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Symmetry-imposed shape of linear response tensors
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A scheme suggested in the literature to determine the symmetry-imposed shape of linear response tensors is
revised and extended to allow for the treatment of more complex situations. The extended scheme is applied
to discuss the shape of the spin conductivity tensor for all magnetic space groups. This allows in particular
investigating the character of longitudinal as well as transverse spin transport for arbitrary crystal structure and
magnetic order that give rise, e.g., to the spin Hall, Nernst, and the spin-dependent Seebeck effects.
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I. INTRODUCTION

The shape of a linear response tensor is of central im-
portance as it decides whether a physical phenomenon may
occur and what anisotropy may be expected for a solid with
given crystal symmetry and magnetic order. A prominent and
common example for this is the anomalous Hall effect in
ferromagnetic solids, which is connected with the nonzero
antisymmetric contributions to the electrical conductivity
tensor. Accordingly, several schemes were suggested in the
past to predict the shape of linear response tensors on the basis
of group-theoretical arguments (for a corresponding review see
for example Ref. [1]). Among the various schemes suggested,
that of Kleiner [2–4] seems to be most convincing as it is
starting from the expression for linear response tensors as
given by Kubo’s linear response formalism and as it uses only
the behavior of the involved operators under the appropriate
space and time transformations of the relevant magnetic space
group. A further appealing feature of Kleiner’s scheme is that
it does not make use of Onsager’s relations but allows deriving
them in a most general way.

Kleiner’s scheme was originally derived having response
quantities in mind that are connected with the perturbation
as well as the observable represented by the components of
a single vector operator. A more general starting point is
adopted in this contribution to allow the treatment of situations
involving three operators. As a first simple application the
tensors representing the charge and heat transport in response
to an electric field and thermal gradient are considered. As
a more complex transport quantity the corresponding spin
conductivity is considered for all magnetic space groups.
Among other things this allows the discussion of the transverse
spin transport as occurring for the spin Hall [5,6] and spin
Nernst [7,8] effects. In particular, it is demonstrated that
these effects may be discussed without use of spin-projected
conductivities [8,9].

II. SYMMETRY OF RESPONSE FUNCTIONS

Within Kubo’s linear response formalism, the change of the
expectation value of an observable B̂i due to a time-dependent
perturbation Âj can be expressed by the corresponding
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response function [10]

τB̂i Âj
(ω,H)

=
∫ ∞

0
dt e−iωt

∫ β

0
dλ Tr[ρ(H)Âj B̂i(t + i�λ; H)]. (1)

Here ρ(H) = e−βĤ (H)/Tr(e−βĤ (H)) is the density operator
for the unperturbed system, the operators B̂i and Âj in
the Heisenberg picture are assumed to be the Cartesian
components of a corresponding vector operator, and H is an
external magnetic field.

Equation (1) was used by Kleiner [2] as the starting point
to investigate the symmetry of the tensors τ that describe the
charge and heat transport due to an electric field or thermal
gradient. Kleiner’s scheme, however, is quite general and can
be easily extended to deal with more complex situations. In
the following, Kleiner’s scheme will be adopted to the case
when the observable is represented by an operator product
of the form B̂iĈj , again with the operators Ĉi , B̂j , and Âk

being the Cartesian components of a vector operator. In this
case the corresponding response function is obviously given
by

τ(B̂i Ĉj )Âk
(ω,H) =

∫ ∞

0
dt e−iωt

∫ β

0
dλ Tr

× [ρ(H)ÂkB̂i(t + i�λ; H)Ĉj (t + i�λ; H)],

(2)

where by using the parentheses in the symbol τ(B̂i Ĉj )Âk
it is

made clear that it is the observable and not the perturbation
that consists of a product of two operators. The shape of
the response tensor τ in Eq. (2), i.e., the occurrence and
degeneracy of nonzero elements, has to reflect the symmetry of
the investigated solid. This shape can be found by considering
the impact of a symmetry operation of the corresponding space
group on Eq. (2), as this will lead to an equation connecting the
elements of τ or possibly of a complementary tensor τ ′ (see
below). Collecting the restrictions imposed by all symmetry
operations the shape of τ is obtained. In this context it is
important to note that the magnetic structure of the system, if
present, has to be considered. In this case, the set of symmetry
operations contains unitary pure spatial (u), but also antiunitary
symmetry operations (a).
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The general transformation properties of the operators X̂ ∈
{Â,B̂,Ĉ} in Eq. (2) under unitary (u) and antiunitary symmetry
operations (a) can be written as

uX̂iu
−1 =

∑
j

X̂jD
(X̂)(u)ji , (3)

aX̂ia
−1 =

∑
j

X̂jD
(X̂)(a)ji , (4)

where D(X̂)(u) and D(X̂)(a) are the representation matrices cor-
responding to the operator X̂ and operation u or a, respectively.
The group properties are reflected by the following relations:

D(uu′) = D(u) D(u′), (5)

D(aa′) = D(a) D(a′)∗. (6)

For all unitary operations u the expression under the trace in Eq. (2) can be reformulated by cyclic permutation and by inserting
the factor u−1u = 1:

Tr[e−βĤ (H)ÂkB̂i(t + i�λ; H)Ĉj (t + i�λ; H)] = Tr
[
u−1ue−βĤ (H)u−1uÂku

−1uB̂j (t + i�λ,H)u−1uCi(t + i�λ; H)
]

= Tr
[
(ue−βĤ (H)u−1)(uÂku

−1)(uB̂i(t + i�λ,H)u−1)(uĈj (t + i�λ,H)u−1)
]
. (7)

The four expressions grouped in parentheses can now be dealt with separately. The term containing Âk can be rewritten using
Eq. (3). For the term containing B̂j one has accordingly

uB̂i(t + i�λ,H)u−1 =
∑
m

B̂m(t + i�λ,Hu)D(B̂)(u)mi, (8)

with Hu the transformed field

uĤ (H)u−1 = Ĥ (Hu) (9)

connected with the operation u. For the term containing Cj (t + i�λ,H) an analogous expression is obtained. Inserting these
relations into Eq. (7) one obtains

Tr
[
e−βĤ (H)ÂkB̂i(t + i�λ,H)Ĉj (t + i�λ,H)

]
=

∑
lmn

Tr
[
e−βĤ (Hu)ÂlB̂m(t + i�λ,Hu)Ĉn(t + i�λ,Hu)D(Â)(u)lk D(B̂)(u)mi D

(Ĉ)(u)nj
]
. (10)

This equation must hold for any operators Âk , B̂j , and Ĉi , i.e., also in the special case Âk = B̂j = Ĉi = 1, leading to

Tr(e−βĤ (H)) = Tr(e−βĤ (Hu)). (11)

Inserting the two last equations into Eq. (2) for the general transport coefficients, one obtains the transformation behavior of τ

under a unitary symmetry operation u:

τ(B̂i Ĉj )Âk
(ω,H) =

∑
lmn

τ(B̂mĈn)Âl
(ω,Hu)D(Â)(u)lk D(B̂)(u)mi D

(Ĉ)(u)nj . (12)

A similar procedure can be applied for antiunitary operators a that contain the time-reversal T , i.e., that can be decomposed
as a = vT with v a unitary operator describing a pure spatial operation. For antiunitary operators cyclic permutation under the
trace does not hold, but one may use the relation

Tr(aa′) = [Tr(a′a)]∗. (13)

This expression can be used to transform Eq. (2) in a similar way as done for Eq. (7) leading to

Tr
[
e−βĤ (H)ÂkB̂i(t + i�λ,H)Ĉj (t + i�λ,H)

] = Tr
[
a−1ae−βĤ (H)a−1aÂka

−1aB̂i(t + i�λ,H)a−1aĈj (t + i�λ,H)
]

= {
Tr

[
(ae−βĤ (H)a−1)(aÂka

−1)(aB̂i(t + i�λ,H)a−1)(aĈj (t + i�λ,H)a−1)
]}∗

. (14)

Of the four expressions in parentheses, the second one is directly given by Eq. (4), while the first one can be rewritten by
introducing Ha via the definition

aĤ (H)a−1 = Ĥ (Ha). (15)

Expressing the last two terms according to

aB̂i(t + i�λ,H)a−1 =
∑
m

B̂m(−t + i�λ,H)D(B̂)(a)mi, (16)
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which follows directly from the fact that a contains the time-reversal operation, and inserting these expressions into Eq. (14) one
arrives at

Tr
[
e−βĤ (H)ÂkB̂i(t + i�λ,H)Ĉj (t + i�λ,H)

] =
∑
lmn

Tr
[
e−βĤ (Ha )ÂlB̂m(−t + i�λ,Ha)Ĉn(−t + i�λ,Ha)

]∗
D(Â)(a)∗lk

×D(B̂)(a)∗mi D
(Ĉ)(a)∗nj . (17)

Using the relation [11]

Tr[e−βĤ ÂB̂(τ )Ĉ(τ )] = Tr[e−βĤ Â(−τ )B̂Ĉ] (18)

one arrives at an expression that is completely analogous to Eq. (10):

Tr
[
e−βĤ (H)ÂkB̂i(t + i�λ,H)Ĉj (t + i�λ,H)

] =
∑
lmn

Tr
[
e−βĤ (Ha )Ĉ†

nB̂
†
mÂ

†
l (t + i�λ,Ha)D(Â)(a)∗lk D(B̂)(a)∗mi D

(Ĉ)(a)∗nj
]
, (19)

where

(Tr L)∗ = Tr(L†), (20)

with L being a linear operator was used. Again, this equation must also hold for the special case Â = B̂ = Ĉ = 1, thus

Tr(e−βĤ (H)) = Tr(e−βĤ (Ha )). (21)

Finally, inserting all these relations one obtains the transformation behavior for τ as

τ(B̂i Ĉj )Âk
(ω,H) =

∑
lmn

τ
Â

†
l (Ĉ†

nB̂
†
m)(ω,Ha)D(Â)(a)∗lk D(B̂)(a)∗mi D

(Ĉ)(a)∗nj , (22)

which is the counter part of Eq. (12), but for antiunitary operators a.

It is important to note that in general the tensors τ(B̂i Ĉj )Âk
and

τ
Â

†
k (B̂†

i Ĉ
†
j ) are different objects representing different response

functions which are only interrelated by Eq. (22). Accordingly,
the symbols τ and τ ′ will be used below to distinguish
them. Obviously the two tensors τ and τ ′ coincide only if all
operators and their adjoined ones are the same, i.e., Âi = B̂i

and so on.
Equations (12) and (22) relate the elements of the tensor τ

with all the elements of τ and τ ′, respectively. As mentioned
above, these relations impose for each symmetry operation
restrictions on the shape of τ that determine which elements
have to be zero and which are degenerate. However, to find the
final shape of τ it is not necessary to derive restrictions for all
symmetry operations of the relevant space group. Instead, it is
sufficient to use only a generating set of symmetry operations
[2]. Finally, as was stressed by Kleiner [2], for the application
of Eqs. (12) and (22) it is not necessary to know the explicit
form of the operators Âi , B̂j , and Ĉk , but only their behavior
under a symmetry operation expressed by Eqs. (3) and (4).

III. APPLICATIONS

A. Symmetry operations and magnetic Laue groups

For a periodic solid, the corresponding unitary symmetry
operations u can be represented by the Seitz symbol [12]

u = {R | t}, (23)

where R describes a (proper or improper) rotation and t

describes a translation. The application of this symmetry
operation on a three-dimensional vector v is defined as

u v = D(R) v + t, (24)

where D(R) is the three-dimensional matrix representation of
the rotation R and t is a three-dimensional translation vector.
For an antiunitary symmetry operation a, the time-reversal
operation T has to be considered in addition to the spatial
symmetry operations. It can be included in the Seitz symbol
according to

a = {R | t} T . (25)

The transformation properties of a vector v under a depend
now on its behavior under space inversion and time reversal.
A vector that reverses its orientation under space inversion is
called a spatial vector (or polar vector), if it stays unaltered it
is called a pseudovector or axial vector.

Generally, the transformation of a vector field v(r) under
an arbitrary symmetry operation s is given accordingly by

s v(r) = ±D(R) v(s−1r), (26)

where the sign is determined by the behavior of v(r) under
time-reversal T that may by part of s. On the other hand, a
pseudovector field v(r) transforms as

s v(r) = ± det (D(R)) D(R) v(s−1r). (27)

An example for this is the magnetic field H. As H changes
sign under time reversal, the minus sign in Eq. (27) applies. In
particular one has

I H = +H, (28)

T H = −H, (29)

for the application of space inversion I and time reversal T . In
the following we will use in parallel the symbols 1̄ and 1′ for
I and T , respectively.
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TABLE I. Magnetic point groups of category (a) and their
corresponding magnetic Laue group. In parentheses the magnetic
Laue group according to its old definition used by Kleiner [2] is
given (see text). Because equivalent magnetic point group and Laue
group symbols have not been removed (see text) there are 62 and 12
instead of 53 and 11, respectively, entries.

Magnetic point group Magnetic Laue group

11′, 1̄′, 1̄1′ 1̄1′ (1′)
21′, m1′, 2/m1′, 2′/m, 2/m′ 2/m1′ (21′)
2221′, mm21′, m′mm,
mmm1′, m′m′m′ mmm1′ (2221′)
41′, 4̄1′, 4/m′, 4/m1′, 4′/m′ 4/m1′ (41′)
4221′, 4mm1′, 4̄2m1′,
4̄m21′, 4/m′mm, 4′/m′m′m,
4/mmm1′, 4′/m′mm′, 4/m′m′m′ 4/mmm1′ (42221′)
31′, 3̄′, 3̄1′ 3̄1′ (3′)
3121′, 31m1′, 3̄′1m, 3̄′1m′, 3̄1m1′ 3̄1m1′ (3′2)
3211′, 3m11′, 3̄′m1, 3̄′m′1, 3̄m11′ 3̄m11′ (3′2)
61′, 6̄1′, 6′/m, 6/m′, 6/m1′ 6/m1′ (61′)
6221′, 6mm1′, 6̄m21′,
6̄2m1′, 6/m′mm, 6′/mm′m,
6′/mmm′, 6/mmm1′, 6/m′m′m′ 6/mmm1′ (6221′)
231′, m′3̄′, m3̄1′ m3̄1′ (23′)
4321′, 4̄3m1′, m′3̄′m, m′3̄′m′, m3̄m1′ m3̄m1′ (43′2)

Taking into account the time-reversal operation, the full
symmetry of a periodic solid is represented by its magnetic
space group G that combines all symmetry operations of the
type given in Eqs. (23) and (25). Altogether there are 1651
magnetic space groups that fall into three categories [13]:

(a) G contains the time-reversal operation T as an element,
(b) G does not contain T at all, neither as a separate element

nor in a combination,
(c) G contains T only in combination with another sym-

metry element.
Only nonmagnetic solids possess one of the 230 space

groups of category (a), while magnetically ordered solids
belong either to category (b) or (c). Category (b) consists
of 230 space groups, isomorphic to the nonmagnetic space
groups, and category (c) combines the remaining 1191 space
groups.

Since the operators X̂ appearing in Eqs. (12) and (22)
are translational invariant, it is sufficient to consider only
the corresponding magnetic point group operations instead
of all elements of the magnetic space group. If the operators
representing perturbation and response behave identically
under space inversion, as it is, e.g., the case for the elec-
trical conductivity (see below), it is possible to restrict the
consideration further to the corresponding magnetic Laue
group of a solid that is generated by adding the inversion
operation I to the crystallographic magnetic point group.
This conventional definition [14] deviates from the older one
used by Kleiner [2] that derives the Laue group from the
corresponding crystallographic point group by removing from
each improper rotation R = PRI its improper part I . For this
reason we list in Tables I–III all magnetic point groups of the
three categories together with their corresponding magnetic

TABLE II. Magnetic point groups of category (b) and their
corresponding magnetic Laue group. In parentheses the magnetic
Laue group according to its old definition used by Kleiner [2] is
given (see text). Because equivalent magnetic point group and Laue
group symbols have not been removed (see text) there are 37 and 12
instead of 32 and 11, respectively, entries.

Magnetic point group Magnetic Laue group

1, 1̄ 1̄ (1)
2, m, 2/m 2/m (2)
222, mm2, mmm mmm (222)
4, 4̄, 4/m 4/m (4)
422, 4mm, 4̄2m, 4̄m2, 4/mmm 4/mmm (422)
3, 3̄ 3̄ (3)
312, 31m, 3̄1m 3̄1m (32)
321, 3m1, 3̄m1 3̄m1 (32)
6, 6̄, 6/m 6/m (6)
622, 6mm, 6̄m2, 6̄2m, 6/mmm 6/mmm (622)
23, m3̄ m3̄ (23)
432, 4̄3m, m3̄m m3̄m (432)

Laue group. The symbol in parentheses gives in addition the
magnetic Laue group as used by Kleiner [2].

Deriving the symbols for the magnetic point and Laue
groups from those for the magnetic space groups, one may be
led in some cases to two symbols that differ only concerning
the sequence of the second and third generators (one of these
might be a dummy 1). As this depends on the chosen coordinate
system and because the shape of the response tensor may
depend on this choice, both symbols are listed although being

TABLE III. Magnetic point groups of category (c) and their
corresponding magnetic Laue group. In parentheses the magnetic
Laue group according to its old definition used by Kleiner [2] is
given (see text). Because equivalent magnetic point group and Laue
group symbols have not been removed (see text) there are 52 and 13
instead of 37 and 10, respectively, entries.

Magnetic point group Magnetic Laue group

2′, m′, 2′/m′ 2′/m′ (2′)
2′2′2, m′m2′, m′m′2, m′m′m m′m′m (2′2′2)
4′, 4̄′, 4′/m 4′/m (4′)
4′2′2, 4′m′m, 4̄′2′m,
4̄′m′2, 4′/mm′m 4′/mm′m (4′22′)
4′22′, 4′mm′, 4̄′2m′,
4̄′m2′, 4′/mmm′ 4′/mmm′ (4′22′)
42′2′, 4m′m′, 4̄2′m′,
4̄m′2′, 4/mm′m′ 4/mm′m′ (42′2′)
312′, 31m′, 3̄1m′ 3̄1m′ (32′)
32′1, 3m′1, 3̄m′1 3̄m′1 (32′)
6′, 6̄′, 6′/m′ 6′/m′ (6′)
6′2′2, 6′m′m, 6̄′m′2,
6̄′2′m, 6′/m′m′m 6′/m′m′m (6′22′)
6′22′, 6′mm′, 6̄′m2′,
6̄′2m′, 6′/m′mm′ 6′/m′mm′ (6′22′)
62′2′, 6m′m′, 6̄m′2′,
6̄2′m′, 6/mm′m′ 6/mm′m′ (62′2′)
4′32′, 4̄′3m′, m3̄m′ m3̄m′ (4′32′)
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completely equivalent. This applies to 3̄1m1′ and 3̄m11′ of
category (a), 3̄1m and 3̄m1 of category (b), and 4′/mm′m and
4′/mmm′, 3̄1m′ and 3̄m′1, as well as 6′/m′m′m and 6′/m′mm′
of category (c). Furthermore, it should be noted that for the
magnetic Laue groups 2/m1′ of category (a), 2/m of category
(b), and 2′/m′ of category (c), the coordinate system has been
chosen according to cell choice 1 of space group 2/m as
documented in the International Tables for Crystallography
[15].

B. Thermoelectric coefficients

Within linear response theory, the induced electric current
density j and the heat current density q are given by [2](

j
q

)
=

(|e|L11 |e|L12
−L21 −L22

)( ∇μ
1
T
∇T

)
, (30)

with e = |e| the elementary charge and the electrochemical
potential μ which is related to the chemical potential μc and
the electric potential ϕ via

μ = μc − |e|ϕ. (31)

As explicitly demonstrated by Kleiner [2] as well as below,
the coefficients Lij satisfy Onsager relations of the form

L11(H) = L11(−H), (32)

L22(H) = L22(−H), (33)

L12(H) = LT
21(−H). (34)

Identifying the operators Âi and B̂i with one of the components
of the electric current density operator ĵ and the heat current
density operator q̂ and setting Ĉi = 1, Eqs. (12) and (22)
reduce to the expressions given by Kleiner to investigate the
symmetry properties of the thermoelectric coefficients Lij . His
derivation will be repeated here in a modified way as we use the
conventional definition for the Laue group and as the results
will be used later on.

Expressing the electric current density operator ĵ = −|e|v̂
as a product of the electronic charge −|e| and the velocity
operator v̂ one can see that ĵ transforms as a vector that changes
sign under time-reversal T and space inversion I :

I ĵi = −ĵi , (35)

T ĵi = −ĵi . (36)

The same relations apply for the heat current density operator
q̂i [2,16]. The corresponding 3 × 3 matrix representation for
a unitary operator u = {R|t} and an antiunitary operator a =
{R|t}T to be used in Eqs. (12) and (22) is

D(ĵ)(u) = D(q̂)(u) = D(R), (37)

D(ĵ)(a) = D(q̂)(a) = −D(R). (38)

Equations (12) and (22) (with Ĉi = 1) can be brought into
a more convenient form by replacing every D(R) by D(R−1)
and H by Hu−1 or Ha−1 , respectively. Thus, Eq. (12) for unitary

operators u simplifies to

τB̂i Âj
(ω,H(R)) =

∑
kl

τB̂kÂl
(ω,H) D(R)ki D(R)lj (39)

and Eq. (22) for antiunitary operators a to

τB̂i Âj
(ω, − H(R)) =

∑
kl

τÂl B̂k
(ω,H) D(R)ki D(R)lj , (40)

where

H(R)i =
∑

j

D(PR)ijHj . (41)

Here we used the fact that the matrices D(R) are real and that H
is a pseudovector. A further simplification can be achieved by
splitting R in a proper rotation PR and the space inversion I , if
it is contained in R. Explicitly, this means that R = PR if R is a
proper rotation and R = PRI if R is an improper rotation. For
proper rotations one has det (D(R)) = +1 while for improper
rotations det (D(R)) = −1 holds. Because the space inversion
amounts to a simple multiplication with −13, this splitting can
be expressed by

D(R) = det (D(R)) D(PR). (42)

Since the matrix D(R) appears twice in Eqs. (39) and (40),
the two factors det (D(R)) compensate each other, regardless
whether R is a proper or an improper rotation. Thus, the final
equation for the unitary operators is

τB̂i Âj
(ω,H) =

∑
kl

τB̂kÂl
(ω,H)D(PR)kiD(PR)lj , (43)

and for antiunitary operators

τB̂i Âj
(ω, − H) =

∑
kl

τÂl B̂k
(ω,H)D(PR)kiD(PR)lj . (44)

This splitting of R enables one to consider the symmetry
property of the thermogalvanic coefficients of a solid on the
basis of its magnetic Laue group instead of its magnetic point
group. This applies whether the conventional definition of
the Laue group (see Sec. III A) is applied or that used by
Kleiner [2]. In the latter case the removal of the ineffective
inversion I happens already when constructing the Laue group.
In the former case, one may add improper rotations R = PRI ,
where again I is ineffective and PR is an element of both
groups. Working only with the magnetic Laue group has the
obvious advantage that less cases have to be considered (see
Tables I–III) as there are only 32 magnetic Laue groups, while
there are 122 different crystallographic magnetic point groups.

On the basis of Eqs. (43) and (44) it is now rather
straightforward to give explicit forms for the response tensors
Lij in Eq. (30). For this purpose the abbreviations τij = τÂi B̂j

,

τ ′
ij = τB̂i Âj

, and σij = τÂi Âj
will be used, where Â and B̂ can

stand for ĵ or q̂. Accordingly, τ and τ ′ represent either L12
or L21 or the other way around, and σ represents L11 or L22,
respectively, which obviously have to have the same structure.
It is interesting to note that Eq. (44) can lead to restrictions on
the tensor elements in addition to those imposed by Eq. (43).
These hold even for the tensors of type τ ′.

In the case of a magnetically ordered solid having a
magnetic space group of category (b) the restrictions to the
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TABLE IV. Tensor forms for magnetic Laue groups of category (a).

Magnetic
Laue group τ ′ σ

1̄1′

⎛
⎝τxx τyx τzx

τxy τyy τzy

τxz τyz τzz

⎞
⎠

⎛
⎝σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎞
⎠

2/m1′

⎛
⎝τxx 0 τzx

0 τyy 0
τxz 0 τzz

⎞
⎠

⎛
⎝σxx 0 σxz

0 σyy 0
σxz 0 σzz

⎞
⎠

mmm1′

⎛
⎝τxx 0 0

0 τyy 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σyy 0
0 0 σzz

⎞
⎠

3̄1′,4/m1′,
6/m1′

⎛
⎝τxx −τxy 0

τxy τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

3̄1m1′, 3̄m11′,
4/mmm1′, 6/mmm1′

⎛
⎝τxx 0 0

0 τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

m3̄1′, m3̄m1′

⎛
⎝τxx 0 0

0 τxx 0
0 0 τxx

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠

shape of the thermogalvanic tensors result only from the
application of Eq. (43) as there are no antiunitary operations.
As a consequence, all tensors σ , τ , and τ ′ have the same shape.
Accordingly, only the shape of τ is given in Table V, that is in
full agreement with Kleiner’s Table IV [2].

For magnetic space groups belonging to category (a) or
category (c) Eq. (44) has to be applied in addition to Eq. (43).
In general, this leads to different symmetry restrictions for the
tensors of type τ ′ and σ . The resulting shape of the tensors for
category (a) is given in Table IV. These results agree with those
given by Kleiner’s Table V [2], apart from those for the Laue
groups 3̄1′, 4/m1′, and 6/m1′. Since the magnetic Laue groups
in category (a) differ from those in (b) only by the time-reversal
1′ as an element of its own, the tensor shapes in Table IV

TABLE V. Tensor forms for magnetic Laue groups of category (b).

Magnetic Laue group τ

1̄

⎛
⎝τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎞
⎠

2/m

⎛
⎝τxx 0 τxz

0 τyy 0
τzx 0 τzz

⎞
⎠

mmm

⎛
⎝τxx 0 0

0 τyy 0
0 0 τzz

⎞
⎠

3̄, 4/m, 6/m

⎛
⎝ τxx τxy 0

−τxy τxx 0
0 0 τzz

⎞
⎠

3̄1m, 3̄m1, 4/mmm, 6/mmm

⎛
⎝τxx 0 0

0 τxx 0
0 0 τzz

⎞
⎠

m3̄, m3̄m

⎛
⎝τxx 0 0

0 τxx 0
0 0 τxx

⎞
⎠

TABLE VI. Tensor forms for magnetic Laue groups of category
(c). The tensor forms for the groups 4′/mm′m and 4′/mmm′ are
related to each other by a rotation of the coordinate system around
the principal (z) axis by π/4.

Magnetic
Laue group τ ′ σ

2′/m′

⎛
⎝ τxx −τyx τzx

−τxy τyy −τzy

τxz −τyz τzz

⎞
⎠

⎛
⎝ σxx σxy σxz

−σxy σyy σyz

σxz −σyz σzz

⎞
⎠

m′m′m

⎛
⎝ τxx −τyx 0

−τxy τyy 0
0 0 τzz

⎞
⎠

⎛
⎝ σxx σxy 0

−σxy σyy 0
0 0 σzz

⎞
⎠

4′/m

⎛
⎝ τyy −τxy 0

−τyx τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

4′/mm′m

⎛
⎝ τxx −τxy 0

−τxy τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

4′/mmm′

⎛
⎝τyy 0 0

0 τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

3̄1m′, 3̄m′1,

4/mm′m′,
6/mm′m′

⎛
⎝ τxx τxy 0

−τxy τxx 0
0 0 τzz

⎞
⎠

⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠

6′/m′

⎛
⎝τxx −τxy 0

τxy τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

6′/m′m′m,

6′/m′mm′

⎛
⎝τxx 0 0

0 τxx 0
0 0 τzz

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σzz

⎞
⎠

m3̄m′

⎛
⎝τxx 0 0

0 τxx 0
0 0 τxx

⎞
⎠

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠

alternatively can be deduced from those in Table V simply
by considering in addition the effect of 1′. In case of σ this
can lead to additional restrictions (degeneracies and zero
elements) since in this case the antiunitary time reversal
connects σ with itself according to its definition given
above. For the thermoelectric tensor on the other hand,
this just states the usual Onsager relations as expressed by
τ ′
ij (H) = τji(−H) [see Eq. (34)]. Table VI gives the results

for category (c) that are in full agreement with those given by
Kleiner’s Table VI [2]. Obviously the results presented in
Tables IV–VI fulfill the Onsager relations given by Eqs. (32)
to (34) that are not postulated a priori.

Kleiner’s scheme was applied here to derive the shape of
the tensors representing homogeneous bulk systems. However,
it may also be applied to investigate the symmetry restrictions
on the so-called layer-resolved conductivity tensor σ IJ with
I and J labeling atomic layers of a two-dimensional periodic
system [17]. This concept may be used for example in the
context of electrical transport in layered GMR systems [18,19]
or magneto-optical properties of surface systems [20,21].
Another extension of Kleiner’s scheme is the discussion of
nonlinear effects [17].

C. Shape of the spin conductivity tensor

Spin transport as reflected for example by the spin Hall
effect is usually described by use of the spin conductivity σ k

ij
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that gives the current density along direction i for the spin
polarization with respect to the k axis induced by an electrical
field along the j axis. Within a single-particle description of
the electronic structure the Kubo formalism leads for σ k

ij to an
expression analogous to the Kubo-Bastin equation [22] for the
electrical conductivity [23,24]:

σ k
ij = i�

V

∫ ∞

−∞
dE f (E) Tr

〈
Ĵ k

i

dG+(E)

dE
ĵj δ(E − Ĥ )

−Ĵ k
i δ(E − Ĥ ) ĵj

dG−

dE

〉
c

. (45)

Here Ĥ is the Hamiltonian of the system, G+(E) and G−(E)
are the corresponding retarded and advanced Green functions,
and ĵj is the ordinary electrical current density operator.
A straightforward definition for the spin current density
operator Ĵ k

i = 1
2 {v̂i ,σk} consists in the anticommutator of the

conventional velocity operator v̂i and the Pauli spin matrix σk

[25]. As the spin conductivity is caused by spin-orbit coupling
a coherent relativistic implementation of Eq. (45) seems to
be more appropriate. This implies that the electrical current
density operator ĵj = −|e|cαj is expressed in terms of the
4 × 4 Dirac α matrices [26]. A corresponding expression for
the spin current density operator Ĵ k

i = T̂kĵi was suggested by
Vernes et al. [27] that involves the spatial part T̂k of the spin
polarization operator introduced by Bargmann and Wigner
[28]:

T̂k = β�k − 1
mc

γ5�k. (46)

Here β, γ5, �k are again standard 4 × 4 Dirac matrices, m is
the electron mass, and �k stands for the kinetic momentum
[26]. In fact this approach was adopted by Lowitzer et al.
[23,24] when dealing with the spin Hall effect of disordered
alloys. However, as mentioned above, for an investigation of
the shape of a response tensor the explicit expressions for
the involved operators are not relevant but only their behavior
under symmetry operations. Both definitions of Ĵ k

i given above
consist of a combination of the current density operator ĵi

with an operator that represents the spin polarization of an
electron. In contrast to ĵi [see Eq. (38)], the latter one (e.g., T̂k)
transforms as a pseudovector which changes sign under time
reversal. Accordingly, one has for the transformation matrices

D(T̂k)(u) = det(R)D(R), (47)

D(T̂k )(a) = − det(R)D(R), (48)

corresponding to Eqs. (5) and (6).
Identifying now Âi = ĵj , B̂j = ĵi , and Ĉk = T̂k in Eqs. (12)

and (22) one finds the behavior of σ k
ij under unitary transfor-

mations

σ k
ij =

∑
lmn

det(R) D(R)li D(R)mj D(R)nk σ n
lm, (49)

and under antiunitary transformations

σ k
ij = −

∑
lmn

det(R) D(R)li D(R)mj D(R)nk σ ′n
lm, (50)

respectively. In analogy to the treatment of thermoelectric
coefficients presented above one may again split the rotation

R into its proper part PR and, if present, improper part as given
in Eq. (42). The resulting equation for unitary transformations
is then

σ k
ij =

∑
lmn

D(PR)li D(PR)mj D(PR)nk det(R)4 σn
lm (51)

=
∑
lmn

D(PR)li D(PR)mj D(PR)nk σ n
lm (52)

and

σ k
ij = −

∑
lmn

D(PR)li D(PR)mj D(PR)nk σ ′n
lm (53)

for antiunitary transformations, respectively. As a conse-
quence, as found for the thermoelectric coefficients by Kleiner
[2] also for the spin conductivity tensor it is sufficient to
consider the magnetic Laue group of the solid.

Using Eqs. (52) and (53) the shape of the inverse spin
conductivity tensor was determined with the results given in
the left column of Tables VII–IX for magnetic Laue group of
categories (a)–(c).

It should be noted that these tables for the spin conductivity
and its inverse effect can be seen as an equivalent to the
generalized Onsager relations derived by Kleiner for the
thermogalvanic transport tensors τ and τ ′. In particular, they
give the shape of the tensors σ ′k representing the Onsager
reciprocal quantity, e.g., the inverse spin Hall effect (ISHE)
as counterpart to the spin Hall effect (SHE), as discussed for
instance by Shi et al. [25].

Because ĵ and q̂ have the same transformation properties
and because the tensors τ(B̂i Ĉj )Âk

and τ
Â

†
l (B̂†

mC
†
n) in Eq. (22) are

different objects in both cases, the tensor shapes for tensors
describing the connection between spin currents and heat
currents have exactly the same shape as those tabulated in
the left column of Tables VII, VIII, and IX.

For convenience, it is possible to alter the notation of these
symmetry-restricted matrices in such a way that the symmetry
of the spin conductivity tensor is easier to recognize at first
sight. This is achieved by removing the time-reversal operator
1′ from every antiunitary operation (or by omitting it if it
appears on its own). However, this reduction leads to the loss
of the specific meaning, i.e., the generalized Onsager relations,
contained in the tensors σ ′k . The reduced tensors are tabulated
for categories (a), (b), and (c) in the right column of Tables VII,
VIII, and IX, respectively.

As discussed in the context of the charge and heat current in
response to an electric field the corresponding operators ĵi and
q̂i have the same symmetry properties. As a consequence the
tensors L11 and L22 in Eq. (30) have the same shape given by σ

in Tables IV–VI. For the same reason the tensor representing
the spin current induced by a thermal gradient has the same
shape as that connected with an electric field with both given
by the right column of Tables VII–IX.

One of the major benefits of Tables VII–IX is obviously the
prediction of all possible linear response spin transport phe-
nomena induced by an electric field or a thermal gradient for
any solid based on its magnetic space group. The occurrence
of antisymmetric off-diagonal elements in the tensor σ k (k =
x,y,z) in Table VII implies that the transverse spin Hall effect
is, in principle, allowed by symmetry in any paramagnetic
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solid. However, one has to stress that in case of the magnetic
Laue groups 1̄, 2/m, and mmm1′ the shape of the tensor is not
purely antisymmetric. The same is true for a ferromagnetic
solid according to Tables VIII and IX, i.e., the spin Hall and
Nernst effects are symmetry allowed in any magnetic solid as
well (again not all cases show purely antisymmetric elements).
Considering as an example a ferromagnetic cubic solid with
the magnetic Laue group 4/mm′m′ (e.g., bcc-Fe or fcc-Ni with
the magnetization along the z direction) its spin conductivity
tensor is very different from the form of its nonmagnetic
counterpart with m3̄m1′. For the nonmagnetic case only the
elements σ k

ij with i �= j �= k �= i are nonzero. In addition, these
are the same for a cyclic permutation of (i,j,k) and change
the sign for an anticyclic one. For the ferromagnetic case addi-
tional off-diagonal elements may appear, with the degeneracies
depending on the spin projection component k, and the tensors
are no longer purely antisymmetric. In particular one notes
that there are diagonal elements that imply the occurrence of
a longitudinal spin current induced by an electric field that
in general will depend on whether the electric field is along
(σ z

zz) or perpendicular (σ z
xx = σ z

yy) the magnetization. These
tensor elements are obviously responsible for the occurrence
of the spin-dependent Seebeck effect [29]. Interestingly, for
a nonmagnetic solid there are several magnetic space groups
that also imply a nonvanishing diagonal tensor element σ k

ii ,
i.e., a longitudinal current along the direction of the applied
electric field or thermal gradient. This was demonstrated
recently by corresponding numerical work on nonmagnetic
(Au1−xPtx)4Sc showing that the longitudinal spin conductivity
can be comparable in magnitude to the transverse spin Hall
conductivity [30].

D. Implementation

The symmetry restrictions imposed on the thermogalvanic
tensors by Eqs. (43) and (44) as well as on the spin conductivity
tensor by Eqs. (52) and (53), respectively, were determined by
means of a Python script that is based on the Computational
Crystallography Toolbox, cctbx [31]. Although this library
provides support only for the nonmagnetic crystallographic
operations, it is also of great value when dealing with magnetic
solids. To determine the magnetic space group of a solid all
possible magnetic space groups are simply scanned through
and checked which fits to the system under investigation.
The corresponding symmetry operations are taken from the
magnetic space group data file magnetic_data.txt [13,32].
Once the magnetic point group has been found, the u and
a operators needed for an application of Eqs. (43) and (44)
or Eqs. (52) and (53), respectively, are fixed. Going through
all elements of the magnetic point group leads to a set of

connecting equations between the tensor elements which can
then be solved to get the shape of the tensor. For these symbolic
calculations the SymPy library [33] is used. Although in
principle the generators of a magnetic point group are sufficient
to obtain all symmetry restrictions, it turned out to be more
convenient to apply all symmetry operations since the cctbx
library and the magnetic space group tables do not provide a
set of generators.

Finally, it should be mentioned that the results for the spin
conductivity tensor σ z for the spin polarization along the z axis
have been checked against the output of the SPRKKR program
package [34] that allows calculating this tensor on the basis
of the relativistic Kubo formalism [35]. For all investigated
magnetic Laue groups of categories (a) (1̄1′, mm1′, 2/m1′,
4/m1′, 4/mmm1′, 6/mmm1′, m3̄m1′), (b) (4/m), and (c)
(2′/m′, m′m′m, 4/mm′m′, 3̄m′1, 6/mm′m′) the numerical
results for σ z were found to be completely in line with the
analytical predictions given in Tables VII–IX.

IV. SUMMARY

Kleiner’s scheme to determine the shape of a linear response
tensor has been extended to deal with more complex situations.
The resulting set of equations has been used to revise the
shape of the electric charge and heat conductivity tensors for
all magnetic space groups. It was demonstrated that for this
only the magnetic Laue group of a solid is relevant. This also
holds for the spin conductivity tensor that is used among other
to discuss the longitudinal spin-dependent Seebeck effect as
well as the transverse spin Hall and Nernst effects. Results for
all magnetic space groups are presented in an easily accessible
way, by giving in addition to the tensors σ ′k containing the
generalized Onsager relations also the reduced tensor forms
σ k . Furthermore, the axis conventions of the space groups
are preserved when constructing the magnetic Laue groups
and therefore, although redundant, the tensor forms are given
in both coordinate systems whenever there is an ambiguity.
Interestingly, several magnetic Laue groups for nonmagnetic
solids were identified that should show a new longitudinal spin
transport phenomenon [30]. Finally, it should be stressed that
the scheme presented here can be applied straightforwardly to
any other response function. Examples relevant for spintronics
and related fields are the response tensors representing spin-
orbit torque, Gilbert damping, or the Edelstein effect [36].
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[12] D. B. Litvin and V. Kopský, Seitz notation for symmetry
operations of space groups, Acta Crystallogr. Sect. A 67, 415
(2011).

[13] D. B. Litvin, Magnetic space-group types, Acta Crystallogr.
Sect. A 57, 729 (2001).

[14] W. Borchardt-Ott, Crystallography: An Introduction, 3rd ed.
(Springer, Berlin, 2012), Chap. 13.4.

[15] International Tables for Crystallography, Volume A: Space
Group Symmetry (Springer, New York, 2002).

[16] M. Jonson and G. D. Mahan, Mott’s formula for the ther-
mopower and the Wiedemann-Franz law, Phys. Rev. B 21, 4223
(1980).

[17] T. Huhne, Magneto–optical Kerr effect of multilayer and surface
layer systems, Ph.D. thesis, Ludwig-Maximilians-Universität
München, 2001.

[18] W. H. Butler, X.-G. Zhang, D. M. C. Nicholson, and J. M.
MacLaren, First-principles calculations of electrical conductiv-
ity and giant magnetoresistance of Co|Cu|Co spin valves, Phys.
Rev. B 52, 13399 (1995).

[19] P. Weinberger, V. Drchal, J. Kudrnovský, I. Turek, H. Herper,
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