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Quantum critical response function in quasi-two-dimensional itinerant antiferromagnets
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We reexamine the experimental results for the magnetic response function χ ′′(q,E,T ) for q around the
antiferromagnetic vectors Q, in the quantum-critical region, obtained by inelastic neutron scattering, on an
Fe-based superconductor and on a heavy-fermion compound. The motivation is to compare the results with a recent
theory, which shows that the fluctuations in a generic antiferromagnetic model for itinerant fermions map to those
in the universality class of the dissipative quantum-XY model. The quantum-critical fluctuations in this model, in a
range of parameters, are given by the correlations of spatial and temporal topological defects. The theory predicts
a χ ′′(q,E,T ) (i) which is a separable function of (q − Q) and of (E,T ), (ii) at criticality, the energy-dependent
part is ∝ tanh(E/2T ) below a cutoff energy, (iii) the correlation time departs from its infinite value at criticality
on the disordered side by an essential singularity, and (iv) the correlation length depends logarithmically on the
correlation time, so that the dynamical critical exponent z is ∞. The limited existing experimental results are
found to be consistent with the first two unusual predictions from which the linear dependence of the resistivity
on T and the T ln T dependence of the entropy also follow. More experiments are suggested, especially to test
the theory of variations on the correlation time and length on the departure from criticality.
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I. INTRODUCTION

Soon after the discovery that in the normal-metallic region
for dopings near those for the high superconducting transitions
in cuprates, there are transport and thermodynamic properties
[1] unlike those expected of a Fermi liquid, it was discovered
that the heavy-fermion compounds, for compositions near
where their antiferromagnetic (AFM) transition temperatures
TN → 0, also have similar anomalies [2]. For example,
in both cases the resistivity has a temperature dependence
proportional to T at low temperatures and the entropy or ther-
mopower (entropy per carrier) has a contribution proportional
to T ln T . More recently, the AFM quantum-critical region
in the Fe-based superconductors has also shown the same
anomalies in the resistivity and the thermopower (see, e.g.,
Refs. [3,4]).

The theoretical study of quantum criticality in AFMs began
long before these experiments came along, starting with the
works of Moriya, Hertz, and others [5–8]. These are extensions
of the theory of classical dynamical critical phenomena [9] to
the quantum regime and may be called renormalized spin-wave
theories. Since the above experiments, an enormous amount
of theoretical work in further developing theories based on
similar ideas has been done [7]. The results from such theories
appear to correspond to experiments in AFMs in which the
fluctuations are three dimensional (3D) [10,11], but not for
those in which they are two dimensional (2D). In the past
few years, Lee and collaborators [12] have shown that such
theories are not controlled in 2D. This has been followed by
significant theoretical work which seeks to approach the actual
2D problem by expanding about the limits [12–14] in which
the theory is controlled, for example, a Fermi surface in 3D
while the spin fluctuations are 2D. Another set of ideas for
the heavy-fermion problem relies on the fact that an isolated
Kondo impurity in a metal has singular properties near the

criticality of the host [15] and by the approximation that the
heavy-fermion metal may be regarded as a self-consistent
set of periodic Kondo impurities using methods such as the
dynamical mean-field theory. Yet another seeks to understand
the results within the renormalized spin-wave framework by
invoking a phenomenological renormalization of the spatial
correlation length [16]. More exotic ideas have also been
proposed [17].

A radically different solution to the 2D AFM problem
has recently been proposed [18]. It starts by showing that
the model for criticality of itinerant AFMs is the dissipative
XY model (with appropriate lattice anisotropy). This is true
for the AFM with planar order, either about a commensurate
or incommensurate wave vector, or Ising order about an
incommensurate wave vector. The quantum-dissipative XY
model [19] in 2D in such a region has been transformed
[20] to a model in which the critical properties (on the
disordered side) are determined by topological excitations:
2D vortices as in the classical 2D-XY model and a new variety
of topological excitations called warps which are instantons
of bound monopoles-antimonopoles with net charge 0. Two
dimensionless parameters specify a line along which the
quantum-critical point occurs in the model, which may be
taken to be

√
KKτ and α. K is the Josephson coupling

energy of the phase variables, K−1
τ is the magnitude of the

kinetic-energy parameter, and α is a dimensionless parameter
for the dissipation due to decay of phase fluctuations [21,22].
The quantum criticality in this space, from the disordered
state to the ordered state, appears in quantum Monte Carlo
calculations to have either a dynamical critical exponent z = 1
or z = ∞, depending on the critical value of the parameters
[23]. Only the z = ∞ case, which occupies the bulk of the
parameter space in the

√
KKτ − α plane, is summarized

below, as this alone provides results in correspondence which
bear relation to the theory.
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A stringent test of the theory requires measurements of the
absolute magnitude of χ ′′(q,E,T ) in the fluctuation regime
over a range of q and spanning frequencies from well above
to well below T . The thermodynamic and transport properties
can usually be derived from χ ′′(q,E,T ). The purpose of this
paper is to present the limited available existing quantitative
experimental results for this function, which are available in the
range of q, E, and T , to compare and check for correspondence
with the predictions of the theory.

II. CORRELATION FUNCTIONS

The correlations of the dissipative quantum 2D-XY model
have been recently investigated in analytical calculations [20].
These have been checked and extended by quantum Monte
Carlo calculations [22]. These calculations confirm that the
transitions are driven by vortex and/or warp binding and not
by (renormalized) spin waves, which only serve to generate
effective interactions among the topological charges. The
calculated correlation functions as a function of distance r

and imaginary time τ on the disordered side are

χ (r,τ ) ≈ χ0
1

τ
e−√

τ/ξτ ln
( rc

r

)
e−r/ξr eiQ.r, (1)

ξτ = |τc|e
√

pc
pc−p ; ξr/rc ≈ ln(ξτ /|τc|). (2)

Here, τ is the imaginary time, periodic in 1/(kBT ) (kB = 1
in this paper), which has a lower cutoff |τc| and rc is the
short-distance spatial cutoff of the order of a lattice spacing.
p is the parameter which tunes the transition by tuning KKτ

or α, and pc is the critical value of p at which the transition
occurs at T → 0. χ0 together with the high-frequency cutoff
serves to give the integrated magnetic fluctuations through the
sum rule on them.

To compare with experiments, it is necessary to Fourier
transform the correlation function to momentum (q) and
frequency (E) variables. The Fourier transform to frequency
space can be reduced to an integral which can only be evaluated
numerically. The results and the fits to it to a functional form for
the imaginary part are given in Ref. [22]. We quote this result:

χ ′′(q,E,T ) = −χ0 tanh

(
E

2T

)
1

|q − Q|2 + κ2
q

×F�

(
T

κE

)
Fu

(
E

Ec

)
, (3)

where F�( T
κE

) serves as an infrared cutoff function due to
deviations from criticality, and where κE ≡ ξ−1

τ replaces T

as the infrared energy scale for critical fluctuations. Note that
ξ−1
τ increases extremely slowly, as an essential singularity

[see Eq. (2)] from 0 on deviation from criticality. F( T
κE

) → 1
at criticality when κE → 0, so that the response is simply
proportional to tanh(E/2T ) with an ultraviolet cutoff at
Ec ≡ |τc|−1. For finite κE , a fit to the numerical results gives

F�

(
T

κE

)
≈ 1(

1 + √
κE/2πT

)2 for E/T 	 1,

≈ 1

4

(
1 + 3e−√

κE/T
)

for Ec/T 
 E/T 
 1.

(4)

In addition, κq = ξ−1
r . Fu(E/Ec) serves as an ultraviolet

cutoff function Fu(0) = 1,Fu(∞) = 0. In experiments, the
ultraviolet cutoff scale may come from physics that are not
in the effective low-energy model, as, for example, the Fermi
energy, if it is smaller than |τc|−1. We will be confronted with
this situation below in the measurements in the heavy-fermion
compound CeCu6−xAux .

The most striking result in Eq. (3) is that χ ′′(q,E,T ) is
a separable function of (E,T ) and of q. Other remarkable
results are that the dimensionless characteristic correlation
wave vector depends logarithmically on the characteristic
correlation frequency. This means that the dynamical critical
exponent is z = ∞. Also, Eq. (1) for ξτ gives that the deviation
of the characteristic correlation frequency with departure from
criticality is determined by an essential singularity from its
value 0 at criticality. In other words, the crossover from what
is usually called the quantum-fluctuation regime, where the
fluctuation scale is T , to the truly quantum regime, where the
fluctuations are determined by (p − pc)/pc, is extremely slow.

The frequency and temperature dependence of these fluc-
tuations at criticality is the same as that proposed phenomeno-
logically [24] to give the marginal Fermi liquid of fermions
in the cuprates. The results for the spatial correlation length
are quite different and remove the un-appetizing feature of
the phenomenology that the spatial correlation length was
independent of deviation from criticality. However, the single-
particle self-energy due to scattering from the fluctuations
given by Eq. (3) is also proportional to max(ω,T ) and
independent of momentum in the quantum-critical regime,
T/κE � 1 (see Supp. section in Ref. [18]). The references
for a derivation of the resistivity proportional to T and entropy
(thermopower) proportional to T ln T are also given there. A
microscopic origin [20], quite different from AFM, has been
found for criticality in the relevant range of cuprates, whose
fluctuations also map to the 2D-XY model.

The most stringent test of the theory is through the measure-
ment of χ (q,E,T ), from which most other properties can be
derived. These are very difficult measurements which also re-
quire large crystals. We compare here the results with the exist-
ing measurements in a Fe-based compound BaFe1.85Co0.15As2

and a heavy-fermion compound CeCu6−xAux . These are the
only measurements that we are aware of which are done in the
frequency, momentum, and temperature region of interest to
test theories of AFM quantum criticality. We will also recall
some old results in a cuprate compound near the low doping
where its AFM transition temperature appears → 0, but in
which, due to the disorder, a spin-glass-type phase sets in at a
finite temperature.

III. χ ′′(Q,E,T ) IN BaFe1.85Co0.15As2

BaFe1.85Co0.15As2 has a putative antiferromagnetic
quantum-critical point of the planar variety very close to the
above composition, as we will show from the measurement
of the spatial correlation length [25]. The fluctuations in the
range of frequencies and temperature measured are about Q =
(1/2,1/2,1) and equivalent points. The compound is strongly
two dimensional and the fluctuations are studied only in the
(h,k) plane. The superconducting transition temperature of
25 K cuts off the low-frequency part of the critical fluctuations
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FIG. 1. (Color online) χ ′′(q,E,T ) as functions of |q − Q| at
various fixed temperatures and energies. Here, the q scan is along
(q,q,1) and Q = (0.5,0.5,1). A linear in q background has been
subtracted as given in the supplementary section of Ref. [26] to get
χ ′′. The dashed curve is a Lorentzian 1/[(|q − Q|/κq )2 + 1] with
κq = 0.04 r.l.u.

and gives a peak in the frequency dependence near twice the
superconducting gap, about 10 meV, and the half width of the
peak is about 4 meV. The q dependence has been measured
[26] at three different frequencies, i.e., 3, 9.5, and 16 meV,
and at two different temperatures, i.e., one at 4 K, which is
well below the superconducting transition temperature, and
the other at 60 K. The frequency dependence at the critical
vector for many frequencies from about 0.5 to 60 meV has
been measured at these two temperatures and at 280 K. We
have to discard the 4 K data below about 15 meV because
of the superconductivity-induced low-energy features below
about twice the superconducting gap, as further discussed in
the caption to Fig. 2. A great virtue of the measurements
is that the absolute intensity of the magnetic scattering has
been measured. We therefore need to normalize all of the data
presented only once for all frequencies and momenta.

We present the data for the q dependence at the various
indicated frequencies and temperatures in Fig. 1. As shown,
the distribution in q about the maximum fits a Lorentzian,
with a width κq ≈ 0.04 ± 0.007 r.l.u., which is frequency and
temperature independent to within the error bars in the range (a
factor of 5 in frequency and 15 in temperature) that it has been
measured. This is consistent with the theoretical result that the
q and the E,T dependence are separable. (The discarded data
at 4 K for frequencies below twice the superconducting gap
show a 20% smaller κq .)

Taking the measured large upper cutoff [27] of the fluc-
tuations in this compound of about 200 meV and using the
measured κq ≈ 0.04 r.l.u., Eq. (1) gives κE 	 4K , the lowest
temperature measured. Therefore, we should compare the
frequency dependence with the form expected at criticality,
i.e., ∝ tanh(E/2T ). Figure 2 shows the absolute measurement
of χ ′′(Q,E,T )/χ ′′(Q,E/T 
 1) at the peak of its momentum
dependence at 60 and 280 K for all values of energy measured.
Also shown is the function tanh(E/2T ). In the inset, we
include the data at 4 K also. Above the superconductivity-
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FIG. 2. (Color online) χ ′′(Q,E,T ) as functions of E/(2T ) with
Q = (0.5,0.5,1) at T = 60 and 280 K for BaFe1.85Co0.15As2. The data
is taken from Ref. [26]. Inset: The same data on a log-log scale, so
as to also include the T = 4 K data (well below the superconducting
transition temperature), showing that for E � 20 and up to 50 meV,
the data is quantitatively the same at the higher temperatures for
E/2T 
 1, as given by the theory.

induced reduction followed by the bump, it also joins on to the
data at 60 and 280 K data in absolute value. This means that
once we fix the magnitude χ0 of Eq. (3), all of the frequency-
and temperature-dependent data is consistent with the form
tanh(E/2T ).

Two of the principal predictions of the theory are therefore
shown to be obeyed. We urge measurements at various other
compositions to test the dependence of the correlation lengths
on deviations from criticality as well as more detailed E and
T measurements.

IV. χ ′′(q,E,T ) IN CeCu6−xAux

In CeCu6−xAux , Ising long-range AFM order occurs for
x > xc = 0.1 at an incommensurate vector Q0 ≈ (0.6,0,0.3)
[28] up to x = 0.3. The magnetic moments are aligned in
the c direction [28]. At the critical concentration xc the AFM
fluctuations are strongest at (0.6,0,0.3) but also at a wave
vector (0.8,0,0) [29,30], which only develops short-range
order for higher x = 0.2 [28]. A similar response χ ′′(q,E,T )
for both Q vectors (and equivalent positions) was observed in
the measured neutron-scattering function for x ≈ xc along rods
in reciprocal space [30,31] from Q1 = (0.8,0,0) towards Q0 =
(0.6,0, ± 0.3), as sketched in Fig. 3(a). This is consistent
with two-dimensional magnetic correlations in real space,
perpendicular to the rods, along the b axis and in the (ac)
plane, as illustrated schematically in Fig. 3(b) for one example.
The neutron-scattering data presented here were collected
from different spectrometers [29,31] and calibrated using the
incoherent nuclear scattering from the sample.

We first consider the q dependence of the measured suscep-
tibility [29] χ ′′(q,E,T ) with the frequency and the temperature
fixed near two ordering wave vectors Q1 = (0.8,0,0) and
Q3 = (1.4,0,0.3). The q-scan directions are also shown in
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FIG. 3. (Color online) (a) The critical wave vectors Q of
CeCu5.9Au0.1, shown in reciprocal lattice. The experimental q-scan
trajectories around Q1 and Q3 are also shown. (b) The plane of
2D fluctuations is shown in real space. Perpendicular to this plane,
χ ′′(q,E,T ) is nearly independent of q, testifying to the 2D nature
of the fluctuation. Note that the plane of critical fluctuations is not a
simple crystallographic plane.

Fig. 3: along the b axis for Q1 and along a trajectory in the (ac)
plane for Q3. We normalize the results for different frequencies
and temperature to their peak value at q = Q. Such normalized
plots as a function of the deviation of q from Q1 are shown in
Fig. 4(a). A simple Lorentzian, as in Eq. (3), fits the data, with

a width κq ≈ 0.13 Å
−1

, which is independent of temperature
or frequency in the range measured and within the error bars of
the data. This independence is a test of the separability of the
q and E dependence of the fluctuations. In Fig. 4(b), we show
measurements near Q3 at different temperatures [31], which
have a much larger error bar (due to the low transfer energy).
The best fit to the data shows the same width, independent of
frequency and temperature as in Fig. 4(a).

We now turn to the frequency and temperature dependence

at q = Q1,3 as well as Q2 = (1.2,0,0). From κq ≈ 0.13 Å
−1

,
we estimate that the deviation from criticality is very small
for the sample measured, with

√
(p − pc)/pc ≈ 0.1. Taking

Ec ≈ 4 K, as will be justified below, we find from Eq. (2) that
κE ≈ 4 × e−10 K, which is much smaller than the range of
temperature measurements. Therefore, one is well justified in
comparing with the theory for the dependence on frequency
and temperature at criticality, given by Eq. (3), with ξ−1

τ =
0, where it should simply be proportional to tanh (E/2T ).
However, unlike the case of the Fe compound discussed
above, the E and T of the measurements go well across the
Fermi energy of about 4 K, estimated from the linear part
of the specific heat [32]. The cutoff function Fu(E/Ec) due
to the upper cutoff Ec can no longer be approximated as 1.
The measured [29,31] χ ′′(Q,E,T ), scaled by a constant χ0

[presumably the value of χ ′′(Q,E,T ) at E/(2T ) → ∞ and
E 	 Ec], is shown as a function of E/2T in Fig. 5(a). The
data agree reasonably with the function tanh (E/2T ) when
E 	 Ec, but systematically deviate when E � Ec. We now
choose a cutoff function,

Fu

(
E

Ec

)
= 1√

1 + (E/Ec)2
. (5)

We replot the same data, χ ′′(Q,E,T )/χ0, divided by
Fu(E/Ec), as a function of E/2T in Fig. 5(b). With a value
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FIG. 4. (Color online) χ ′′(q,E,T ) as functions of q for two q

scans around (a) Q1 = (0.8,0,0) and (b) Q3 = (1.4,0,0.3) at various
fixed E and T for CeCu5.9Au0.1. A q-independent background
contribution has been subtracted. The fitting curve is Lorentzian

1/[(q − qc)2/κ2
q + 1] with κq = 0.11 r.l.u. ≈ 0.13 Å

−1
[considering

b = 5.1Å in (a) and κq=0.13 Å
−1

in (b)].

of Ec = 4 K, the data, within its considerable error bars, are
consistent with the scaling function tanh (E/2T ).

A complete test of the theory requires measurements
varying x or pressure to vary the distance to criticality
and thereby test the theory of the correlation length. It
would also be desirable to have more measurements for the
momentum-energy and temperature dependence for smaller
E/T . CeCu6−xAux has a rather complicated magnetic struc-
ture. We recommend neutron-scattering results also on other
heavy fermions with simpler antiferromagnetic structure near
their quantum criticality.

The q and E dependence of the data also has been fitted
to an alternate phenomenological form [31]. However, it does
not give the observed linear in T resistivity.

V. DISCUSSION

The limited available data is consistent with the separability
of the momentum and energy dependence of the critical
fluctuations in two completely different experimental systems,
which share the feature that they both have itinerant AFM
quantum-critical points. The tanh (E/2T ) dependence for
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FIG. 5. (Color online) χ ′′(Q,E,T ) as functions of E/(2T ) for various constant-E or T scans for CeCu5.9Au0.1 at three ordering wave
vectors Q = Q1,2,3. The label for different symbols shows the location of Q as well as the fixed value of E (or T ), while T (or E) is varied.
In (a), χ ′′(Q,E,T ) is scaled by a constant χ0 = 5.5 μ2

B (meV)−1, while in (b) it is scaled additionally by Fu(E/Ec) = 1/
√

1 + (E/Ec)2 with
Ec = 4 K.

energies smaller than the cutoff is also consistent with the
data. As mentioned, the linear in T resistivity and the T ln T

entropy and thermopower are also properties of transport due
to coupling of fermions to such fluctuations. Since an external
field provides a linear change to the energy for spin systems
for paramagnets, one expects the resistivity to be a function
of (|H |/T ) in the quantum-critical regime. The resistance
variation in a field at various temperatures has been found
to be proportional to

√
μ2

BH 2 + T 2 [4]. Magnetic fluctuations
of the form of Eq. (3) provide a constant contribution to the
nuclear relaxation rate. This has also been observed [3] near
quantum criticality.

Finally, we note that in cuprates for dopings near the
quantum-critical region of the AFM but above a temperature,
which appears to be determined by impurities, the resistivity
is linear in T . In this region, the spectral function of
AFM fluctuations, as determined by neutron scattering, does
have E/T scaling and a temperature-independent correlation
length. See Refs. [33,34].

There are many other materials showing quasi-2D fluctu-
ations and/or linear-T resistivity, which could also be tested
by the criticality of the 2D quantum-dissipative XY model.
Heavy fermions are notoriously hard to grow as large single
crystals suitable for inelastic neutron scattering, but the Ce
compounds in the (115) family appear to be suitable for
the purpose. Measurements have not been done on them in
a suitable range of (q,E,T ) to check the theory. The Fe
superconductors also appear to be suitable for the purpose,
but systematic quantitative measurements of the kind needed
are scarce. We recommend such measurements.
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