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Spin susceptibility of Anderson impurities in arbitrary conduction bands
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Spin susceptibility of Anderson impurities is a key quantity in understanding the physics of Kondo screening.
Traditional numerical renormalization group (NRG) calculation of the impurity contribution χimp to susceptibility,
defined originally by Wilson in a flat wide band, has been generalized before to structured conduction bands.
The results brought about non-Fermi-liquid and diamagnetic Kondo behaviors in χimp, even when the bands are
not gapped at the Fermi energy. Here, we use the full density-matrix (FDM) NRG to present high-quality data
for the local susceptibility χloc and to compare them with χimp obtained by the traditional NRG. Our results
indicate that those exotic behaviors observed in χimp are unphysical. Instead, the low-energy excitations of the
impurity in arbitrary bands only without gap at the Fermi energy are still a Fermi liquid and paramagnetic.
We also demonstrate that unlike the traditional NRG yielding χloc less accurate than χimp, the FDM method
allows a high-precision dynamical calculation of χloc at much reduced computational cost, with an accuracy at
least one order higher than χimp. Moreover, artifacts in the FDM algorithm to χimp and origins of the spurious
non-Fermi-liquid and diamagnetic features are clarified. Our work provides an efficient high-precision algorithm
to calculate the spin susceptibility of impurity for arbitrary structured bands, while negating the applicability of
Wilson’s definition to such cases.
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I. INTRODUCTION

The understanding of quantum impurity systems is of
prime importance in condensed matter physics. Such systems,
consisting of a small subsystem (the impurity) with only
few degrees of freedom coupled to a continuous bath of
noninteracting particles, often exhibit rather complex behavior
due to the nontrivial interplay between Coulomb repulsion at
the impurity site and the impurity-bath interaction. A typical
example is the Kondo effect [1] describing the screening of a
localized magnetic moment by conduction electrons. Kondo
screening mechanisms are mostly characterized by the spin
susceptibility of the impurity, a fundamental quantity describ-
ing the impurity’s magnetic response. Quantum impurities,
such as magnetic molecules, qubits, adatoms, or quantum dots,
would also constitute an enormous miniaturization of data
processing technology by encoding and storing information
in their magnetic states [2]. Making this prospect feasible re-
quires very accurate knowledge on the local magnetic response
of the impurity. Experimentally, such local magnetic properties
are relevant in traditional nuclear magnetic resonance and
neutron scattering experiments [1].

Theoretically, a prototype model of quantum impurities is
the single-impurity Anderson model [3]. While exact solutions
of the Anderson model are available by the Bethe ansatz [4]
in some limiting cases, Wilson’s numerical renormalization
group (NRG) [5,6] provides a systematic nonperturbative
method for arbitrary impurity systems. For the impurity
magnetic response in the Kondo physics, the NRG calculation
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of the Anderson model often emphasizes Wilson’s definition
[5] of the impurity contribution χimp to the susceptibility
due to a global magnetic field (in the following, we term it
the impurity susceptibility as usual), rather than the standard
definition [6] of the local spin susceptibility χloc in response to
a local field. Despite the experimental relevance, this is because
evaluation of the local susceptibility is equivalent to calculating
a dynamical spin correlation function which is much more
complex and less accurate in the traditional NRG [5–7] or its
reduced density-matrix extension [8]. Alternatively, one may
calculate χloc by differentiating the local magnetization with
respect to the external field [9,10]. From a numerical point
of view, however, performing differentiations is something to
avoid if possible. Since in the most relevant case of a flat wide
band the impurity susceptibility χimp exactly coincides with the
local susceptibility χloc, it is clearly more convenient to only
calculate χimp which is a thermodynamic quantity and thus
can be very accurately obtained using the traditional NRG.

However, the nature of the electron bath in the Kondo
problem varies from one realization to another. It may possess
a band of strong energy dependence, as in magnetic impurities
adsorbed on graphene [11] and square lattice [12], double
quantum dots [13], the narrow-band Anderson model [14],
and so on, for which the two susceptibilities may differ signif-
icantly [15]. In this case, extreme caution should be exercised
when applying Wilson’s definition, because the impurity sus-
ceptibility, being defined through global quantities, involves
a subtlety from the conduction bath such that it may not
necessarily yield the intrinsic spin dynamics of the impurity.
Particularly, a negative χimp was found by the calculations
[11–14], signaling a diamagnetic Kondo impurity, even
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with non-Fermi-liquid behavior violating the low-temperature
plateau in χimp [11,12]. This is inconsistent with one’s
intuition. We emphasize that in those systems [11–14], though
strongly energy dependent, the conduction bands are not
gapped at the Fermi energy. Therefore, the impurity Kondo
physics is very likely to be still conventional, without the exotic
non-Fermi-liquid and diamagnetic behaviors (gapped bands
[16] could, of course, lead to non-Fermi-liquid behavior). With
this respect, in order to provide a definitive answer to whether
an energy-dependent band without gap could indeed make the
impurity diamagnetic and a non-Fermi liquid, it is highly desir-
able to establish a dynamical method of precisely calculating
the local susceptibility. This is because χloc is the standard
quantity [6] that characterizes the intrinsic spin dynamics of
Anderson impurities in arbitrary conduction bands.

Recent NRG improvements of the full density-matrix
(FDM) generalization [17] based on the complete basis set
of discarded states [18] may fulfill this purpose. This FDM
approach avoids the overcounting ambiguity and the single-
shell approximation for the density matrix in the previous
NRG, giving rise to very accurate dynamical correlation
functions for local operators at arbitrary temperature. Within
the FDM algorithm, the zeroth-moment spectral sum rule
holds exactly to machine precision [17,18]. Higher-moment
spectral sum rules are also fulfilled with a high accuracy [19].
This motivates us to wonder whether the local susceptibility,
as a (−1)th moment of the impurity-spin correlation function,
can be calculated accurately from the FDM method, with an
accuracy even higher than the impurity susceptibility. Note
that the accuracy of the impurity susceptibility from the FDM,
as indicated by Ref. [10], is only in the percent range. Besides,
at low temperature, there also exists a severe artifact in the
FDM algorithm to χimp (detailed in Sec. III A).

In this paper, we apply the FDM approach to dynamically
calculate the local susceptibility of an Anderson impurity,
without involving numerical differentiations. It is shown that
within the FDM algorithm, the local susceptibility χloc can be
calculated very accurately in all parameter regimes, while the
thermodynamic calculation of the impurity susceptibility χimp

encounters severe artifacts at low temperature. By comparison
with exact Bethe ansatz results, the FDM results of the local
susceptibility χloc are found accurate in the permil range. This
accuracy is obtained at much reduced computational cost, and
is at least one order higher than the accuracy of the impurity
susceptibility. We then revisit the previous studies [11–14], by
applying the FDM algorithm for the local susceptibility χloc

to the case with arbitrary energy-dependent conduction bands.
The revisit reaches a definitive answer: as long as the host
density of states is not gapped at the Fermi energy, the low-
energy excitations of an Anderson impurity in arbitrary energy-
dependent bands are still a Fermi liquid and paramagnetic. The
resultant Kondo screening of the impurity magnetic moment
is qualitatively the same as in a flat wide band. For such
systems, the exotic behaviors previously observed [11–14] in
the impurity susceptibility do not represent the correct Kondo
physics of the impurity. In particular, we demonstrate that the
non-Fermi-liquid property and diamagnetism are spurious be-
haviors arising from the additional susceptibility of conduction
electrons, which may be vulnerable to the NRG discretization
error due to its nonlocal nature.

II. MODEL HAMILTONIAN AND FDM APPROACH
TO SPIN SUSCEPTIBILITIES

We consider the single-impurity Anderson model described
by the Hamiltonian H = Hbath + Himp + Hint:

Hbath =
∑
k,σ

εkC
†
kσCkσ , (1)

Himp =
∑

σ

εdd
†
σ dσ + Un↑n↓, (2)

Hint =
∑
k,σ

VkC
†
kσ dσ + H.c., (3)

where C
†
kσ (d†

σ ) creates an electron with energy εk (εd ) and spin
σ = ↑,↓ in the bath (impurity), nσ = d†

σ dσ , U parametrizes
the onsite Coulomb repulsion, and the two subsystems are
coupled via the hybridization Vk . The influence of the bath on
the impurity’s dynamics is fully determined by the hybridiza-
tion function �(ε) = π

∑
k |Vk|2δ(ε − εk), which depends on

specific realizations of the electron bath. In the standard case,
�(ε) is constant for |ε| � D and zero otherwise, with D being
the half-bandwidth. While D is usually the largest energy
scale of the problem, the effect of finite bandwidth becomes
important in the narrow-band model [14]. For a magnetic
impurity adsorbed on the top of a carbon atom in graphene
with Rashba spin-orbit interaction, the resulting hybridization
function of the model has a linear energy dependence with
sharp discontinuities [11]. �(ε) may have even singularities
around the Fermi energy, such as for magnetic impurities
in square lattice [12]. When the single-impurity Anderson
model pertains to the double quantum-dot system consisting
of an interacting dot coupled to the leads through another
noninteracting dot, the impurity is coupled to an effective
bath with a Lorentzian hybridization function [13]. Following,
we calculate the local spin susceptibility χloc of the above
Anderson model with arbitrary forms of �(ε) by using the
FDM-NRG method.

The NRG strategy [5,6] starts from discretizing the bath
spectrum on a logarithmic grid of energies ±D�−n with
� > 1 and n = 0,1,2, . . . , thereby transforming the original
impurity model into a semi-infinite tight-binding chain with
exponentially decreasing hopping matrix elements, via a
standard tridiagonalization procedure after dropping high-
mode states in each discretization interval. With its first
site representing the impurity, the chain is then diagonalized
iteratively adding one site at each step. In order to restrict
the exponentially growing Hilbert space, eigenstates of the
chain Hamiltonian HN including the newly added site (the
N th site) are constructed from the states of the N th site and
the MK lowest-lying eigenstates (kept states) of the chain
HN−1 without the N th site, while discarding the remaining
eigenstates of HN−1. The iterative diagonalization proceeds
until the hopping matrix element between the last added
site, say N = Nmax, and its immediate neighbor becomes the
smallest energy scale of the problem, such that the Hamiltonian
HNmax of the full chain represents a good approximation of the
original Anderson model.

Anders and Schiller [18] have introduced a complete
basis set of the Fock space of HNmax by construct-
ing the tensor-product state |l,e; N〉 ≡ |l; N〉 ⊗ |αN+1〉 ⊗
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|αN+2〉 . . . ⊗ |αNmax〉 from |l; N〉 the lth discarded states of
HN and |αm〉 the state of the mth site with αm = {0,↑,↓,↑↓},
where e denotes collectively the degrees of freedom of the
sites m = N + 1, . . . ,Nmax, i.e., the environment of HN . Let
Nmin being the first iteration at which high-energy states are
discarded and taking all eigenstates of the last iteration Nmax as
discarded, the completeness relation of the basis set {|l,e; N〉}
reads as

Nmax∑
N=Nmin

∑
l,e

|l,e; N〉〈l,e; N | = 1, (4)

along with the orthonormality

〈l,e; N |l′,e′; N ′〉 = δll′δee′δNN ′ , (5)

and a useful identity for the subspaces spanned by the kept
states (denoted with k) at iteration N , and by all discarded
states at succedent iterations N ′ > N :

∑
k,e

|k,e; N〉〈k,e,N | =
Nmax∑

N ′=N+1

∑
l,e

|l,e; N ′〉〈l,e; N ′|. (6)

Note also that for N ′ � N , the kept and discarded states are
orthogonal 〈k,e; N |l,e′; N ′〉 = 0. Since |s,e; N〉 (s = l,k) is
only an exact eigenstate of HN corresponding to an eigenvalue
EN

s with 4Nmax−N -fold degeneracy, one has to assume it
is also an eigenstate of the original model H |s,e; N〉 ≈
EN

s |s,e; N〉. This so-called NRG approximation represents the
only approximation of the FDM algorithm. Weichselbaum and
Delft [17] hence write the full density matrix ρ of H as follows:

ρ = 1

Z

Nmax∑
N=Nmin

∑
l,e

e−βEN
l |l,e; N〉〈l,e; N |, (7)

Z =
Nmax∑

N=Nmin

∑
l

4Nmax−Ne−βEN
l , (8)

with β = 1/(kBT ) the inverse temperature. By using this form
of the density matrix, the complete basis set of discarded states,
and the NRG approximation, all dynamic and static properties
of H can be evaluated.

By definition, the local susceptibility describes the impurity
magnetization in response to a weak magnetic field B applying
only at the impurity site [6]

χloc ≡ lim
B→0

∂〈Mm〉H+H ′
m

∂B
= (gμB)2

∫ β

0
dτ 〈Sz(τ )Sz〉H , (9)

where Mm = gμBSz is the impurity magnetization operator, g
the Landé g factor, μB the Bohr magneton, Sz = 1

2 (n↑ − n↓)
is the z component of impurity spin, and Sz(τ ) = eτHSze

−τH .
〈. . .〉H+H ′

m
and 〈. . .〉H denote the thermodynamic average

with respect to the Hamiltonian H with and without the
perturbation H ′

m = −gμBSzB. The second equality in Eq. (9),
using 〈Sz〉H = 0, represents an exact mathematical relation
which expresses a response in the impurity magnetization
due to an infinitesimal local field in terms of an imaginary-
time Matsubara Green’s function [6]. This already consti-
tutes an operational ground for dynamical calculating the
local susceptibility, while obviating the need to evaluate a
numerical derivative. However, the FDM algorithm for the

Matsubara function would involve the NRG approximation
e±τH |s,e; N〉 ≈ e±τEN

s |s,e; N〉, which at low temperature be-
comes severe [20] because of large τ involved.

To obtain high-quality susceptibility data in the low-
temperature Kondo regime, it is thus better to work with the
retarded Green’s function for which the quality of the NRG
approximation does not rely on the temperature. Using the
Kubo formula for linear response in the static limit, the local
susceptibility can be rewritten as

χloc = −(gμB)2 Re
[
GSz

(0)
]

= −(gμB)2 1

π
P

∫ ∞

−∞
dε

Im
[
GSz

(ε)
]

ε
, (10)

GSz
(ε) = 1

i�

∫ ∞

−∞
dt e

i
�

εt�(t)〈[Sz(t),S
†
z (0)]〉H . (11)

It is easy to verify the equivalence of Eqs. (9) and (10) from
their Lehmann representations. Moreover, the second equality
in Eq. (10) reveals that the local susceptibility is just the (−1)th
moment of the impurity-spin spectral function. To evaluate
within the FDM algorithm [17] the retarded Green’s function
of the local spin GSz

(ε), the full density matrix (7) and the
complete basis set (4) are inserted into the thermal average in
Eq. (11). Making use of the properties of the basis [Eqs. (5)
and (6)] and taking the NRG approximation e± i

�
Ht |s,e; N〉 ≈

e± i
�

EN
s t |s,e; N〉, we end up with (see Appendix for details)

χloc

β(gμB)2
=

Nmax∑
N,N ′=Nmin

′ ∑
k,k′,l

C
(1)
Nklρ

NN ′
k′k [Sz]

N
kl[Sz]

N
lk′

+
Nmax−1∑
N=Nmin

∑
k,l

C
(2)
Nkl[Sz]

N
kl[Sz]

N
lk

+
Nmax∑

N=Nmin

∑
l,l′

C
(3)
Nll′[Sz]

N
ll′[Sz]

N
l′l . (12)

Here,
∑′ restricts the summation to N < N ′, the matrix ele-

ments of local spin [Sz]Nss ′ ≡ 〈s; N |Sz|s ′; N〉, and the reduced
density matrix ρNN ′

k′k ≡ ∑
e〈k′,e; N |ρN ′ |k,e; N〉 in which the

density matrix of shell N ′,

ρN ′ = 1

Z

∑
l,e

e−βEN ′
l |l,e; N ′〉〈l,e; N ′|, (13)

satisfies ρ = ∑Nmax
N=Nmin

ρN . Finally, the three coefficients in
Eq. (12) are given by

C
(1)
Nkl = Re

[
2

β
(
EN

l − EN
k

) + iη

]
, (14)

C
(2)
Nkl = −4Nmax−N

Z
e−βEN

l C
(1)
Nkl, (15)

C
(3)
Nll′ = 4Nmax−N

Z

e−βEN
l′ − e−βEN

l

β
(
EN

l − EN
l′

) , (16)

where η is a dimensionless infinitesimal (already absorbed β)
to deal with the accidental degeneracy of kept and discarded
states EN

k = EN
l , which appears when high-energy states are

truncated at a degenerate eigenenergy of HN . Keeping η
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fixed here is equivalent to broaden discrete δ functions in
the spectral function Im[GSz

(ω)] using a Lorentzian kernel
with temperature-dependent width (η/β). In this work, we
always set η = 0.001, unless stated otherwise. Since the value
of C

(3)
Nll′ in the limit EN

l = EN
l′ is well defined, there is no

need to introduce an infinitesimal imaginary part to Eq. (16).
After performing a “forward run” along the Wilson chain
to iteratively generate all relevant NRG eigenenergies EN

s ,
eigenstates |s; N〉, and matrix elements [Sz]Nss ′ , we can evaluate
the reduced density matrix ρNN ′

kk′ in a single “backward run”
[17], thereby obtaining all information needed for dynamically
calculating the local susceptibility.

For comparison, we also present the FDM results for
the impurity contribution to susceptibility. This widely used
quantity is defined originally by Wilson [5,6] to be the
difference of the total magnetic response with and without
the impurity, under a global field B,

χimp ≡ lim
B→0

∂

∂B

[〈Mm〉H+H ′
t
+ 〈Mb〉H+H ′

t
− 〈Mb〉Hbath+H ′

b

]
= (gμB)2β

(〈
S2

t

〉
H

− 〈
S2

b

〉
Hbath

)
, (17)

where H ′
t = −gμBStB, Mb = gμBSb, H ′

b = −gμBSbB, and
St = Sb + Sz, with Sb being the z component of bath spin. The
second equality, using [St ,H ] = [Sb,Hbath] = 0, indicates
that χimp is a thermodynamic quantity which, as usual, can
be obtained accurately using the traditional NRG. Within the
FDM method, at the N th iteration, both St and Sb should be
divided into (i) the z-component spin SN of the resultant chain
Hamiltonian HN with or without the impurity site, and (ii) the
z-component spin of Nmax − N environmental sites. Following
Ref. [10], the FDM formula for χimp is

χimp

β(gμB)2
= Xwith impurity − Xwithout impurity, (18)

X =
Nmax∑

N=Nmin

∑
l

4Nmax−N

Z
e−βEN

l

{[
S2

N

]N

ll
+ Nmax − N

8

}
.

(19)

At first glance, the absence of the reduced density matrix
in Eq. (19) implies that thermodynamically evaluating χimp

by two NRG runs (one with and one without the impurity)
would require less computational resources than dynamically
evaluating χloc by a “forward” and “backward” NRG run. As
we show in the following, however, within the FDM approach
the accuracy obtainable for χloc even at lower computational
cost can be one order higher than that of χimp.

To establish a relation between the local χloc and impurity
χimp susceptibilities, let us consider their difference χloc −
χimp. From the equation of motion (EOM) of the bath-electron
Green’s function, one readily obtains

χloc − χimp = gμB lim
B→0

∂

∂B

∑
σ

σ

∫
dε

2π
f (ε)

× Im

[
δG(ε) − Gdσ

(ε)
∂�σ (ε)

∂ε

]
, (20)

where f (ε) stands for the Fermi-Dirac function, �σ (ε) =∑
k |Vk|2/(ε − εk + 1

2σgμBB + i0+) is the self-energy due

to the impurity-bath coupling, and δG(ε) = Gdσ
(ε) − G′

dσ
(ε),

with Gdσ
(ε) [G′

dσ
(ε)] being the impurity retarded Green’s

function corresponding to the Hamiltonian H in the global
(local) magnetic field. The term containing Gdσ

(ε)∂�σ (ε)/∂ε

in Eq. (20) represents the additional susceptibility from the
conduction electrons [10]. For a flat band in the wide-band
limit, one has exactly ∂�σ (ε)/∂ε = 0 and δG(ε) = 0, leading
to χloc = χimp as expected from the Clogston-Anderson com-
pensation theorem [21]. On the other hand, the breakdown of
this theorem in the presence of a narrow bandwidth and/or
strong energy dependence in �σ (ε) [or �(ε), equivalently]
[15] can result in χloc and χimp differing substantially. In this
case, the impurity susceptibility may be no longer suitable
for faithfully characterizing the intrinsic spin dynamics of the
impurity, especially when the additional bath susceptibility
becomes significant.

III. RESULTS AND DISCUSSIONS

What follows are the numerical results calculated by the
FDM NRG in the units of D = gμB = kB = 1. Technically,
the NRG is still an approximation method that involves the
discretization error (controlled by the discretization parameter
�) and the truncation error (controlled by the number MK of
kept states in each iteration and also �) [22]. The two types
of errors are interrelated. For coarser discretization at larger
�, the discretization error increases, whereas the truncation
error decreases due to the enhanced separation of energy
scales. Large � may also introduce spurious oscillations into
thermodynamic quantities. These oscillations can be removed
by using the z-averaging procedure, wherein one averages
the final results from independent NRG calculations for Nz

interleaved discretization meshes ±D�−n+z(1−δn0), with Nz

values of the twist parameter z equally distributed in [0,1).
As for MK , unlike in the conventional method, the number
of kept states needed by the FDM algorithm can be largely
reduced while still obtaining satisfactory accuracy for physical
observables, due to the use of a complete basis set. Particularly,
the sum-rule nature inherent in the FDM algorithm to χloc

makes the local susceptibility very insensitive to MK . We thus
always reduce the number of kept states for calculating χloc

to half the number of states kept for χimp. Nevertheless, one
still has to carefully choose these parameters in any practical
NRG calculations such that the resultant discretization and
truncation errors do not affect physical conclusions drawn
from the NRG data, which should be robust to changes of
parameters.

A. Impurities in the flat wide conduction band

We first examine the FDM-NRG calculations of the two
susceptibilities for a flat conduction band [�(ε) = �] in the
wide-band limit (D � �,U,|εd |). The calculations are per-
formed for the temperature dependence of the susceptibilities
by fixing � while varying the onsite Coulomb repulsion and the
impurity level position, as shown in Figs. 1 and 2 and Tables I
and II. Even though the two susceptibilities are essentially
identical in this case, one can not expect the FDM-NRG
calculation would always yield equal results for them. This
is because the errors inherent in NRG may affect χloc and χimp
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FIG. 1. (Color online) Local χloc and impurity χimp susceptibili-
ties calculated by the FDM NRG for the Anderson model with a flat
wide band, over a wide temperature range continuously evolving from
the high-temperature free-orbital to the low-temperature Fermi-liquid
regimes. Model parameters: D = 1, � = 0.001, U/� = 12, and
εd/� = −6, unless indicated otherwise. Note that the curves in (c) re-
garding different parameters are highly coincident. NRG parameters
in (d): for χloc (lines), � = 4, MK = 300; for χimp (symbols), � = 8,
MK = 600. The z averaging is performed only for χimp in (b) and (d),
using Nz = 8, z = 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875.

FIG. 2. (Color online) FDM-NRG results of the local and im-
purity susceptibilities plotted as χ versus T , focusing on the
low-temperature Fermi-liquid plateau, for the symmetric (a) and
asymmetric (b) Anderson models with a flat wide band (D = 1,
� = 0.001). NRG and z-averaging parameters are the same as in
Fig. 1(d).

TABLE I. Zero-temperature local χloc and impurity χimp suscep-
tibilities from the FDM NRG in comparison with the exact result χBA

from the Bethe ansatz, for the symmetric Anderson model with a flat
wide band [D = 1(NRG), ∞(BA), � = 0.001, εd = −U/2]. NRG
and z-averaging parameters are the same as in Fig. 1(d).

U/�
χBA

(gμB )2

χloc
(gμB )2 % error

χimp

(gμB )2 % error

12 9970.8 9974.0 +0.03% 10136 +1.7%
11 6950.4 6943.9 −0.09% 7063.7 +1.6%
10 4854.3 4854.8 +0.01% 4931.4 +1.6%
9 3397.7 3398.3 +0.02% 3451.3 +1.6%
8 2383.8 2382.7 −0.05% 2420.7 +1.5%
7 1676.9 1673.9 −0.18% 1702.5 +1.5%
6 1183.2 1182.3 −0.08% 1201.6 +1.6%
5 837.65 837.13 −0.06% 849.94 +1.5%
4 595.23 594.40 −0.14% 603.39 +1.4%
3 424.76 423.41 −0.32% 430.15 +1.3%
2 304.54 304.01 −0.17% 308.14 +1.2%
1 219.50 219.68 +0.08% 221.54 +0.9%
0 159.15 159.09 −0.04% 159.34 +0.1%

in different ways since different algorithms as Eqs. (12) and
(18) are adopted. For small � and moderate MK [Fig. 1(a)],
it is shown that at high temperatures both algorithms have
introduced only tiny artifacts. But, a severe artifact appears
in the low-temperature behavior of χimp, which obviously
breaks the Fermi-liquid property. At low temperatures, the
Fermi-liquid theory [1] of a Kondo impurity demonstrates a
linear temperature dependence of the effective Curie constant
T χ , i.e., the spin susceptibility χ would develop a plateau as
T → 0. This plateau is indeed very well formed in χloc as
a function of T , indicating that dynamical FDM calculation
of the local susceptibility is much more accurate than the
thermodynamic calculation of the impurity susceptibility.

The artifacts uncovered in Fig. 1(a) are mostly due to the
truncation errors which can be largely reduced by increasing
the discretization parameter �. For the impurity susceptibility
χimp, we find that using a discretization parameter as large

TABLE II. Zero-temperature local χloc and impurity χimp suscep-
tibilities from the FDM NRG in comparison with the exact result χBA

from the Bethe ansatz, for the asymmetric Anderson model with a
flat wide band [D = 1(NRG), ∞(BA), � = 0.001, U/� = 12]. NRG
and z-averaging parameters are the same as in Fig. 1(d).

εd/�
χBA

(gμB )2

χloc
(gμB )2 % error

χimp

(gμB )2 % error

−5 8748.3 8749.9 +0.02% 8811.6 +0.7%
−4 5910.2 5904.8 −0.09% 5974.5 +1.1%
−3 3078.5 3075.9 −0.08% 3108.2 +1.0%
−2 1246.7 1244.9 −0.14% 1285.5 +3.1%
−1 412.21 412.13 −0.02% 391.54 −5.0%
0 131.75 131.42 −0.25% 140.54 +6.7%
1 50.045 49.996 −0.10% 49.232 −1.6%
2 23.607 23.563 −0.19% 23.084 −2.2%
3 13.150 13.128 −0.17% 13.294 +1.1%
4 8.2236 8.2098 −0.17% 8.5423 +3.9%
5 5.5769 5.5774 +0.01% 5.8513 +4.9%
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as � = 8 and performing the z averaging for Nz = 8 meshes
are necessary in order to obtain satisfactory data [Fig. 1(b)],
in agreement with Ref. [10]. On the other hand, high-quality
data of χloc, robust to changes of the number of kept states
MK and the parameter η, are already available at moderate
� = 4, as given in Fig. 1(c). Since at this value of � the
local susceptibility χloc exhibits no spurious oscillations, there
is no need to carry out the z averaging. This significantly
lowers the computational cost. With these NRG parameters
tuned independently for χloc and χimp to eliminate the artifacts,
the two susceptibilities plotted as T χ versus T in Fig. 1(d)
seem indeed identical in all parameter regimes. The resultant
curves exhibit features of typical Kondo screening for −εd,

εd + U � �, that is, T χ first increasing from the high-
temperature value 1

8 of a free impurity towards its local-
moment value 1

4 for intermediate temperature, and then falling
to zero as T → 0 due to the screening of the local magnetic
moment by conduction electrons.

However, a severe drawback of the FDM method to χimp,
obscured by the very small values of T χimp at low temperature
and thus overlooked by Ref. [10], is that the low-temperature
artifacts appearing in χimp can not be completely eliminated
in all parameter regimes, even though large � and the z

averaging are used. To explicitly demonstrate this, we present
by Fig. 2 a detailed comparison of the two susceptibilities,
plotted as χ versus T rather than T χ versus T , emphasizing
the low-temperature Fermi-liquid plateau. As depicted, our
FDM calculation of the local susceptibility gives high-quality
data for all impurity parameters, ranging from the strongly cor-
related to the noninteracting regime [Fig. 2(a)], and from the
Kondo to the mixed valence and into the empty-orbital regime
[Fig. 2(b)], whereas the data of the impurity susceptibility
become wildly irregular at extremely low temperature. We
have checked that such kind of irregularities always show up
in χimp by further increasing �, Nz, and even MK . Seemingly,
these irregularities are small in the Kondo regime and in
the particle-hole symmetry case, but becomes severe in the
mixed-valence and empty-orbital regimes. The precise origin
of these irregularities is not clear at present. It may be [23] due
to an imperfect cancellation of the logarithmic discretization
oscillations by the simple z-averaging procedure, or the limita-
tions in numerical precision for calculating χimp by taking the
subtraction of two extensive macroscopic values to obtain an
impurity-related finite quantity. In any case, the FDM gives
indisputably better data quality for the local susceptibility
than for the impurity susceptibility, being distinct from the
conventional NRG.

To quantitatively demonstrate the advantage of our FDM
algorithm for the local susceptibility, we compare both
susceptibilities with the exact zero-temperature results χBA

from the Bethe ansatz [4], as shown in Tables I and II. Note that
one can not take exactly T = 0 in FDM-NRG calculations. The
zero-temperature results within NRG are actually extracted
from the corresponding low-temperature results which must
be convergent as T → 0. This poses no difficulties for the
local susceptibility because χloc do indeed converge to a
definite value as T → 0 (see Fig. 2). We thus take the zero-
temperature value of χloc at the lowest temperature involved
in our calculation, i.e., T = 10−8. However, due to its low-
temperature artifacts, extracting the zero-temperature value of

χimp would be problematic since χimp(T ) is not convergent as
T → 0. To avoid the problem, the zero-temperature impurity
susceptibility we used in Tables I and II for comparison
is actually the value of χimp(T ) in the plateau region at
T = 10−3T0, where T0 is the low-energy Kondo scale defined
by T0χimp(T0) = 0.0701 [5]. Comparison with the Bethe ansatz
results indicates a relative error of χloc from the FDM in
the permil range, while χimp is accurate only to within a
few percent. This much improved accuracy of χloc becomes
even more remarkable when considering the following fact.
Our dynamical calculation of the local susceptibility does not
need to perform the z averaging, and includes only half of the
eigenstates as kept in thermodynamically evaluating χimp, and
thus is carried out at much reduced computational cost.

B. Impurities in energy-dependent bands

We now turn to clarify the effect of energy-dependent
conduction bands on the magnetic response of an Anderson
impurity. The single-impurity Anderson model with a struc-
tured conduction band has already been intensively studied in
the literature. It has been shown that when there is a gap
(hard or soft) at the Fermi energy in the host density of
states, the impurity ground state can undergo quantum phase
transitions from the Kondo screening to the local moment state,
giving rise to non-Fermi-liquid behavior [16]. However, there
is also a class of systems [11–14] in which the host density of
states, although strongly energy dependent, has no gap at the
Fermi energy. Previous investigations [11–14] of such systems
suggest that the low-energy excitations of the impurity can still
be a non-Fermi liquid and even diamagnetic. The observations
are quite surprising and are based on the results of the impurity
susceptibility χimp calculated by the traditional NRG. Since
χimp can not directly reflect the magnetic states of the impurity,
we thus revisit this problem by directly calculating the local
susceptibility χloc of these systems using the FDM NRG, in
order to clarify whether an energy-dependent band without gap
could indeed render the impurity diamagnetic and a non-Fermi
liquid, or the previous observation [11–14] is just spurious.

The first system [11] we shall examine is a magnetic impu-
rity adsorbed in graphene with Rashba spin-orbit interaction,
in which the interplay of the Rashba coupling and the linear
graphene dispersion results in an effective host density of states
described by the following hybridization function [11]:

�(ε) = �0[|ε| + λ + (|ε| − λ)�(|ε| − 2λ)]/D, (21)

where λ characterizes the magnitude of the Rashba interaction,
the prefactor �0 = �0DV 2/(4v2

F ) with �0 the graphene unit-
cell area, V the overlap between the impurity level and the
nearest carbon pz orbital, and vF the Fermi velocity. This
hybridization function has a linear energy dependence with
discontinuities at ε = ±2λ. When the Fermi energy μ of this
system is tuned to lie exactly at the discontinuity μ = 2λ,
Ref. [11] has found by the traditional NRG that limT →0 T χimp

is not zero but rather negative, i.e., limT →0 χimp is negatively
divergent by 1/T . This implies a non-Fermi-liquid and dia-
magnetic behavior in the impurity ground state. For the Fermi
energy not exactly at (but very close to) the discontinuity,
while the Fermi-liquid property limT →0 T χimp = 0 is restored,
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FIG. 3. (Color online) Local [(a), (b)] and impurity [(c), (d)]
susceptibilities, plotted as T χ vs T [(a), (c)] and χ vs T [(b), (d)],
from the FDM for a magnetic impurity in graphene with different
Rashba spin-orbit coupling λ and chemical potential μ. The resulting
Anderson model [11] is characterized by the hybridization function
(21). The legend in (a) is applied to all figures including the insets.
Insets: impurity susceptibility for different μ at fixed λ = 0.006,
plotted as T χimp vs T [inset of (c)] and χimp vs T [inset of (d)].
Model parameters: U = −2εd = 0.5�0 = 0.02, being the same as
in Figs. 5 and 7 of Ref. [11]. NRG parameters: � = 2.5; for χloc,
MK = 600, without the z averaging; for χimp, MK = 1200, Nz = 2
with z = 0, 0.5.

the impurity still passes through a temperature window of
diamagnetic behavior (χimp < 0) [11]. We have calculated
by the FDM NRG the local and impurity susceptibilities of
this system. Results are presented in Fig. 3. Note that our
FDM results of χimp [Figs. 3(c) and 3(d)] do indeed verify the
results of Ref. [11], despite the fact that the FDM algorithm
for χimp introduces artifacts at extremely low temperature. As
explained already in Sec. III A, these artifacts are invisible
when plotted as T χimp versus T [Fig. 3(c)], but apparently
show up in χimp versus T [see the inset of Fig. 3(d), where the
artifacts have violated the Fermi-liquid plateau at T < 10−10

in the curves corresponding to μ = 2λ ± 10−9].
However, the above non-Fermi-liquid and diamagnetic

behavior found in Ref. [11] are not supported by our FDM
results of the local susceptibility χloc. Figures 3(a) and 3(b)
demonstrate that for different values of the Rashba parameter,
the low-energy excitations of the impurity are always a
Fermi liquid (limT →0 T χloc = 0, limT →0 χloc = const) and
paramagnetic (χloc > 0), no matter the Fermi level lies exactly
at (μ = 2λ) or slightly deviates from (μ = 2λ ± 10−9) the
discontinuity. Moreover, unlike the behavior of χimp, there
is no significant difference in χloc for these positions of
the Fermi level (see the red solid lines and the symbols in
Fig. 3). This behavior of χloc is consistent with the underlying
Kondo physics, while χimp is not. Generally speaking, at
temperatures much lower than the Kondo scale T  T0,
only those conduction electrons within the energy window
|ε − μ| < T0 participate in the Kondo screening. Since the
Fermi energies μ = 2λ,2λ ± 10−9 produce the almost same
Kondo scale [11] which is far, far larger than the energy
difference in these μ, the same portion of conduction electrons

around the Fermi level are involved in screening the impurity
spin. Consequently, for these Fermi energies, the impurity
magnetic response should also be almost equal, as indicated by
our χloc, rather than χimp in Ref. [11] suggested. We thus argue
that the correct magnetic property of the impurity in graphene
with the exotic hybridization function (21) is still a standard
Fermi liquid.

The second system [12] we have revisited is a magnetic
impurity in the two-dimensional square lattice, with the half-
bandwidth D determined by the nearest-neighbor hopping
energy D = 4t . Its host density of states ρ(ε) has a Van
Hove singularity near the Fermi energy μ = 0. According to
Ref. [12], the distance � from the singularity to the Fermi
energy is � = 4t ′ with t ′ the next-nearest-neighbor hopping,
and

ρ(ε) = 2 ln[(4
√

D2 − �2)/(|ε + �|)]
π2D

√
1 − (�/D)2

. (22)

Based on the NRG results of χimp within the Kondo
model, Ref. [12] predicted a non-Fermi-liquid and dia-
magnetic regime at low temperature for � = 0, in which
T χimp ≈ −0.072/| ln(T/D)|0.77 (also leading to divergent
limT →0 χimp). For nonzero but very small �, the Fermi-liquid
behavior T χimp = cT is restored with the scale factor c

remaining negative. These predictions are qualitatively verified
by our FDM results of χimp based on the Anderson model, as
shown in Fig. 4(a). Our FDM results of χloc [also presented
in Fig. 4(a)] again do not support these non-Fermi-liquid
and diamagnetic behaviors. While the authors of Ref. [12]
attributed these spurious behaviors to an overcompensation
of the local spin by the conduction electrons, we draw a
conclusion from the local susceptibility that a Kondo impurity
in the square lattice with Van Hove singularities is still a Fermi
liquid and there is no diamagnetic or overscreening effects.
Additionally, for the values of � used in plotting Fig. 4(a),
there are no sizable deviations in the local susceptibility. This
is due to the same reason as already explained in the first
system, i.e., these values are very close, which give rise to
the nearly same Kondo temperature and thus involve the same
portion of conduction electrons in the Kondo screening.

We have also examined the effects of a Lorentzian and
a narrow conduction band on the impurity spin dynamics.
The Lorentzian host density of states can be realized by
double quantum dot systems, where an interacting quantum
dot (the impurity) is indirectly coupled to the leads through
a noninteracting quantum dot [13]. When the resonance in
the noninteracting dot is at the Fermi energy, the double
quantum dot system maps onto a single-impurity Anderson
model having a Lorentzian hybridization function [13]

�(ε) = λ2

�2

�2
2

ε2 + �2
2

, (23)

where λ is the interdot coupling and �2 the coupling between
the noninteracting dot and the leads. On the other hand, the
narrow-band Anderson model is generated by the dynamical
mean-field theory for the Mott-Hubbard transition in infinite
dimensions [14]. Although the two models are of interest
in such different contexts, the resulting impurity properties
are similar since the Lorentzian band is in analogy with
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FIG. 4. (Color online) Local and impurity susceptibilities from
the FDM for (a) a magnetic impurity in square lattice [12], (b) the
double quantum dot system [13], and (c) a narrow-band system [14].
The resulting hybridization function in the Anderson model is (a)
�(ε) = πV 2ρ(ε) with ρ(ε) given by Eq. (22), (b) given by Eq. (23),
and (c) �(ε) = ��(D − |ε|) for D  U,|εd |. Model parameters:
(a) U = −2εd = 0.05, 2V 2/(πD) = 0.0006; being consistent with
the Kondo-model parameters used by Ref. [12]; (b) U = −2εd = 0.5,
�2 = 0.02, being the same as in Fig. 2(d) of Ref. [13]; (c) U = −2εd ,
� = 10, being the same as in Fig. 1 of Ref. [14]. NRG parameters:
� = 2; for χloc, MK = 600; for χimp, MK = 1200; without the z

averaging.

the narrow band in the sense that it diminishes the high-
energy conduction states reducing effectively the bandwidth.
Previous studies [13,14] within the traditional NRG show
that for both models the impurity susceptibility suggests a
Fermi liquid (limT →0 T χimp = 0, limT →0 χimp = const) in all
parameter regimes, but also a diamagnetic (χimp < 0) region
in χimp versus T for some parameters. As expected, our
χimp by the FDM repeats these properties [see the dashed
curves in Figs. 4(b) and 4(c)]. The Fermi-liquid property is

also confirmed by our local susceptibility χloc presented in
Figs. 4(b) and 4(c). However, χloc for both models is always
positive even in the parameter regimes where χimp is negative.
This rules out the scenario of diamagnetic impurities caused
by the Lorentzian or narrow conduction bands.

C. Origins of the spurious diamagnetic and non-Fermi-liquid
behaviors in χimp

To pinpoint the origin of the diamagnetism and non-
Fermi-liquid behavior in the impurity susceptibility, let us
look back into the definition (17) of χimp. The first term
limB→0

∂
∂B

〈Mm〉H+H ′
t

in Eq. (17) is always positive and its
contribution is very similar to the local susceptibility χloc.
Their difference gives rise to the δG(ε) term in Eq. (20).
The other two terms in Eq. (17), limB→0

∂
∂B

(〈Mb〉H+H ′
t
−

〈Mb〉Hbath+H ′
b
) ≡ δχc, represents the additional susceptibility of

conduction electrons induced by the presence of the impurity.
δχc is exactly the Gdσ

(ε)∂�σ (ε)/∂ε term in the right-hand
side of Eq. (20). Due to the derivative of the self-energy, the
sign and magnitude of δχc are very sensitive to the shape of
the conduction band. It is this additional bath susceptibility
included in the definition of χimp that becomes negative and
divergent at low temperature when the host density of states is
strongly energy dependent. Therefore, the diamagnetism and
non-Fermi-liquid behavior found in previous studies [11–14]
does not directly reflect the intrinsic impurity properties, and
has nothing to do with the Kondo screening of the local
moment at low temperature.

For a deep insight into the non-Fermi-liquid property
suggested by χimp in the graphene [11] and the square lattice
[12] systems, we consider the U = 0 Anderson model which
allows to clarify wether the χimp ∼ T dependence in the
U �= 0 case is qualitatively different from the U = 0 case and
also allows to compare the FDM-NRG results with the exact
ones. In the noninteracting case, the exact local and impurity
susceptibilities can be obtained using the EOM approach

χloc

(gμB)2
=

∫
dε

2π
f (ε)Im[ε − εd − �(ε)]−2, (24)

χimp

(gμB)2
=

∫
dε

2π
f (ε)Im

{
∂2

∂ε2 �(ε)

ε − εd − �(ε)

+
[

1 − ∂
∂ε

�(ε)

ε − εd − �(ε)

]2
}

, (25)

�(ε) = 1

π

∫
dε′ �(ε′)

ε − ε′ + i0+ . (26)

Note that for arbitrary energy-dependent bands ungapped at
the Fermi energy, Eq. (24) always give rise to finite (not
divergent) values of χloc, as the temperature T → 0. But this
is not the case for Eq. (25) of χimp. Figure 5 presents the FDM-
NRG results for the spin susceptibilities of the noninteracting
Anderson impurity adsorbed in graphene [Fig. 5(a)] with the
hybridization function (21) and in the square lattice [Fig. 5(b)]
with the density of states (22). These are in good agreement
with the exact EOM results. It is demonstrated by Fig. 5 that
even in the U = 0 case, the impurity susceptibility χimp is
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FIG. 5. (Color online) Local and impurity susceptibilities from
the FDM, for a noninteracting impurity (a) in graphene with the
hybridization function (21) and (b) in the square lattice with the
density of states (22). Model parameters: (a) U = εd = 0, �0 = 0.04;
(b) U = εd = 0, 2V 2/(πD) = 0.0006. NRG parameters are the same
as in Figs. 3 and 4, respectively. The exact EOM results, calculated
from Eqs. (24)–(26), are also presented for comparison.

already negatively divergent as T → 0, being qualitatively
analogous to the corresponding interacting systems [see
Figs. 3(c), 3(d), and 4(a)]. This qualitative analogy between
the interacting and noninteracting systems confirms again that
the graphene [11] and square lattice [12] systems are indeed a
Fermi liquid [1]. From this point of view, the non-Fermi-liquid
physics proposed previously [12] according to the divergence
of χimp as T → 0 is conceptually incorrect and misleading.

Aside from being vulnerable to produce misleading results
due to the involved δχc term, the NRG calculation of the
impurity susceptibility χimp has another potential flaw in a
more fundamental aspect. Note that the NRG logarithmic
discretization is an approximate procedure transforming the
continuous conduction bath into the discretized Wilson chain.
The bath properties are qualitatively changed by this procedure
due to the discretization error. With this respect, the NRG
method is only suitable to calculate local quantities which
do not explicitly involve the bath degrees of freedom, e.g.,
χloc. The NRG calculation of any nonlocal quantity explicitly
involving the bath degrees of freedom, e.g., δχc and thus
χimp, may be not reliable. A representative example is
the spin susceptibility χc = (gμB)2β〈S2

b 〉Hbath of conduction
electrons [i.e., the last term in Eq. (17)] in a flat wide band
[ρ(ε) = ρ0 ], as shown in Fig. 6. For the original continuous

FIG. 6. (Color online) Spin susceptibility χc of conduction elec-
trons in a flat wide band. For the original continuous model, χc is
the temperature-independent Pauli susceptibility. For the discretized
Wilson chain, χc is evaluated using the exact diagonalization method,
and presented for χc/Nt with Nt the total number of sites in the
chain. We choose a sufficiently large number of sites to ensure that
the coupling between the last two sites, ∼�−(Nt −2)/2, is far less than
the temperature.

model, χc gives the temperature-independent Pauli paramag-
netic susceptibility χc = 1

4 (gμB)2ρ0 . But, the corresponding
quantity in the discretized Wilson chain (calculated by the
exact diagonalization method to highlight the discretization
error) acquires a strong artificial temperature dependence (see
Fig. 6) due to the discretization error. This demonstrates that
even for the flat wide band the NRG discretization error is
important to nonlocal quantities. In the flat wide-band case,
since the nonlocal χimp is essentially a local quantity as
χimp = χloc, the discretization error in χimp could be largely
canceled by subtracting two nonlocal quantities (i.e., the total
susceptibilities of the system with and without the impurity).
This validates Wilson’s definition in the flat wide band.
However, such a cancellation of the discretization error may be
not always strictly guaranteed in arbitrarily structured bands
for which the impurity susceptibility χimp is a true nonlocal
quantity, as shown in Fig. 5. This again sheds a shadow on the
NRG calculation of the impurity susceptibility.

D. Remarks

It is now in the position to critically discuss the effect
of an energy-dependent conduction band on the magnetic
response of an Anderson impurity. The results of Secs. III B
and III C provide a definitive answer to the problem. As
long as the host density of states is not gapped at the Fermi
energy, for arbitrary energy dependence even though there are
discontinuities or singularities in the band, the low-energy
excitations of the impurity are always a Fermi liquid and
paramagnetic. For such systems, the resultant Kondo screening
of the impurity magnetic moment (demonstrated explicitly
by the temperature dependence of χloc) is qualitatively the
same as in the flat wide band. The observation is clearly in
contrast to the previous investigations [11–14]. This is because
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the widely used impurity susceptibility χimp, involving the
additional susceptibility from the conduction electrons, is not
a good quantity to determine the impurity Kondo physics
when the host density of states is energy dependent. For
example, a divergent and/or negative χimp as T → 0 certainly
invalidates the standard definition of the Kondo temperature
T0 ≡ limT →0 1/4χimp [1,6]. For such systems, the correct
magnetic properties of the impurity must only be drawn from
the local susceptibility.

Recently, Hanl and Weichselbaum [24] have proposed a
new susceptibility χ sc ≡ χloc + χmix for the Anderson impu-
rity by adding the local susceptibility χloc and the so-called
mixed susceptibility

χmix = 2 lim
B→0

∂

∂B
〈Mb〉H+H ′

m
, (27)

in order to achieve universal Kondo scaling for narrow
bandwidth. This mixed susceptibility, describing the bath
magnetization in response to a local field, is a nonlocal quantity
and thus may be still vulnerable to the discretization error.
More importantly, by using the EOM approach, χmix can be
expressed in the same form of δχc, i.e., as the second term in
the right-hand side of Eq. (20) only with the magnetic field
now applied on the impurity not on the bath. This means χmix

can still be negative for some structured bands. Therefore,
there is no guarantee that in arbitrary energy-dependent bands
the new susceptibility χ sc is always reliable for characterizing
the impurity Kondo effect, even though it works well for the
narrow-band model.

IV. CONCLUSION

A comparative investigation of the local and impurity
susceptibilities for an Anderson impurity, by using the FDM
NRG technique, has demonstrated the importance of the local

susceptibility in characterizing the intrinsic magnetic prop-
erties of the impurity. Within the FDM algorithm, while the
calculation of the impurity susceptibility inevitably produces
severe artifacts at very low temperatures, the local quantity,
due to its sum-rule nature, can be calculated very accurately
in all parameter regimes. In particular, the accuracy of the
local susceptibility calculated at much lower computational
cost is at least one order higher than that of the impurity
susceptibility. For certain class of single-impurity Anderson
systems in which the host density of states is arbitrarily
energy dependent but not gapped at the Fermi energy, we
have revealed that the non-Fermi-liquid and/or diamagnetic
behaviors found in the literature based on the knowledge of
the impurity susceptibility are spurious. The correct magnetic
properties of the impurity in such systems should only be
deduced from the local susceptibility, which suggests that the
low-energy excitations of the impurity is always a Fermi liquid
and paramagnetic. We hope this paper could indeed motivate
more attention to the local susceptibility whenever the intrinsic
magnetic response of the impurity is concerned.
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APPENDIX: DERIVATION OF EQ. (12) FOR THE LOCAL SUSCEPTIBILITY

In this Appendix, we provide the full details of deriving Eq. (12) within the FDM approach [17]. We start from the spin
correlation function T (t) ≡ 〈[Sz(t),S

†
z (0)]〉H appearing in Eq. (11). Inserting the completeness relation (4) twice gives

T (t) = Tr
(
Szρe

i
�

HtSze
− i

�
Ht − ρSze

i
�

HtSze
− i

�
Ht

)
=

Nmax∑
N,N ′=Nmin

∑
l,l′,e,e′

[〈l′,e′; N ′|Sze
− i

�
Ht |l,e; N〉(〈l,e; N |Szρe

i
�

Ht |l′,e′; N ′〉 − 〈l,e; N |ρSze
i
�

Ht |l′,e′; N ′〉)]

= T i(t) + T ii(t) + T iii(t), (A1)

where the double sum
∑Nmax

N,N ′=Nmin
is decomposed into three contributions with N = N ′ (T i term), N > N ′ (T ii term), and

N < N ′ (T iii term), respectively. The first contribution is

T i(t) =
Nmax∑

N=Nmin

∑
l,l′,e,e′

[〈l′,e′; N |Sze
− i

�
Ht |l,e; N〉(〈l,e; N |Szρe

i
�

Ht |l′,e′; N〉 − 〈l,e; N |ρSze
i
�

Ht |l′,e′; N〉)]. (A2)
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The second contribution is

T ii(t) =
Nmax−1∑
N ′=Nmin

Nmax∑
N=N ′+1

∑
l,l′,e,e′

[〈l′,e′; N ′|Sze
− i

�
Ht |l,e; N〉(〈l,e; N |Szρe

i
�

Ht |l′,e′; N ′〉 − 〈l,e; N |ρSze
i
�

Ht |l′,e′; N ′〉)]

=
Nmax−1∑
N=Nmin

∑
k,l,e,e′

[〈l,e′; N |Sze
− i

�
Ht |k,e; N〉(〈k,e; N |Szρe

i
�

Ht |l,e′; N〉 − 〈k,e; N |ρSze
i
�

Ht |l,e′; N〉)]. (A3)

The last equality of Eq. (A3) has applied the relation (6) and a notation change N ′ → N, l′ → l in the final result. The third
contribution is

T iii(t) =
Nmax−1∑
N=Nmin

Nmax∑
N ′=N+1

∑
l,l′,e,e′

[〈l′,e′; N ′|Sze
− i

�
Ht |l,e; N〉(〈l,e; N |Szρe

i
�

Ht |l′,e′; N ′〉 − 〈l,e; N |ρSze
i
�

Ht |l′,e′; N ′〉)]

=
Nmax−1∑
N=Nmin

∑
k,l,e,e′

[〈k,e′; N |Sze
− i

�
Ht |l,e; N〉(〈l,e; N |Szρe

i
�

Ht |k,e′; N〉 − 〈l,e; N |ρSze
i
�

Ht |k,e′; N〉)]. (A4)

Again, the last equality of Eq. (A4) is due to the application of the relation (6). We substitute the full density matrix (7) into Eqs.
(A2)–(A4), and then use the NRG approximation e± i

�
Ht |s,e; N〉 ≈ e± i

�
EN

s t |s,e; N〉, the orthonormality (5), and the local nature
of the impurity spin 〈s,e; N |Sz|s ′,e′; N〉 = δee′ 〈s; N |Sz|s ′; N〉. These lead to

T i(t) =
Nmax∑

N=Nmin

∑
l,l′

{
e

i
�

(EN
l′ −EN

l )t 4Nmax−N

Z

(
e−βEN

l′ − e−βEN
l

)
[Sz]

N
ll′[Sz]

N
l′l

}
, (A5)

T ii(t) =
Nmax−1∑
N=Nmin

∑
k,l

{
e

i
�

(EN
l −EN

k )t 4Nmax−N

Z
e−βEN

l [Sz]
N
kl[Sz]

N
lk

}
−

Nmax−1∑
N=Nmin

Nmax∑
N ′=N+1

∑
k,l,e

{
e

i
�

(EN
l −EN

k )t [Sz]
N
lk〈k,e; N |ρN ′Sz|l,e; N〉},

(A6)

T iii(t) =
Nmax−1∑
N=Nmin

Nmax∑
N ′=N+1

∑
k,l,e

{
e

i
�

(EN
k −EN

l )t [Sz]
N
kl〈l,e; N |SzρN ′ |k,e; N〉} −

Nmax−1∑
N=Nmin

∑
k,l

{
e

i
�

(EN
k −EN

l )t 4Nmax−N

Z
e−βEN

l [Sz]
N
kl[Sz]

N
lk

}
.

(A7)

Here, the notation [Sz]Nss ′ ≡ 〈s; N |Sz|s ′; N〉 is introduced. The terms in Eqs. (A6) and (A7), which contain the N ′th-shell density

matrix ρN ′ ≡ Z−1 ∑
l,e e−βEN ′

l |l,e; N ′〉〈l,e; N ′|, need further calculations as follows:

∑
e

〈k,e; N |ρN ′Sz|l,e; N〉 =
Nmax∑

N ′′=Nmin

∑
l′,e′,e

〈k,e; N |ρN ′
∣∣l′,e′; N ′′〉〈l′,e′; N ′′∣∣Sz|l,e; N〉

=
Nmax∑

N ′′=N+1

∑
l′,e′,e

〈k,e; N |ρN ′
∣∣l′,e′; N ′′〉〈l′,e′; N ′′∣∣Sz|l,e; N〉

=
∑
k′,e′,e

〈k,e; N |ρN ′
∣∣k′,e′; N

〉〈
k′,e′; N

∣∣Sz|l,e; N〉

=
∑
k′

ρNN ′
kk′ [Sz]

N
k′l . (A8)

Similarly,

∑
e

〈l,e; N |SzρN ′ |k,e; N〉 =
∑
k′

ρNN ′
k′k [Sz]

N
lk′ . (A9)
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In Eqs. (A8) and (A9), the reduced density matrix ρNN ′
kk′ ≡ ∑

e〈k,e; N |ρN ′ |k′,e; N〉. We can now collect all the contributions
(A5)–(A9) to obtain

T (t) =
Nmax−1∑
N=Nmin

Nmax∑
N ′=N+1

∑
k,k′,l

{[
e

i
�

(EN
k −EN

l )t − e
i
�

(EN
l −EN

k′ )t
]
ρNN ′

k′k [Sz]
N
kl[Sz]

N
lk′

}

+
Nmax−1∑
N=Nmin

∑
k,l

{[
e

i
�

(EN
l −EN

k )t − e
i
�

(EN
k −EN

l )t
]4Nmax−N

Z
e−βEN

l [Sz]
N
kl[Sz]

N
lk

}

+
Nmax∑

N=Nmin

∑
l,l′

{
e

i
�

(EN
l′ −EN

l )t 4Nmax−N

Z

(
e−βEN

l′ − e−βEN
l

)
[Sz]

N
ll′[Sz]

N
l′l

}
. (A10)

Substituting Eq. (A10) into Eq. (11) and performing the Fourier transformation by using the following integral representation
of the Heaviside step function

�(t) = 1

2πi

∫ ∞

−∞

eitτ

τ − iη
dτ (A11)

with η → 0+, we obtain the retarded Green’s function of impurity spin

GSz
(ε) = Gi

Sz
(ε) + Gii

Sz
(ε) + Giii

Sz
(ε), (A12)

Gi
Sz

(ε) =
Nmax−1∑
N=Nmin

Nmax∑
N ′=N+1

∑
k,k′,l

{[
1

ε − (
EN

l − EN
k

) + iη
− 1

ε − (
EN

k − EN
l

) + iη

]
ρNN ′

k′k [Sz]
N
kl[Sz]

N
lk′

}
, (A13)

Gii
Sz

(ε) =
Nmax−1∑
N=Nmin

∑
k,l

{[
4Nmax−NZ−1e−βEN

l

ε − (
EN

k − EN
l

) + iη
− 4Nmax−NZ−1e−βEN

l

ε − (
EN

l − EN
k

) + iη

]
[Sz]

N
kl[Sz]

N
lk

}
, (A14)

Giii
Sz

(ε) =
Nmax∑

N=Nmin

∑
l,l′

{
4Nmax−N

Z

e−βEN
l′ − e−βEN

l

ε − (
EN

l − EN
l′

) + iη
[Sz]

N
ll′[Sz]

N
l′l

}
. (A15)

In deriving Eq. (A13), the Hermitian conditions ρNN ′
kk′ = ρNN ′

k′k and [Sz]Nlk = [Sz]Nkl are used. Substituting the above Lehmann
representation for GSz

(ε) into Eq. (10) yields straightforwardly Eq. (12) in the main text.
Finally, we would like to remind the reader that the N ′th-shell density matrix ρN ′ and hence the reduced density matrix ρNN ′

kk′

defined here are different by a factor Z−14Nmax−N ′ ∑
l e

−βEN ′
l , as compared with the original definitions in Ref. [17]. Nevertheless,

the numerical algorithm for ρNN ′
kk′ remains the same as before.
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