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Disorder effects on helical edge transport in graphene under a strong tilted magnetic field
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In a recent experiment, Young et al. [Nature (London) 505, 528 (2014)] observed a metal to insulator transition
as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under
such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges.
It was found that the two-terminal conductance of the helical channels deviates from the expected quantized
value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on
the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in
semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to
leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels
to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic
spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also
lead to (subleading) corrections to the channel conductance.
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I. INTRODUCTION

The quantum spin Hall effect (QSHE) [1–7] is an interest-
ing phenomenon related to the emergence of an insulating
electronic state in the bulk of a two-dimensional material
whose one-dimensional edge remains metallic and exhibits
quantized conductance at zero temperature. As first discussed
by Kane and Mele for graphene [1], in the QSHE state, the
helical edges can transport a spin current without dissipation as
long as time-reversal symmetry is not broken. Unfortunately,
the spin-orbit coupling is very small in graphene [8–11]
(∼10 μeV) and therefore the effect is not experimentally
accessible in this material.

Nevertheless, in a recent experiment [12], transport through
helical edges has been observed in monolayer graphene when
the latter is submitted to a strong, tilted magnetic field
B = (B‖,0,B⊥). Under such conditions, the bulk becomes a
magnetic insulator while the edge can remain metallic. By
increasing the strength of the component of B parallel to
the graphene plane (B‖), the magnetic state can be tuned
from antiferromagnet (AF), to canted antiferromagnet (CAF),
and finally to ferromagnet (FM) [12–14]. As shown by
Kharitonov [13,14] (see also Ref. [15,16]), the nature of the
magnetic insulator is determined by the competition of the
Zeeman and interaction energies. At the edge of the magnetic
insulator in the CAF and FM states, electrons propagate in
opposite directions with (roughly) opposite spins, that is, a
helical edge is formed [13,15–18]. Although time-reversal
symmetry is broken explicitly by the external magnetic field,
the two-terminal conductance of the helical edge approaches
the quantized conductance at the largest magnetic field: The
conductance per edge is G = G0 − δG, where G0 = e2/h and
δG/G0 ∼ 0.1 at the lowest accessible temperature in the FM
state [12].

The physical origin of deviation δG is not entirely clear
and it is the main purpose of this work to investigate how

disorder can contribute to it. To this end, we assume that a
potential scatterer is located near an otherwise perfect armchair
graphene edge (see Fig. 1). Our model is not intended to be
a faithful description of the experimental situation found in
Ref. [12], but we believe that it serves well to the purpose of
investigating the effects of disorder-induced dissipation at the
helical edges. However, if necessary, the model can be easily
generalized to extended disorder potentials, a task that we shall
not pursue here.

Nevertheless, the situation envisaged here can exist in an
actual experimental device, where the scatterer may be a
contact [12] or a metallic cluster located near the edge of the
device, for instance. If the cluster/contact contains heavy atoms
(e.g., gold [12]), the latter can locally induce by proximity a
spin-orbit coupling (SOC) as well as provide a source for
potential scattering [19–22]. Therefore, one of the important
goals of this work is to investigate the role of the SOC-induced
dissipation at the edge. Indeed, in the case of semiconducting
quantum wells, it is known that Rashba-type disorder SOC has
been identified as one of the possible causes for backscattering
[23]. In addition, it was suggested by the authors of Ref. [12]
that Rashba-type disorder could be an explanation for the
absence of perfect quantization of the edge conductance.

In this paper, we derive the low-energy effective description
of the above model accounting for electron-electron inter-
actions in the helical edge channels, which are crucial in
determining the temperature dependence of δG. The effective
low-energy model turns out to be a version of the Kane-Fisher
model for an impurity in a Tomonaga-Luttinger liquid [24].
Our analysis shows that the leading contributions to δG are
potential scattering and, to a lesser extent, the so-called intrin-
sic (or Kane-Mele) type SOC. However, we find that, to leading
order, the Rashba SOC does not lead to backscattering. In addi-
tion, our analysis indicates that other sources of backscattering
are potentials that explicitly violate the sublattice interchange
(parity) symmetry and/or time-reversal symmetry.
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FIG. 1. (Color online) Schematic representation of the system
considered in this work: a large metallic cluster (black dot) located
near an armchair graphene edge induces potential and spin-orbit
coupling by proximity. The size of the cluster is taken to be
comparable to the magnetic length (RM ≈ lB , not drawn to scale). The
cluster induces backscattering between the two counterpropagating
helical edge channels.

The rest of this paper is organized as follows. In Sec. II, we
review Kharitonov’s results [13] for the the energy dispersion
of the armchair edge. Hence, we derive the effective low-
energy model for the edge states, which turns out to be,
accounting for electron-electron interaction, a Tomonaga-
Luttinger liquid with two counterpropagating edge modes of
different Fermi velocity. In Sec. III, we discuss the properties
of a general scatterer, which may correspond to a large metal
cluster located near the edge of the sample. In Sec. IV, we
obtain the finite-temperature conductance corrections within
linear-response theory. A summary and a brief discussion of
the possible extensions to this work are provided in Sec. V. The
most technical details of the calculation have been relegated
to the Appendices. In what follows, we work in units where
� = kB = 1.

II. LOW-ENERGY DESCRIPTION OF THE EDGE

In order to make the paper more self-contained, we will
review the main results of Kharitonov’s calculation for a semi-
infinite graphene layer submitted to a strong, tilted magnetic
field. Within the k · p continuum description, the low-energy
effective Hamiltonian of graphene under a tilted magnetic field
can be written as a sum of three terms H = K + V + Hz,
where

K =
∫

d r �†(r)(vF τzσx�x + vF σy�y)�(r), (1)

V = 1

2

∫
d r d r ′ �†(r)�†(r ′)

e2

|r − r ′|�(r ′)�(r), (2)

Hz = −1

2
gsμB

∫
d r �†(r)(s · B)�(r); (3)

K is the kinetic energy, V the Coulomb interaction, and Hz

the Zeeman term; the couplings gs , μB , and B are the Landé
g factor, the Bohr magneton, and the magnitude of the applied
(total) magnetic field, respectively. The Fermi velocity of
electrons in graphene is vF ≈ c/300 (c being the speed of
light), and � = p − eA(r)/c is the kinetic momentum (e < 0
is the electron charge). The Pauli matrices σα (τα) act upon
the sublattice (valley) pseudospin and sα act upon the spin
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FIG. 2. (Color online) Low-energy band structure for noninter-
acting electrons in graphene terminated at an armchair edge as a
function of plB where p is the momentum along the edge (the edge is
located at plB ≈ 0) and lB the magnetic length. Electrons occupy the
region plB � 0. The energy is in

√
2 vF /lB units. The zero Landau

level (E = 0 for plB → +∞) consists of one hole and one electron
band, which are split near the edge.

degree of freedom. Note that the z axis is perpendicular to
the graphene plane and the x axis will be taken along the
armchair edge. The Zeeman energy is proportional to the total
magnetic field B = (B‖,0,B⊥), where B⊥ (B‖) is the magnetic
field along the perpendicular (parallel) direction to graphene
plane.

Since the largest energy scale of quantum Hall system is set
by the cyclotron energy, ωc = vF /lB where lB is the magnetic
length, it is useful to neglect the Zeeman and interaction
terms in the Hamiltonian and diagonalize the kinetic term first.
Furthermore, in the study of edge effects, two kinds of edge
terminations are commonly used, namely, the armchair and
zigzag edge [25–27]. In this work, for the sake of simplicity,
we use armchair edge, which we assume to be located at
y = 0. The energy spectrum of the kinetic energy part of
the Hamiltonian for a semi-infinite armchair edge is shown
in Fig. 2. Note that, within this approximation, all the energy
levels are spin degenerate and therefore the ground state is
nonmagnetic.

For what follows, it is useful to express the fermionic field
operators �(r) and �†(r) in the basis of Landau level orbitals
that diagonalize the kinetic energy K:

�(r) =
∑
npτs

φτ
nps(r)cnpτs, (4)

where p is the momentum along the edge (i.e., x axis) and
n = 0, ± 1, ± 2, . . . is the Landau level quantum number. In
the Landau gauge where A = (B⊥y,0,0),

φK
nps(r) = ei K ·r

√
2

(−sgn(n)〈r| |n|,p〉
〈r| |n| − 1,p〉

)
⊗ ηs, (5)

φK ′
nps(r) = ei K ′·r

√
2

( 〈r||n| − 1,p〉
sgn(n)〈r| n,p〉

)
⊗ ηs (6)
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for n 
= 0 and

φK
0ps(r) = ei K ·r

√
2

〈r| n = 0,p〉
(−1

0

)
⊗ ηs, (7)

φK ′
0ps(r) = ei K ′·r

√
2

〈r| n = 0,p〉
(

0
1

)
⊗ ηs (8)

for n = 0. The states |n,p〉 are the solutions of the Landau level
problem of the Schrödinger equation in the Landau gauge. In
particular,

〈r|n = 0,p〉 = eipx

√
Lx

exp
(
− (y−pl2

B )2

2l2
B

)
(
πl2

B

)1/4 , (9)

where lB =
√

c
eB⊥

is the magnetic length and Lx the length of

the (armchair) edge. Finally, the spinors

η↑ =
(

1
0

)
, η↓ =

(
0
1

)
. (10)

Note that in the n = 0 Landau level (0LL), the sublattice
and valley (pseudo)spins are aligned. This feature will probe
extremely important in the discussion that follows. Accounting
for the spin degeneracy, each single-particle state in the 0LL is
fourfold degenerate corresponding to s =↑ , ↓ and τ = K,K ′.

A. Zeeman and interaction energy effects

In order to fully determine the ground state, we next
take into account the Coulomb interaction and the Zeeman
term. In neutral (i.e., undoped) graphene, the Landau level
of zero energy (0LL) is half-filled and therefore all Landau
levels below (above) 0LL are completely filled (empty). At
temperatures far below the cyclotron energy (i.e., T � ωc) and
close to half-filling, the low-energy dynamics is determined by
the electrons in the 0LL. As a result, we project the Coulomb
interaction [Eq. (2)] onto the subspace of states belonging to
the 0LL. Thus, in what follows, we shall suppress the Landau
level index n as it is implicitly understood that n = 0. In
addition, we will suppress the sublattice index because in the
0LL the pseudospin and valley spin are aligned. The Coulomb
interaction in the 0LL subspace is therefore formally described
by [13]

V0LL = 1

2

∑
α=0,x,y,z

∑
p1...p4

uα(p1,p2; p3,p4) : T α
p2,p1

T α
p3,p4

: ,

T α
p1,p2

=
∑

s

∑
σ,σ ′

c†p1σs(τα)σσ ′cp2σ ′s , (11)

where : . . . : stands for normal ordering. The Coulomb
amplitudes uα have been discussed in Refs. [13,28] and
we will not dwell on them here. Nevertheless, it is worth
mentioning that the Coulomb amplitudes that do not conserve
valley quantum number are exponentially suppressed by an
exponential factor ∼e−(lB/a)2

where a is the distance between
the carbon atoms in graphene. Thus, the intravalley amplitude
u0 is the dominant one [28]. In fact, if only u0 is retained in
Eq. (11), the Hamiltonian and the ground state would exhibit
SU(4) symmetry (see Ref. [28] and references therein).

However, when the subleading amplitudes uα=1,2,3 that
violate the SU(4) symmetry are also included, together with
the Zeeman energy, a quantum Hall magnet can be stabilized
as the ground state [13,29,30]. Its magnetic order can be
uncovered by relying upon mean-field theory for which the
order parameter is Pτs,τ ′s ′ = 〈c†pτscpτ ′s ′ 〉 [13,14]. This order
parameter can be written as follows:

P = χaχ
†
a + χbχ

†
b , (12)

where χa = |K〉 ⊗ |Sa〉 and χb = |K ′〉 ⊗ |Sb〉 are the trial
spin-valley spinors. For the semi-infinite system, we shall
neglect any deviation of the order parameter P from its bulk
value near the edge [13,17,31]. We shall also neglect the
dynamics of the order parameter, which can lead to additional
dissipation mechanisms in clean systems (via coupling with
the bulk Goldstone modes), different from those discussed
here [15]. In spin space, the spinor accepts the following
parametrization:

|Sa,b〉 =
(

cos θs

2
± sin θs

2 eiφs

)
, (13)

where θs is the angle between the spin polarization and the total
magnetic field B; φs is the azimuthal angle around the total
magnetic field. The positive sign applies to Sa and the negative
sign to Sb [13,14]. The above parametrization assumes that the
spin-quantization axis points along the direction of the total
magnetic field B. Note that this choice is different from the
one assumed for the operator sz, which measures the spin-
projection perpendicular to the plane of graphene and sx,sy ,
which measure the in-plane spin projection. Both sets of spin
operators sα and s ′

α (α = x,y,z) are related by a rotation

s ′
z = sz cos θ + sx sin θ, (14)

s ′
x = −sz sin θ + sx cos θ, (15)

s ′
y = sy. (16)

where θ = tan−1(B‖/B⊥) is angle subtended by B with the z

axis perpendicular to the graphene plane.
By minimizing the kinetic energy and Zeeman term

together with the Coulomb interaction within the mean-field
approach, the single-particle spectrum shown in Fig. 3 is
obtained [13]. The Zeeman term in the Hamiltonian lifts
the degeneracy between the spin-up and spin-down bands.
However, due to the exchange part of the Coulomb interaction,
the 0LL bands near the edge anticross (for plB ≈ 0.25) and
develop an energy gap. The magnitude of the gap is given
by [13]

�edge =
{

�
√

1 − ( εz

2|u1| )
2, θ < θcr (CAF),

0, θ � θcr (FM),
(17)

εz = 1
2gsμBB is the Zeeman energy, and � = u0 + 2|u1| +

u3; θcr = cos−1(εz2|u1|) is the critical angle for which a
quantum phase transition from the canted antiferromagnet
(CAF) and ferromagnet (FM) takes place when the Zeeman
energy takes over the exchange energy.

In the CAF state, when the chemical potential lies above
(below) the gap in the upper (lower) band, two metallic
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FIG. 3. (Color online) Lowest-energy band structure of a graphene armchair edge within mean-field theory for the canted antiferromagnetic
(CAF, left panel) and ferromagnetic (FM, right panel), respectively. The edge is located at plB ≈ 0. As a result of the Zeeman and the Coulomb
interactions, an energy gap develops in the band structure, which is minimum near the edge. In electron-doped graphene, the low-energy
dynamics is governed by the degrees of freedom near the Fermi points where the upper band intersects with the Fermi energy EF (for hole
doping EF is within the lower band).

channels appear at the edge (corresponding to the two Fermi
points shown in Fig. 3 where the energy band intersects
the chemical potential). The corresponding states are not
eigenstates of s ′

z = s · B/B and are not mutually orthogonal.
This has a significant effect on the suppression of conductance
from its perfect quantized value G0, as we will see in Sec. III.

As the angle θ is tuned across its critical value θcr the
system becomes a FM and the two conducting channels along
the edge still exist. Unlike in the CAF, they are eigenstates of s ′

z

[cf. Eq. (14)] and therefore mutually orthogonal. Nevertheless,
we note that this is the result of the approximation made in
Ref. [13], which neglects the variation of the order parameter
near the edge. The more sophisticated treatment provided in
Ref. [15] indicates that the spin orientation of the edge states
remains slightly canted in the FM, only becoming perfectly
antialigned at large values of B‖. However, to the extent
they can be assumed to be perfectly spin antialigned, the FM
edge channels can transport spin and charge current without
dissipation if there were no impurities. However, unlike the
QSHE in semiconducting quantum wells, the QSHE in the
FM quantum Hall insulator is not protected by time-reversal
symmetry but the U(1) symmetry generated by the total s ′

z.
In both the CAF and FM states, at T � min{�edge,EF },

the low-energy physics is controlled by the fermionic degrees
of freedom near the Fermi energy EF . Upon linearizing the
band around the Fermi points defined by the intersects (pF,L

and pF,R) of the bands with EF (see Fig. 3), an effective
low-energy Hamiltonian for the edge modes can be obtained:

H0 =
∑

c=R,L

∑
p

vc p : ψ†
c (p)ψc(p) : , (18)

where ψR(p) ∼ cpF,R+p and ψL(p) = cpF,L−p for |p| � � and
� ∼ EF / max{vR,vL} and

vR = dE(p)

dp

∣∣∣
p=pF,R

, vL = −dE(p)

dp

∣∣∣
p=pF,L

. (19)

The creation and annihilation operators obey the usual fermion
anticommutation relation {ψc(p),ψ†

c′(p′)} = δp,p′δc,c′ where
c = (R,L). Note that, unlike the QSHE in semiconductor
quantum wells for which the states at the two channels are
a Kramer’s pair [23], in the present case the right and left
movers can have different Fermi velocities (i.e., vR 
= vL).

In addition, since the degrees of freedom near the edge
are gapless, we need to take into account the effect of
electron-electron interactions. In experimental conditions, due
to the presence of a nearby metallic gate used to tune the
Fermi energy EF , the Coulomb interaction between electrons
is screened to yield a short-range interaction:

Vedge = 2πgRL

∫
dx : ψ

†
R(x)ψR(x)ψ†

L(x)ψL(x) : . (20)

Note that Vedge is not necessarily repulsive as the Coulomb
interaction may be overscreened at low energies and becomes
an effective attractive interaction. As a consequence, we have
considered both signs for gRL. Thus, the complete low-energy
Hamiltonian for a clean armchair edge reads as

Hedge = H0 + Vedge. (21)

III. SCATTERING POTENTIALS

A. General form of a localized scatterer potential

We next analyze how the presence of a scatterer affects
conduction along the edge. To this end, it is instructive to
consider the most general form of the potential created by
a generic scatterer located near the edge of the sample.
Generally, the latter can be written as follows:

VM =
∫

d r �†(r)V (r)�(r), (22)

where V (r) is an 8 × 8 potential matrix acting on both sublat-
tice valley and spin degrees of freedom. Since a tilted magnetic
field breaks most symmetries of the graphene Hamiltonian, the
most general form of V (r) is a linear combination of the 64
matrices τασβsγ , where α,β,γ = 0,x,y,z (0 referring to the
identity matrix):

V (r) =
∑
α,β,γ

Vαβγ (r)τασβsγ , (23)

where the relative strength of each potential Vαβγ (r) depends
on the microscopic details of the scatterer, the strength of
the external magnetic field B⊥ and B‖, as well as other
perturbations (i.e. boundary conditions at the edge). Therefore,
VM will contain terms that break the symmetries of the
zero-field Hamiltonian. Those terms are generated by the
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projection onto the low-energy subspace containing the zero-
energy Landau level (0LL). In what follows, we shall discuss
which terms are expected to yield a dominant contribution to
VM . Rather than trying to be exhaustive, our choice will be
physically motivated. However, we shall first take a detour to
discuss some general properties of the 0LL projection.

B. Projection of sublattice-valley operators onto the 0LL

In order to obtain a low-energy effective description of the
edge channels in the presence of the scatterer, its potential
must be projected onto the 0LL. To leading order, the scatterer
potential in the 0LL is given by

V0LL = PV (r)P + . . . , (24)

where P is the projection operator in the 0LL. The terms
contained in the ellipsis represent corrections arising from
virtual transitions to Landau levels with n 
= 0. Since the
scatterer potential introduced above acts upon the sublattice,
valley, and spin degrees of freedom, it is worth dwelling a bit
on the explicit form of the 0LL projection operator P and how
it affects the Pauli matrices τασβsγ .

The operator P can can be written as follows:

P = Psv ⊗ Po, (25)

Psv = |AK〉〈AK| + |BK ′〉〈BK ′|, (26)

Po = |n = 0,p〉〈n = 0,p|. (27)

The first term in the right-hand side of Eq. (25) (Psv) acts
on the sublattice and valley pseudospin degrees of freedom,
whereas the second term (Po) acts on the other orbital degrees
of freedom. Since sublattice spin and valley spin are aligned in
0LL, when projecting the Pauli matrices using Psv , we obtain
the following:

Psvτ
0σzPsv = �z, Psvτzσ

0Psv = �z, (28)

Psvτ
−σ+Psv = �−, Psvτ

+σ−Psv = �+, (29)

PsvτzσzPsv = Psv, Psvτ
±σ0Psv = 0, (30)

Psvτ0σ
±Psv = 0, Psvτzσ

±Psv = 0, (31)

Psvτ
±σzPsv = 0, Psvτ

+σ+Psv = 0, (32)

Psvτ
−σ−Psv = 0, (33)

where we have introduced the operators

�z = |AK〉〈AK| − |BK ′〉〈BK ′|, (34)

�+ = |BK〉〈AK ′|, �− = |AK ′〉〈BK|. (35)

Thus, {Psv,�z,�
+,�−} behave effectively as Pauli matrices

in the subspace of 0LL states.

C. Time-reversal-invariant scattering potentials

Although the most general impurity potential should not
respect time-reversal symmetry as the latter is broken by the

external magnetic field, it is worth beginning our analysis by
considering various time-reversal symmetric (TRS) potentials.
The reason is that TRS potentials are present in the micro-
scopic Hamiltonian of graphene with impurities at zero field.
However, non-TRS potentials need to be generated by means
of virtual transitions to higher-energy states in the presence
of the time-reversal symmetry-breaking perturbations like
the magnetic field. Therefore, according to the discussion
in the previous section, TRS potentials are expected to have
larger strength relative to the non-TRS ones. In addition, the
discussion that follows is also motivated by the suggestion
made in Ref. [12] attributing the absence of conductance
quantization to the existence of proximity induced Rashba
spin-orbit coupling induced by extrinsic scatterers [19,20].

TRS potentials can be divided into two classes depending
on how they act on the spin degree of freedom: those
proportional to s0, which are termed “scalar” potentials, and
those proportional to sx,y,z, which correspond to SOC. These
two classes can be further subdivided into those inducing only
intravalley scattering and those inducing intervalley scattering
depending on whether they commute with τz or not. Note that,
typically, the strength of the scalar potentials is much larger
than the strength of SOC potentials [19–21].

An example for a TRS scalar potential is

Vs(r) = V0(r)s0 + Vx(r)τxs0 + Vxx(r)σxτxs0 + . . . , (36)

where the second and third terms [∝ Vx(r),Vxx(r)] and others
similar to them are not explicitly written to describe intervalley
scattering. Strong intervalley scattering requires that a rapid
spatial variation of Vx(r) and Vxx(r) on the scale of the
intercarbon distance a in graphene. In other words, it requires
atomic scale disorder (i.e., point defects, edge roughness, etc.).
It is possible to estimate, within the Born approximation,
the reflection coefficient at the edge from such small-size
scatterers [32], which is ∼ (e2/vF )(a/lB)2. However, the
experimentally accessible values of B⊥, lB ≈ 26/

√
B⊥(T ) nm

� a = 0.24 nm, implying that the intervalley scattering terms
in the above equation can be neglected. For the same reason, we
shall also neglect the intervalley SOC scattering terms below.

Next, we consider the (intravalley) SOC scattering poten-
tials, which can take the following general form:

Vso(r) = Viso(r)σzτzsz + Vpbiso(r)τzsz

+VRx(r)σxτzsy − VRy(r)σysx, (37)

where the first term on the right-hand side corresponds to
the intrinsic (or Kane-Mele) type of SOC, and the third and
fourth terms correspond to the Rashba-type SOC. Note that
we have considered a generalized anisotropic Rashba, for
which VRx(r) 
= VRy(r). Such SOC potentials can be induced
when the hexagonal point-group symmetry of graphene is
broken down to a smaller symmetry group by proximity to
substrates and clusters of heavy metals [22,33]. The second
term ∝ Vpbiso(r) is absent in the microscopic Hamiltonian
because it is forbidden by the parity symmetry that exchanges
of the A and B sublattices. However, it can be generated by the
application of parity-breaking fields such as a tilted magnetic
field or by the edge potential. Since this term is not present at
the zero field (for which parity symmetry is not broken), in a
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TABLE I. Projection of several types of time-reversal symmetirc
scattering potentials onto the zero-energy Landau level of graphene
(0LL). We have introduced the operator �x = (�+ + �−)/2.

Scattering operator 0LL projection

τ0σ0s0 Psv s0

σ0τxs0 0
σxτxs0 �x s0

σzτzsz Psv sz

σ0τzsz �zsz

σxτzsy 0
σyτ0sx 0

first approximation, we shall neglect it compared to the scalar
and standard SOC terms. However, in the following section
we shall see that this term can yield backscattering in the FM
state.

Upon projecting (36) and (37) onto the 0LL, we obtain

PV TRS
M P =

∫
d r �

†
0(r)[V0(r)s0 + Viso(r)sz]�0(r), (38)

where �0(r) = ∑
pτs φτ

0ps(r)cpτs [�†
0(r) = [�0(r)]†] is the

annihilation (creation) field operator in the 0LL, respectively.
Note that, in the above expression, sz measures the projection
of the electron spin along the axis perpendicular to the
graphene layer and must be expressed in terms of s ′

x and s ′
z

[cf. Eq. (14)].
It is noteworthy that Rashba SOC of the form given in

Eq. (37) gives no contribution to the 0LL projected VM (cf.
Table I). Therefore, it alone cannot suppress the conductance
from its perfect quantized value, unlike the case of the QSHE
in two-dimensional TRS topological insulators [23,34]. This
is a direct consequence of the structure of 0LL orbitals in
graphene, for which the sublattice and valley pseudospins are
locked. Landau level mixing arising from interactions, etc.,
can modify this conclusion slightly, but the corrections are
expected to be small and suppressed at the high magnetic fields.
On the other hand, the scalar and intrinsic SOC potential are
not affected by the 0LL projection and therefore can lead to
backscattering.

To make further progress towards obtaining the effective
Hamiltonian of a TRS scatterer at the edge, let us assume
the size of the scatterer (e.g,. a metal cluster of radius RM )
to be comparable to the magnetic length RM ∼ lB . Thus, we
can approximate V0(r) and Viso(r) by Dirac-delta functions,
which, upon further projection on the low-energy modes near
the edge, leads to

VM = gRM [ψ†
R(0)ψL(0) + ψ

†
L(0)ψR(0)], (39)

where g has energy units. When combined with Eq. (21),
the Hamiltonian H = Hedge + VM is a version of the model
studied by Kane and Fisher [24] for an impurity in a
Tomonaga-Luttinger liquid. The only difference is that, in our
model, right and left movers have different Fermi velocities.
Note that, after projecting VM on the edge, a term of the
form ψ

†
L(x)ψL(x) + ψ

†
R(x)ψR(x) has been dropped since it

does not contribute to the channel resistance [24,35]. The
scattering potential coupling g contains contributions from

ISO
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FIG. 4. (Color online) Normalized strength of the leading time-
reversal-invariant contributions to scatterer potential. The intrinsic
SOC (dashed line) giso/Viso and scalar potential (solid line) gs/V0 can
be induced by proximity to a heavy metal cluster. Their strength is
plotted against the angular deviation δθ = θ − θcr (in degrees); θcr is
the critical polar angle of the magnetic field for which quantum phase
transition to ferromagnet (FM) occurs. The vanishing of the scattering
potential strength in ferromagnet (FM) is an artifact of the assumption
that the scattering potential is entirely due to a combination of scalar
and intrinsic (i.e., Kane-Mele type) spin-orbit coupling (SOC) along
with the assumption that the order parameter does not deviate from
its bulk value. Note that, in the canted antiferromagnet corresponding
to δθ < 0, the contribution of the scalar potential is larger than the
SOC contribution.

both scalar and the intrinsic SOC potentials, i.e., g = gs + giso,
where

gs =
√

2πV0√
N (pR)N (pL)

[
A(pR)A(pL)

�2
AF

+ 1

]
, (40)

giso =
√

2πViso cos θ√
N (pR)N (pL)

[
A(pR)A(pL)

�2
AF

− 1

]
, (41)

with

A(p) = �F + εZ − ε(p)

−
√

�2
AF + [ε(p) − (�F + εZ)]2; (42)

ε(p) is the single-particle energy, which is displayed in

Fig. 2, and N (p) =
√

A(p)2 + �2
AF is the normalization of

the single-particle wave function; θ = tan−1 (B‖/B⊥) is the
polar angle of the applied magnetic field �F = 1

2 (u0 − 2|u1| +
u3) cos θs and �AF = 1

2 (u0 + 2|u1| + u3) sin θs are the combi-
nation of the mean-field parameters that favor ferromagnetic
and antiferromagnetic order, respectively. The relative strength
of these potentials gs/V0 and giso/Viso has been plotted in
Fig. 4. Note that gs/V0 � giso/Viso. In addition, typically
[20,21] V0 � Viso, which means that the main contribution
stems from the scalar part of the scatterer potential.

D. Backscattering in the ferromagnet

As shown in Fig. 4, the effective potential strength arising
from the scalar potential and intrinsic SOC vanishes in the FM
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state. However, to understand the vanishing of gs,giso better, let
us first recall the valley and spin structure of the single-particle
orbitals in the FM state:

|R〉 =
( |AK〉 + |BK ′〉√

2

)
⊗ |↑〉, (43)

|L〉 =
( |AK〉 − |BK ′〉√

2

)
⊗ |↓〉. (44)

Note that the in the FM the orbitals are eigenvectors of s ′
z and

therefore orthogonal. This means that no scalar (intravalley or
intervalley) is effective in causing backscattering. Thus, only
spin-dependent potentials can cause backscattering. However,
the orbital part of the intrinsic SOC (∼σzτzsz) cannot couple
two edge states even if the spin operator does (recall that they
are eigenstates of s ′

z, not sz).
However, we need to stress that the above conclusions rely

on the orbital structure of the single-particle orbitals in the
FM described by Eqs. (44) and (43). The structure is the
result of the assumption (made in Ref. [13] and which we
follow here) that the magnitude of the order parameter does
not deviate from its bulk value. This approximation is expected
to be accurate [15] for large values of B‖. However, a more
sophisticated mean-field treatment such as the one provided in
Ref. [15], which allows for the spatial variation of the order
parameter, would not automatically imply a vanishing impurity
(back)scattering in the FM. The reason is that, near the edge,
the order parameter can deviate from its bulk value and, as a
consequence, the spins near the edge of the FM can be slightly
canted [15]. This implies that the backscattering due to the
scalar and intrinsic SOC potentials is suppressed relative to
its values in the CAF but not completely eliminated. On the
other hand, a Rashba SOC potential yields no backscattering
to leading order. The latter result is independent of the
detailed form of the single-particle orbitals as it is entirely
a consequence of the 0LL projection.

Nevertheless, it is also interesting to consider additional
scattering potentials that have been neglected so far, which
can also lead to backscattering. If we restrict ourselves to TRS
potentials, as we did in the previous section, one possible
candidate, which by no means exhausts all the possibilities, is
the following parity-breaking intrinsic SOC:

V TRS
M =

∫
d r Vpbiso(r)�†(r)τzsz�(r) + . . . (45)

=
∫

d r Vpbiso(r)�(r)τz(s
′
z cos θ

− s ′
x sin θ )�(r) + . . . . (46)

Other possible terms (included in the ellipsis) are proportional
to τzsx,y . Upon projection on the 0LL, Eq. (46) yields

PV TRS
M P =

∫
d r Vpbiso(r)�†

0(r)�z(s
′
z cos θ

− s ′
x sin θ )�0(r) + . . . . (47)

Note that the second term on the right generates backscattering
in the FM whereas the first one, which commutes with s ′

z, does
not. In the CAF, both terms lead to backscattering because
the spins are canted. However, as pointed out above, this

term is not a standard type of SOC as it requires sublattice
exchange (parity) symmetry to be broken. This may be caused
by the substrate (BN), the tilted magnetic field, or the boundary
conditions at the edge. Estimating the strength of this term is
beyond the scope of this work as this will require a more
detailed microscopic model of the system.

E. Non-time-reversal symmetric scatterers

Other possible potentials causing backscattering can break
TRS. In particular, a potential of the form

V NTRS
1M =

∑
α

hα(r)sα, (48)

which describes the exchange interaction with a locally
magnetized scatterer (such as a magnetized edge [36]), gives a
nonzero contribution to the backscattering potential; the spins
of the edge electrons are canted and therefore do not need to
be completely flipped in order to backscatter.

However, at large values of B‖, for which canting is
negligible, V NTRS

1M will not produce backscattering in the FM
state. The reason is that backscattering requires the potential
to act both on the sublattice valley and spin degree of freedom.
In other words, the potential must flip between (approximate)
eigenstates of �x and s ′

z, meaning that the orbital part must be
proportional �z and �y = (�+ − �−)/2i. From the results in
Sec. III B, we see that �z arises from potentials proportional to
σ0τz or σzτ0. Note that τz is odd under TRS, and since flipping
the spin requires the potential be proportional to sα , a term of
the form τzsα is TRS. The latter results in the parity-symmetry
breaking SOC discussed above. On the other hand, σz is TR
even, and including the spin part, leads to non-TRS potential
of the form

V NTRS
2M =

∑
α=x,y,z

V α
NTRS(r)σzsα. (49)

Since [V NTRS
2M ,τz] = 0, this potential does not produce interval-

ley scattering. In addition, it also breaks sublattice exchange
parity symmetry like V TRS

M from Eq. (46).
Finally, potentials containing �y can arise from terms of

the form σατβ with α,β = x,y, which describe intervalley
scattering and therefore are suppressed by a factor ∼(a/lB)2

as discussed above.

IV. CORRECTIONS TO THE EDGE CONDUCTANCE

In this section, we calculate the linear conductance of the
edge channel in the presence of the scatterer. We focus on the
doped CAF, for which the leading sources of backscattering
have been identified in Sec. III C and their strength can be
estimated from their values in the zero-field Hamiltonian. The
strength of the terms induced by TRS and/or sublattice parity
symmetry-breaking terms is much more difficult to estimate
because they are generated upon integrating high-energy states
and will also depend on the microscopic details of the scatterer.
In what follows, we shall use perturbation theory to lowest
order in the scattering potential strength g, assuming that the
latter is weak, i.e., g/ωc � 1.
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As explained in Appendix B, the correction to the channel
conductance within linear-response theory is given by

δG = dIB

dV

∣∣∣
V =0

, (50)

where IB is the backscattered current

IB = −e
〈dNR

dt

〉
, (51)

NR being the total number of right-moving electrons. Within
linear-response theory, the (steady-state) backscattered current
is [37]

IB =(2e) Im
∫

dt e−ieV t CAA†(t), (52)

where the retarded correlation function is CAA†(t) =
−iθ (t)〈[A(t),A†(0)]〉 and A = gRMψ

†
R(0)ψL(0).

We first consider the noninteracting case for which
gRL = 0. The previous expression can be evaluated to yield

IB = −e(gRM )2
∫ ∞

−∞

dω

2π
[G<

R (eV + ω)G>
L (ω)

−G>
R (eV + ω)G<

L (ω)]. (53)

The noninteracting lesser and greater Green’s functions
are G<

c (ω) = i
vc

nF (ω) and G>
c (ω) = −i

vc
[1 − nF (ω)], where

nF (ω) is the Fermi-Dirac distribution and c = R,L. Hence,

δG = (gRM )2

vRvL

G0. (54)

For vR = vL, we recover the linear conductance of noninter-
acting one-dimensional (1D) channel with an impurity [35].

However, note that the conductance of the noninteracting
edge is independent of the temperature, in contradiction with
the experimental observations [12]. This problem can be
solved by accounting for interaction effects (i.e., gRL 
= 0),
which yield a temperature dependence of δG, in qualitative
agreement with the experimental observation [12]. Accounting
for a nonzero gRL is also necessary because interactions
in 1D have a dramatic effect on the stability of fermionic
quasi-particles [35,38,39]. Thus, we calculate the correction to
the conductance using the bosonization method, which allows
us to treat interactions nonperturbatively (see Appendices).
The result of this calculation reads as

δG(T ) = 2

πT 2−2K

(
gRM

2πlB

)2(4π2l2
B

v+v−

)K

sin(πK)

× B(K,1 − 2K)[ψ(1 − K) − ψ(K)]G0, (55)

where K is the Luttinger parameter, which characterizes the
strength of the interactions: K = 1 for gRL = 0 and K < 1
(K > 1) for repulsive (attractive) interactions. The parameters
v± are the velocity of the eigenmodes (see Appendix A for the
definitions of K and v±); B(x,y) is the beta function, ψ(x) is
the digamma function. Note that the temperature dependence
is a power law, with an interaction-dependent exponent [24],
which vanishes in the noninteracting case (i.e., for K = 1), in
agreement with Eq. (54).

In Fig. 5, we have plotted the two-terminal conductance
per edge against the temperature (in cyclotron frequency
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FIG. 5. (Color online) Two-terminal conductance per edge G =
G0 − δG (G0 = e2/h is the quantized conductance) as a function of
the temperature (in cyclotron frequency units), for different values
of the Luttinger parameter K . This is plotted with the following
parameters: B‖ = 45 T, B⊥ = 5 T, RM = lB = 12 nm.

units) for different values of Luttinger parameter K . For
K > 1 (i.e. attractive interactions), the edge conductance
approaches the quantized value as T → 0. On the other hand,
for K < 1 (repulsive interactions), the deviation from perfect
quantization increases with decreasing T . For δG ∼ G0,
linear-response theory breaks down and we must rely on other
methods, but this problem will not be analyzed here.

In Fig. 6, the two-terminal conductance per edge is plotted
against the deviation of the polar angle of the applied magnetic
from the critical polar angle θcr at constant temperature, for
different Luttinger parameter K .

Finally, let us briefly discuss the angular and temperature
dependence of some of the parity-breaking SOC terms dis-
cused in Sec. III D. This term is expected to yield a sizable
contribution at large values of B‖ in the FM state, when the
canting angle of the spin of the edge channel is small [15].
Upon projection onto the 0LL, Eq. (46) yields a term ∝ sin θ ,
where θ is the magnetic field polar angle. Hence, we obtain
the following contribution of the conductance:

δGpbiso(T ,θ ) ∝ sin2 θ T 2K−2, (56)
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FIG. 6. (Color online) Two-terminal conductance per edge G =
G0 − δG (G0 = e2/h is the quantized conductance) as a function
of the polar angle of the applied magnetic field δθ = θ − θcr (the
perpendicular magnetic field B⊥ is fixed), for different values of
the Luttinger parameter K . The angle θcr = cos−1 [εz/(2|u1|)] is
the critical angle for which the edge gap closes. Other calculation
parameters used in this plot are chosen as follows: T = 5 K, B⊥ = 5 T,
RM = lB = 11.4 nm.
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where T is the absolute temperature and K the Luttinger
parameter. However, since this term is not present in the zero-
field Hamiltonian, we cannot estimate its strength, although
we expected it to be small.

V. SUMMARY AND OUTLOOK

Using a simple single-scatterer model, we have investigated
the effects of potential and spin-orbit disorder on conduc-
tion through helical edges recently observed in monolayer
graphene under a strong, tilted magnetic field [12]. We have
shown that the deviation from perfect quantization in the
canted antiferromagnetic and ferromagnetic states can be
understood in terms of potential (i.e., scalar) disorder and
to a lesser extent spin-orbit disorder of the intrinsic type.
Other types of disorder, such as sublattice exchange (parity-)
breaking spin-orbit coupling and time-reversal symmetry-
breaking spin-orbit coupling terms are expected to yield
smaller contributions. Interestingly, unlike the situation en-
countered in semiconducting quantum wells [23], we find that
Rashba spin-orbit coupling does not lead to backscattering, at
least to leading order.

We have also investigated the temperature and magnetic
field tilt angle dependence of a single-edge conductance
assuming that the main scattering sources are the scalar
potential and the (intrinsic) spin-orbit coupling induced by the
scatterer. In addition, the other scattering sources discussed in
Sec. III may be generated via virtual transitions to different
Landau levels, which makes estimating their magnitude rather
difficult. However, we expect them to be subdominant at large
magnetic fields and therefore we have neglected them in a first
approximation.

We hope our work will shed light on the origin of the
channel dissipation observed in the experiment. In particular,
we have found that disorder-induced backscattering in combi-
nation with electron-electron interactions leads to a power-law
temperature dependence of the conductance which may be
observed experimentally. In this regard, we note that, even
in the ferromagnet, for which the backscattering effects are
milder, the presence of impurities, combined with repulsive
interactions, can lead to an insulating like behavior of the edge
conductance.

The model studied here can be fairly easily generalized to
disorder potentials with more complicated spatial dependence.
Such a study will not be pursued here. However, we can
anticipate [35] it will yield to a different exponent in the
temperature dependence of the conductance. A thorough
understanding of the origin of dissipation in the helical edges
of graphene under a strong, magnetic field will require a more
detailed microscopic model of the edge of the device. Such
model should account for the existence of multiple channels
[40] and also the coupling with the gapless bulk (Goldstone)
modes [15].
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APPENDIX A: BOSONIZATION

In this and the following appendices, we collect some of the
most important results of bosonization technique [35] applied
to a one-dimensional (1D) channel with two different carrier
velocities, which is relevant to the situation studied in the main
text.

The Hamiltonian of the 1D edge can be expressed in
terms of the Hamiltonian density Hedge(x), as Hedge =∫

dx Hedge(x), and Hedge(x) can be fully expressed in terms of
the fermion chiral density operators

ρc(x) = : ψ†
c (x)ψc(x) : , (A1)

where c = R,L and : . . . : stands for normal order. The chiral
densities obey the Kac-Moody algebra [35]

[ρc(x),ρc′ (x ′)] = δc,c′sc

2πi
∂xδ(x − x ′), (A2)

where sR = −sL = +1. Thus, the Hamiltonian density can be
written as [35]

Hedge = π :
[
vRρ2

R + vLρ2
L + 2gRLρRρL

]
: , (A3)

where vR (vL) is the Fermi velocity of the right (left)
channel and gRL is an effective short-range electron-electron
interaction. It is also useful to introduce the bosonic fields
φc=R,L(x), which are defined by

ρc(x) = 1

2π
∂xφc(x). (A4)

The Hamiltonian density can be brought to diagonal form

Hedge(x) = π

K
: [v+ρ2

+(x) + v−ρ2
−(x)] : , (A5)

by means of the following linear transformation:(
ρ+(x)
ρ−(x)

)
= 1

2

(
1 + K 1 − K

1 − K 1 + K

)(
ρR(x)
ρL(x)

)
, (A6)

where

K =
√

vR + vL − 2gRL

vR + vL + 2gRL

(A7)

and

v± = ± (vR − vL)

2
+

√(
vR + vL

2

)2

− g2
RL. (A8)

Note that the transformation in Eq. (A6) has the following
properties:

ρ+(x) + ρ−(x) = ρR(x) + ρL(x), (A9)

ρ+(x) − ρ−(x) = K[ρR(x) − ρL(x)]. (A10)
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The new chiral fields obey a modified Kac-Moody algebra

[ρα(x),ρβ (x ′)] = sαKδαβ

2πi
∂xδ(x − x ′), (A11)

where α,β = ± and s± = ±1. Using these commutation
relations, the chiral densities are found to obey the following
equations of motion:

(∂t ± v±∂x)ρ±(x,t) = 0. (A12)

In the stationary state (i.e., for ∂tρ± = 0), when coupled to two
different (chiral) chemical potentials, the chiral densities must
minimize Hedge(x) − μ+ρ+(x) − μ−ρ−(x), which is possible
(upon completing the square) if we choose

ρ± = 〈ρ±(x)〉 = Kμ±
2πv±

. (A13)

Hence, the stationary current is given by I = e(v+ρ+ −
v−ρ−) = eK(μ+ − μ−)/(2π ). Note that the chemical poten-
tials μ± coupling to the densities ρ± are physically different
from the chemical potentials μR/L coupling to the electrons.
The latter couple to NR/L = ∫

dx ρR/L(x) and are equal to the
chemical potentials of the source and drain lead reservoirs
eVS/D , respectively. However, it is possible to relate both
sets of chemical potentials linearly [41], so that the voltage
bias V = VS − VD = K(μ+ − μ−)/e. Hence, the quantized
conductance for a clean 1D edge channel can be recovered
[41–43]:

G = dI

dV
= e2

2π
, (A14)

which is the value of the quantized conductance for a single
channel in � = 1 units. The quantized conductance of a perfect
nonchiral Tomonaga-Luttinger liquid is the result of the finite
contact resistance.

APPENDIX B: ACCOUNTING FOR THE CONTACT
RESISTANCE

In this Appendix, we shall follow the approach of Pham
and co-workers [41] to account for the contact resistance of
the 1D interacting edge channel in the presence of a scatterer
located at x = 0. As it has been discussed in the main text, the
Hamiltonian for such system is H = Hedge + VM = ∫

dx H,
where the Hamiltonian density is given by

H = Hedge + gRM [ψ†
R(x)ψL(x) + H.c.]δ(x). (B1)

We are interested in computing the two-terminal conductance,
which is defined from the current passing through the device,
I2t as follows:

G = dI2t

dV

∣∣∣
V =0

, (B2)

where V = VS − VD is the voltage bias between the source and
drain leads. The current I2t is given by the following equations
(essentially Ohm’s law) [41]:

VS − μ̄<

e
= RSI2t , (B3)

μ̄>

e
− eVD = RDI2t , (B4)

where

μ̄≶ = μ
≶
+ + μ

≶
−

2
(B5)

are the mean chemical potentials of the edge to the right (μ̄>)
and left (μ̄<) of the impurity, respectively; RS,RD (VS,VD)
are the the source and drain contact resistances (voltages),
respectively.

In the presence of the impurity, the equations of motion for
ρ± [cf. Eq. (A12)] are modified and can be written as follows:

(∂t ± v±∂x)ρ±(x,t) = J±(t)δ(x), (B6)

where the operator J± = i
∫

dx [VM,ρ±(x)] = i[VM,N±],
with N± = ∫

dx ρ±(x). However, note that, away from the
scatterer (i.e., x 
= 0), the equations of motion reduce to
Eq. (A12). Thus, in the steady state, the chemical potentials
μ

≶
± can be related to the chiral densities by means of Eq. (A13),

that is,

ρ
≶
± = K

2πv±
μ

≶
± , (B7)

where ρ
≶
± are the chiral densities to the right and left of the

scatterer. Adding Eqs. (B3) and (B4) yields

I2t = VS − VD

RS + RD

− R0

RS + RD

IB, (B8)

where we have introduced R0 = G−1
0 = 2π/e2 and

IB = − e

2K
[v+(ρ>

+ − ρ<
+ ) + v−(ρ>

− − ρ<
− )], (B9)

which, as shown following, is the backscattered current. Note
that our definition of IB differs from the definition in Ref. [41]
by a factor of K−1; IB can be obtained upon integrating over
an infinitesimal interval around x = 0 the above equations of
motion [Eq. (B6)] and taking the expectation value, which
yields

v±(ρ>
± − ρ<

± ) = ±〈J±〉. (B10)

Hence,

IB = − e

2K
〈(J+ − J−)〉 = − ie

2K
〈[VM,N+ − N−]〉

= − ie

2
〈[VM,NR − NL]〉

= − ie

2
〈[H,NR − NL]〉. (B11)

In deriving the last expression, we have integrated Eq. (A10)
over x and used that [Hedge,NR/L] = 0. Next, we use
NR − NL = 2NR − N and [H,N ] = 0, where N = NR + NL,
which leads to

ÎB = (−ie)[H,NR] = −e
〈dNR

dt

〉
. (B12)

Hence, assuming a symmetric situation where RS = RD =
π/e2, it follows that

I2t = G0V − IB, (B13)

where G0 = e2/2π is the clean channel conductance. After
derivation with respect to the voltage bias, Eq. (B13) for V = 0

155124-10



DISORDER EFFECTS ON HELICAL EDGE TRANSPORT IN . . . PHYSICAL REVIEW B 92, 155124 (2015)

becomes

G = G0 − δG, (B14)

δG = (dIB/dV )V =0 being the conductance across the impu-
rity. The latter is computed in the following Appendix.

APPENDIX C: LINEAR RESPONSE FOR
THE CONDUCTANCE

In this Appendix, we review the calculation of the linear
conductance of a 1D channel in the presence of an impurity
δG, using the Kubo formula. The result is perturbative in
the strength of the impurity potential and requires δG � G0,
which, as discussed in the main text, will break down as the
absolute temperature T → 0 for repulsive interactions (K <

1). We begin by introducing the backscattering current operator

ÎB = −e
dNR

dt
= (−ie)[H,NR] = (−ie)[A − A†], (C1)

where H is given by Eq. (39) and the operator A =
gRMψ

†
R(0)ψL(0). Within linear-response theory, the steady-

state current in response to a voltage bias V is (see, e.g.,
Ref. [37], page 561 and ff.):

I = 2e Im
∫ +∞

−∞
dt e−ieV t CR

AA†(t), (C2)

where the correlation function CR
AA†(t) =

−iθ (t)〈[A(t),A†(0)]〉 where θ (t) is the Heaviside step
function. In order to evaluate the above correlation
function, we rely on bosonization, which uses the following
representation of the Fermi fields in terms of the bosonic
fields φR/L(x) introduced in Appendix A:

ψR(x) = FR√
2πlB

eiφR (x), (C3)

ψL(x) = FL√
2πlB

e−iφL(x), (C4)

where Fc = F
†
c (c = R,L) are the Klein factors, {Fc,Fc′ } =

δcc′ , required to ensure the anticommutativity of the right- and
left-moving Fermi fields.

In the presence of interactions, the bosonic fields φR/L(x)
do not describe the eigenmodes of the clean interacting 1D
edge. However, we can introduce a pair of bosonic fields φ±(x)
related to the chiral densities ρ± that diagonalize Hedge:

ρ±(x) =
√

K

2π
∂xφ±(x). (C5)

The finite-temperature correlation function of the new bosonic
fields (for |t | � lB/v±) at x = 0 reads as [35]

〈φ±(0,t)φ±(0,0)〉 = − ln

[(
2v±β

πlB

)
sin

(
iπt

β

)]
. (C6)

Using Eq. (C6), the correlator CAA†(t) can be evaluated and
thus we arrive at the following expression for the current:

I = 2e(gRM )2C Re
∫ 0

−∞
dt ′eieV t ′ {f (−t) − f (t)}, (C7)

where

f (t) =
[

sin
π

β

(
it + lB

v+

)
sin

π

β

(
it + lB

v−

)]−K

, (C8)

and the prefactor

C =
(

1

2πlB

)2[
π2l2

B

β2v+v−

]K

. (C9)

After integration, we obtain

IB =4Ce(gRM )2β

21−2Kπ
sin(πK) Im B

(
K + ieVβ

2π
,1 − 2K

)
,

(C10)

where B(n,m) is the beta function. From this expression, after
derivation with respect to V , at V = 0, Eq. (55) follows.
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