is demonstrated to increase by a factor of 4/e ~ 1.5 as compared to the non-
chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the
qubit properties such as detuning and separation, which are critical in the nonchiral case. This result relaxes the
restrictive requirements of the nonchiral situation, paving the way toward a realistic implementation. Our results
demonstrate the potential of chiral waveguides for quantum entanglement protocols.
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I. INTRODUCTION

Efficient quantum circuits are a very important ingredient
for the development of quantum computing [1]. Usual imple-
mentations of these devices require platforms where informa-
tion, usually in the form of photons, can be easily introduced
and extracted [2]. Several systems based on waveguides have
been proposed for quantum circuitry, from superconducting
stripes [3] to dielectric [4,5], photonic crystal [6,7], or
plasmonic waveguides [8]. In this context, the interaction
between the guided photons and quantum emitters is critical
for various processes, such as the creation of entangled states
between the qubits. Spontaneous entanglement generation in
waveguide setups has already been predicted [9,10]. Many
other interesting phenomena, such as mesoscopic entangle-
ment [11], long-distance quantum beats [12], or the formation
of sub- and superradiant states [13], show that waveguides are
excellent platforms for quantum-information processing.

Recently, systems of emitters chirally coupled to waveg-
uides have attracted a lot of attention both theoretically and
experimentally [14—16]. In these configurations, an adequate
engineering of the waveguide can be used to break the
emission symmetry of the qubits, channeling the emitted
photons preferentially into one of the two directions of
the waveguide. Chirality in emitter-waveguide coupling is
a general effect associated with the so-called spin-orbit
interaction of light [17]. In addition to theoretical studies,
many experiments have reported chiral emission with a very
large degree of directionality, from nanoparticles and atomic
ensembles in dielectric waveguides [17,18] to quantum dots
in nanobeams [19] and photonic crystals [20-22]. Among
these setups, the latter turn out to be especially promising
systems as they combine large directionalities of around 90%
with high emitter-waveguide coupling fractions (up to 98%).
Consequently, they have been proposed as ideal platforms for
implementation of quantum logical gates [22].

In this paper, we tackle the problem of spontaneous
entanglement generation between two qubits chirally coupled
to a waveguide. In the first part of this work, we present an ana-
lytical solution to the master equation describing the evolution
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of the system state, showing how chirality allows for an
enhancement up to ~50% in the maximum generated entangle-
ment as compared to the nonchiral case. In the second part of
the paper, we present a more complete formalism in which non-
Markovian effects are explicitly accounted for by fully diago-
nalizing the Hamiltonian in the single-excitation subspace. We
use this formalism to demonstrate the robustness of the entan-
glement generation scheme against the detuning between the
qubits, the total coupling rate, and the qubit-qubit separation.

II. MARKOVIAN APPROACH

The system under study is depicted in Fig. 1. Two emitters
1 and 2, modeled as two-level systems of frequency wy, are
coupled to the propagating photonic modes of a waveguide.
The emitters are separated by a distance d = x, — x, and they
are coupled to the right- and left-propagating photons through
the energy constants y;z and y;; (j = 1,2), respectively. In a
chiral coupling scheme such as the one analyzed in this work,
these constants are different (y;r # ;). Other deexcitation
processes into free space or additional lossy modes are taken
into account through the decay rates I';. The three coupling
constants of each qubit are used to define a usual figure of
merit in waveguide systems, namely the coupling fraction or
beta factor, given by 8; = (vjr + vjr.)/(Vjr + vjL +T}).

Our aim is to analyze spontaneous entanglement generation
when qubit 1 (the qubit on the left) is initially excited. We
start by solving the system dynamics, obtaining the time
evolution of the reduced density matrix of the two-qubit
subsystem, p. In the first part of this work, we will follow
a usual approach undertaken in quantum optics, in which the
problem is simplified by tracing out the photonic degrees of
freedom under the so-called Markov approximation [23]. In
this situation, the only dynamical variable is the density matrix
p, whose evolution is governed by the following general master
equation (b = 1):

p=—ilH.pl+ Y ¥iLa, o lp]
j=12

+VVerViRLor 0 [P] + VouViL Lo o [P], (1)

where we define y; = (yjr + vj1)/2. The bare Hamiltonian
of the system is given by H = a)o(ofal + o;az), where o; is
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FIG. 1. (Color online) System under study. Two qubits of fre-
quency wy and separated by a distance d are placed in the vicinities
of a waveguide. The energies y;, quantify the chiral coupling of qubit
J to the photonic propagating mode « (= L, R). In the same fashion,
the decay rate into the 3D environment and other lossy modes is
described by a coupling constant I';.

the annihilation operator of qubit j. The generalized Lindblad
superoperators, Lo, 5,, are expressed as

(e 12 Dar — e Pa ol oyp]),  (2)

Lo,olp] = (04,0
where D, = |x, — xp|/Xo, Ao =27V, /wp is the emission
wavelength of the qubits, and v, is the group velocity of the
guided photons. These terms are employed to describe both the
decay of the qubits into the waveguide modes (¢ = b) and
the waveguide-mediated interaction between emitters (a # b).
In the latter case, the real (imaginary) part of L, 5 in
Eq. (2) leads to an incoherent (coherent) coupling between
the qubits [10,24]. Note that Eq. (1) is particular of chiral
configurations [15], and it is reduced to its more common form
in the case y;g = y;r. To focus on the fundamental aspects of
the chiral system, we will first particularize our study to the
lossless case (i.e., B; = 1), including the losses in the second
part of the work.

Combining Eq. (1) with the particular initial conditions of
our problem, p(0) = af |0) (0|01, and expressing p in the usual
basis {|0),]1) = ¢,10),|12) = 6110).]3) = 6{0.]0)}, the only
nonzero elements of the density matrix are the populations pg,
P11, P22, and the coherence pi,. Three of these quantities are
coupled through the following system of differential equations:

o1 = =2y1011 — iLvan(@ ™ o + e pp),  (3)
p2 = —2y200 — VIRV2R(E T pra + e py), (D)

P2 =~ + y2)pi2 — \/)/IR)/ZRPH@_[Z”J
— L VoL e, ©)

with the normalized distance d = d/A,. Once these equations
are solved, we can compute the qubit-qubit entanglement,
which we quantify with the Wootters concurrence C [25],
a widely used measure thanks to its simple calculation and
its intuitive bounds. Indeed, the concurrence ranges from
0 for nonentangled states to 1 for maximally entangled
configurations. A straightforward calculation demonstrates
that in this case, C = 2|pj2|. An analytical solution of Eq. (1)
can be obtained when the two qubits are equally coupled, i.e.,
y1 = y» = y. The following expression for the concurrence is

PHYSICAL REVIEW B 92, 155304 (2015)

0.8
0el@® d=X d=X/8 d=)/4
0 04 A=Ay =0
0.2
b
0.6b) d=) d=X/8 d=X\/4
© 04 Ay =A, =09
0.2
0.0
(©) 0 1 2t 3 4
0.8 il
N~ S S —
06
504
0.2 Al=Ay=1 A1 =2A=08 Al =A,=0
0.0
0.0 0.5 1.0 1.5 2.0

/o

FIG. 2. (Color online) Time evolution of the concurrence,
Eq. (6), for different qubit-qubit separations d, in the nonchiral (a) and
chiral (b) cases. (c) Dependence of C,,x on the separation between
the qubits, d. The condition A; = A, is chosen because it optimizes
the maximum achievable concurrence Cy,.x (see the main text). In all
three panels, the ideal case §; = 1 is considered.

obtained:

C2(r) = A+ AN+ A2) 4y
(I —=AN1—Ay)

x (sin’[2gyt sin(2d)] + sinh®*[2gy cos2nd)]),
(6)

where ¢ = (1 — A?)""(1 — A)"", and we have introduced
the directionality of qubit j as the adimensional ratio A; =
(vjr — vjr)/(Yjr + v;jr). The two terms in the second line
of Eq. (6) represent, respectively, the coherent and incoherent
contributions of the qubit-qubit interaction.

To have a clear view of the advantages brought about
by chirality, let us first analyze the nonchiral case, A; = 0.
The time evolution of the concurrence in this situation is
displayed in Fig. 2(a). Regardless of the separation between
the qubits, the concurrence is O for ¢+ = O since the initial state
is separable, and it grows up to a maximum value C(¢) > 0.
This spontaneous entanglement generation is caused by the
imbalance between the decay rates of the two entangled
eigenstates of the Liouvillian (namely, the symmetric or
antisymmetric combination of excitations). As the system
evolves in time, the superradiant component rapidly decays
while the subradiant one remains populated for a longer pe-
riod [10]. Fort — o0, the behavior of the concurrence depends
on the separation d. For almost all separations, the con-
currence decreases to zero following the decay of the long-
lived subradiant state. However, when the qubits are identical
and for very specific separations, 2d = 0,1,2,..., the behavior
is different, as the concurrence has an infinite lifetime. In
this particular situation, the subradiant state becomes a dark

1/4 1/4
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state, which is totally uncoupled from the waveguide. As a
consequence, the concurrence does not decay, and it reaches
its maximum achievable value C = 0.5, bounded by the 50%
overlap between the initial state and the dark state. The
appearance of an uncoupled state for this particular separation
is caused by a Fabry-Pérot-like resonance between the qubits,
where a photon of energy wy can be trapped forming a standing
wave [26]. The presence of this localized photon is linked to
the fact that the transmittance of one qubit is strictly zero for
an incoming resonant photon [27]. Note that, in a realistic case
(B < 1), the concurrence always decays with time [10].

When the coupling is chiral, on the other hand, a straight-
forward calculation demonstrates that the above-mentioned
standing wave does not appear (see the Appendix for de-
tails), as the chirality effectively couples the right- and
left-propagating modes, and, consequently, the single-qubit
transmittance never vanishes. Thus, the appearance of a
dark state is prevented by chirality. As a consequence, the
dependence of the concurrence on the separation d becomes
less critical, as Fig. 2(b) shows. Moreover, the chiral coupling
also modifies the mechanism responsible for the entanglement
generation, which now does not rely only on the incoherent
part of the interaction. Indeed, in the chiral case, the Liouvillian
contains an extra Hamiltonian part [15] that induces an
additional, coherent transfer of excitations between the qubits.
As aresult of this supplementary interaction, the concurrence
is no longer bounded by the overlap between the initial
state and the dark state, and it is then able to reach higher
values than in the nonchiral situation [see Fig. 2(b)]. The
maximum concurrence achieved during the time evolution,
Chax, 1s displayed in Fig. 2(c) as a function of d. Clearly,
the maximally chiral configuration A; =1 optimizes the
entanglement generation scheme, as Cp,x reaches a maximum
value that, additionally, is independent of 4. Chirality thus
represents an advantage toward a realistic implementation, as
it can overcome the critical dependence on the separation in
nonchiral configurations.

In spite of the weak dependence with the qubit-qubit
separation, there exist nevertheless specific separations that
are optimum for the entanglement generation. As Fig. 2(c)
shows, the concurrence C,,x is maximized when the distance
between the qubits is 2d =0,1,2,... .Forthese separations,
an analytical expression can be extracted from Eq. (6),

o _<1+A1><1+A2)<1—q)q. -

max 1_q2 1+q

To understand the dependence of Cy,,,x with the directionalities,
which is shown in Fig. 3, it is important to bear in mind that
initially only qubit 1 is excited. For A; = —1, the concurrence
is strictly zero during all the time evolution, as the qubit j
is coupled only to left-propagating modes and thus is not
able to interact with its partner. On the other hand, any
values of the directionalities in the region Aj,A,; > 0 result
in an enhancement of Cy,,x with respect to the nonchiral
case. Moreover, when both qubits are maximally coupled to
right-propagating modes, i.e., A} = A, = 1, the maximum
entanglement rises up to a very large value, which can be
extracted from Eq. (7) as limy_.o Cnax = 2/e ~ 0.73. This is
a significant result, as it shows that the maximum achievable
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FIG. 3. (Color online) Maximum achievable concurrence in the
ideal case (8 = 1), vs the directionalities of each qubit, A, A,, for
the left qubit initially excited, and a separation d = X,. The blue line
displays the nonchiral value Cy,,x = 0.5.

concurrence can be enhanced by a factor of ~50% with respect
to the nonchiral coupling scheme.

III. NON-MARKOVIAN REGIME

We have seen that playing upon chirality, it is possible both
to reach higher values of the maximum concurrence, Cp,x, and
to reduce the sensitivity to the qubit separation, d. However,
for large separations or coupling rates, yd > v,, it has
been reported that non-Markovian effects arise in waveguide
systems [26,28-30]. Such effects introduce additional retarda-
tion that cannot be described with the currently used master
equation formalism. Hence, we now reformulate the problem
to properly assess the robustness of the proposed protocol. We
employ a more complete approach by diagonalizing the full
Hamiltonian of the system in the single excitation subspace,
as detailed in the Appendix. Unless stated otherwise, we will
assume equally coupled qubits, i.e., yi1g = y2g and y1L = yo1,
and large directionalities (A; = 0.90) in order to stay close
to the optimum configuration. We also include explicitly the
lossy modes in this part of our work by fixing the decay rates I';
such that 8; = 0.98. Note that the chosen values for both the
directionalities and the beta factors have been experimentally
reported [22].

We employ the above-mentioned formalism to explore the
robustness of the scheme against variation of three parameters,
namely the detuning between the frequencies of the emitters,
the total coupling to the waveguide modes, y, and the separa-
tion d. In Fig. 4(a), the effect of detuning between the qubits
is studied. For the corresponding calculations, the frequencies
of both emitters are modified according to w; = wy + 6/2 and
wy = wy — 8/2. Physically, we are shifting away the emission
spectrum of qubit 1 from the absorption spectrum of qubit
2, keeping their linewidth constant. It is known that a strong
overlap between both the spectral distribution of the photon
emitted by qubit 1, and the absorption spectrum of qubit 2, is
key for entanglement generation [31]. Hence, the concurrence
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FIG. 4. (Color online) Maximum concurrence Cy,.x as a function
of the various system parameters (A; = 0.9,8; = 0.98). (a) Effect
of the detuning between the transition frequencies of the qubits,
8. (b) Dependence on the total coupling to the waveguide, y.
(c) Dependence on the qubit-qubit separation, d, for different values
of y. All the coupling constants are normalized to wy.

naturally decreases for large values of §. The detuning relative
to wy seems to be the most critical parameter as a change of
~0.5% in the frequency of the qubits is enough to reduce
Chax below 0.5. However, the robustness against detuning
is considerably large with respect to the qubits linewidth,
y. Indeed, whereas in the nonchiral case the concurrence is
independent of the detuning for § < 0.2y, for chiral couplings
this range is increased by a factor of ~5. Additionally, in
the chiral case, concurrences of Cy,x = 0.5 are possible for
detunings as large as 6 ~ 5y. This is a crucial advantage with
respect to nonchiral systems, especially for quantum emitters
with a very narrow linewidth such as quantum dots.

The variation of Cp,x with the total qubit-waveguide
coupling is displayed in Fig. 4(b). For low values of y, the
concurrence is close to its theoretical maximum (Cpyax ~ 0.7)
due to the large chosen directionalities. When y is increased,
the photonic wave packet emitted by qubit 1 becomes narrower
in space [31], and, eventually, its width becomes smaller than
or comparable to the qubit-qubit separation d. As a result,
qubit 1 significantly decays before the photon reaches qubit
2, and, at any given time, at least one of the emitters is fairly
depopulated. Thus, the concurrence C = 2|p12| = 2,/p11022
decreases for large values of y. This effect has been studied in
detail in nonchiral configurations [26]. Note that, nevertheless,
even for couplings as large as y =~ 0.lw,, the concurrence
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remains above 0.6. This result shows that chirality allows for
a high level of concurrence not only in the optical regime, but
also in systems in which much larger couplings arise such as
microwave striplines.

Finally, the variation of the concurrence with the qubit-qubit
separation d is shown in Fig. 4(c). While in the nonchiral
case a maximum concurrence of 0.5 was obtained only for
particular values of d, for chiral couplings the entanglement
generation scheme is shown to be robust for a wide range
of separations. For large distances, there is a decay in
the concurrence, which responds to the same mechanism
discussed above. In this case, the spatial extension of the
emitted photon is made smaller than the separation d by
directly increasing the qubit separation instead of the coupling
y. Interestingly, for qubit-waveguide couplings in the optical
regime (y < 10~*wy), the entanglement generation scheme is
extremely robust with respect to the distance d, allowing for
concurrences above 0.6 for very large separations, e.g., around
60 um at wy ~ 2 eV. The separation between the qubits is thus
not a critical parameter anymore, allowing for a much easier
implementation of this entanglement protocol.

IV. CONCLUSION

In conclusion, the phenomenon of spontaneous generation
of entanglement between two qubits chirally coupled to a
waveguide has been analyzed in detail. We show that even
the slightest directionalities in the couplings may improve the
maximum achievable entanglement, as compared to nonchiral
systems. Moreover, we identify the optimal directionalities and
demonstrate a very significant enhancement of the maximum
entanglement. This entangling scheme displays a fairly weak
dependence on the relevant parameters, which highlights the
robustness of the protocol. In particular, when compared to
the nonchiral case, the influence of the qubit-qubit separation
is reduced, which constitutes an important advantage for the
feasibility of an experimental implementation. In addition
to the interest of our specific results, our work positions
entanglement as one further reason for the exploration of chiral
waveguide QED.
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APPENDIX: DIAGONALIZATION OF
THE HAMILTONIAN

We make use of the real-space formalism, which is usually
employed in low-excitation problems in waveguide QED [32].
The Hamiltonian of the system is H = Hy, + Hyg + Hy,
where the two first terms correspond to the energy of the qubits
and the waveguide, respectively, and Hj is the interaction term.
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They are given by (h = 1)

Hyp =y w;olo;, (AD)
J

Hyg = iv, f dx[ch (0)decL(x) — ch(0)dcr(x)],  (A2)

2
H; = Z Z /dx 8(x — x)[Vjucl(x)o; + He]. (A3)
j=1

a=R,L

In the above equations, €2; is the transition frequency of qubit
J» and v, is the group velocity of the guided modes, whose
dispersion is considered linear. The constants V;,, assumed
real for simplicity, are related to the coupling rates in the main
text through y;, = Vfa /vg. The operators o; and ¢, (x) destroy
an excitation in qubit j and an «-propagating photon at position
x, respectively. Finally, x; = 4=d/2 is the position of the
emitter j along the waveguide. Note that the losses I'; are not
accounted for in Eq. (A1), as we introduce them a posteriori.
To diagonalize the system Hamiltonian in the single
excitation subspace, we assume an eigenstate of the form

A= Loof+ X [dxawddm |, @
j o

and we solve the time-independent Schrodinger equation,
H|e) = €le), to obtain the coefficients {c;,¢,(x)}. Following
the usual approach, we make a plane-wave ansatz for the wave
functions ¢, (x), i.e.,

A for x <—-d/2,
dr(x) =¥/ B for —d/2<x<d/2, (A5)
C for d/2 < x,
D for x < —d/2,
dr(x)=e" L E  for —d/2<x<d/2, (A6)
F for d/2 < x,

which reduces the problem to an algebraic system of equa-
tions [32]. For each energy €, we can naturally find two linearly
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independent eigenstates, corresponding to the scattering of
photons coming from either x = —oo or co. These states,
labeled |e;) and |e_), are obtained by setting {A=1,F =0}
and {FF=1,A=0} in Eqgs. (AS5) and (A6), respectively. The
eigenstates |€4), whose degeneracy is inherited from that of
the right- or left-propagating mode of a bare waveguide, have
been called scattering eigenstates in the literature.

The scattering solutions of the Schrodinger equation have
been reported to not always form a complete basis, as localized
resonances may arise [26]. We thus need to check our equations
for orthogonal solutions, i.e., A = F = 0. A simple calculation
shows that the necessary conditions for a localized eigenstate
are yig = Y1 and y»g = Y. We conclude that, in the chiral
case, the basis {|e4)} is complete, as no localized resonances
appear.

With the eigenstates at hand, we are able to introduce the
qubit losses, I';. As localized eigenstates are not present in the
chiral case, the effect of the lossy modes is easily accounted
for. Indeed, it has been shown in Ref. [26] that the effect of
the external decay of the qubits over the scattering eigenstates
can be fully reproduced by adding an imaginary part to the
frequency of the emitters, w; — w; —il";/2.

The final step for obtaining the system dynamics is to
construct the time evolution operator, U (). If the coupling
is chiral, this task is not as straightforward as in previous
works, as the two scattering branches are not orthogonal. The
operator U (t) takes now a more complicated form:

1 0 i
Z/ de e e ) (S ijlel, (A7)

U(t) =
2w, o

where we define the overlap matrix S as

Sij = lim —(€i|6j>.

L-oo L

(A8)

Using (A7), we can numerically obtain the evolution of any
initial state through | (¢)) = U(¢)|¥(0)). Finally, it can be
checked that U(0) = 1, which certifies the completeness of
the basis {|e+)}.
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