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Quantum Hall ferromagnets and transport properties of buckled Dirac materials
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We study the ground states and low-energy excitations of a generic Dirac material with spin-orbit coupling and
a buckling structure in the presence of a magnetic field. The ground states can be classified into three types under
different conditions: SU(2), easy-plane, and Ising quantum Hall ferromagnets. For the SU(2) and the easy-plane
quantum Hall ferromagnets there are goldstone modes in the collective excitations, while all the modes are gapped
in an Ising-type ground state. We compare the Ising quantum Hall ferromagnet with that of bilayer graphene
and present the domain-wall solution at finite temperatures. We then specify the phase transitions and transport
gaps in silicene in Landau levels 0 and 1. The phase diagram depends strongly on the magnetic field and the
dielectric constant. We note that there exist triple points in the phase diagrams in Landau level N = 1 that could
be observed in experiments.
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I. INTRODUCTION

Recently, several graphenelike systems, such as sil-
icene, germanene [1], and transition-metal dichalcogenides
(MoS2) [2], have received considerable attention. They all have
a honeycomb geometry in the xy plane as in graphene [3,4],
but they also have a buckled structure in the z direction.
The buckling is induced by the atoms that are heavier than
the carbon atoms in graphene. The heavy atoms also have
more complex electron orbitals. In these systems, spin-orbit
(SO) coupling is important, while it is negligible in graphene.
Hence, the electrons in these systems must be described by
a massive Dirac equation in which the mass is induced by
the SO coupling. We refer to these materials generically as
buckled Dirac materials due to their geometric structure. The
Brillouin zone is similar to that of graphene: a hexagon with
two inequivalent valleys K and K ′. In MoS2, the � point is
important because the energy near this point is close to that
in the K,K ′ valleys in the valence band. For simplicity, we
consider only the K and K ′ valleys in order to compare with
graphene.

In the presence of a magnetic field, the electron bands split
into a series of Landau levels (LLs). The fractional quantum
Hall (QH) effect [5] has been studied recently in silicene
and germanene [6]. The fractal butterflies have also been
investigated theoretically in these systems [7]. Here we report
on the ground states and transport properties of the symmetry
broken states in the integer QH effect regime. In bilayer
and multilayer graphene [9,10], earlier theoretical works
have indicated that the ground states in the N �= 0 LLs are
Ising quantum Hall ferromagnets (QHFs), since the interlayer
Coulomb potential is different from the intralayer one. The
resulting transport properties of bilayer graphene were also
observed in an experiment [11]. In buckled Dirac materials, the
buckling divides the system into two “pseudolayers.” Atoms
A and B belong to different pseudolayers, respectively. Hence
the buckling makes these monolayer Dirac materials similar to
bilayer graphene, i.e., we could observe the Ising QHF in these
one-atom-layer systems. We discuss below the classification
and the collective modes of different QHFs in a few LLs.

The buckling also couples to an external electric field.
Without the magnetic field, silicene and germanene may

be converted to topological insulators in a proper electric
field [12]. In the QH regime, the phases and transport properties
are also much richer and more interesting when the electric
field is applied. In this work, we will specifically discuss
how the electric field and the dielectric constant (of different
substrates) change the phase diagram and control the spin and
valley pseudospin in silicene. These materials are potential
candidates for application in (pseudo)spintronics.

II. NONINTERACTING HAMILTONIANS

We consider two actual materials, silicene and germanene,
in a perpendicular electric field Ez. The electric field can
control the phases and the spin polarization, useful for applica-
tion in (pseudo)spintronics. The Brillouin zone is in general a
regular hexagon (as in graphene) with two inequivalent valleys
K and K ′. The low-energy noninteracting Hamiltonian, in the
basis {A↑,B ↑,A↓,B ↓}, is [13]

Hη = vF (pxτx − ηpyτy) + ητzh + dEzτz/2, (1)

where h = −λSOσz − a0λR(pyσx − pxσy), η = 1 for valley
K and −1 for the K ′ valley, τ and σ are the Pauli matrices
corresponding to the sublattices and the spin, a0 is the lattice
constant, λR is the Rashba SO (RSO) coupling, and the
buckling is d. For silicene [14,15], these parameters are vF =
5.5 × 105 m/s, a0 = 3.86 Å, λSO = 3.9 meV, λR = 0.7 meV,
and d = 0.46 Å. To classify the quantum Hall ferromagnets
of the ground state analytically in a magnetic field, we
approximate λR = 0 and set Ez = 0. At a quarter filling in
a LL, the spin is polarized by the Zeeman coupling. Then
the system is simplified to a two-level (two valleys) model.
The Hamiltonian in one spin, which is similar to Haldane’s
model [16,17] or the Kane-Mele model [18] in one spin and
may describe a generic monolayer Dirac material in this case,
is

Hη = vF (τxPx − ητyPy) − λSOτz, (2)

where P = p + eA is the canonical momentum. The SO
strength is also described as the mass of the Dirac fermion
near each valley. We choose the Landau gauge of the vector
potential A = (0,Bx,0). The LL energy spectrum is given by
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E0 = ±λSO and En�=0 = sgn(n)
√

λ2
SO + 2(vF �/�)2

√
n2 + |n|,

where � = √
�/eB is the magnetic length and n is the LL index.

The eigen wave functions in the two valleys are [19]

ψK
n,X =

(
ãhn,X

b̃hn−1,X

)
, ψK ′

n,X =
(

b̃hn−1,X

ãhn,X

)
, (3)

where X is the guiding center, and hn,X (hn<0 = 0) is the LL
wave function of a two-dimensional electron gas (2DEG) in
a conventional semiconductor. We define a = |̃a|,b = |̃b|, so
the normalization condition is a2 + b2 = 1. In MoS2, the �

point should be included in the Hamiltonian. The low-energy
effective Hamiltonian is due to the three d-orbitals of Mo
atoms, which are located in the same plane [8]. So the MoS2
is equivalent to a monolayer system without buckling.

III. CLASSIFICATION OF THE QUANTUM HALL
FERROMAGNETIC GROUND STATES

If the geometry of the monolayer Dirac material is exactly
the same as graphene, then the valley pseudospin has a SU(2)
symmetry in any LL. However, we need to consider the
buckling when we calculate the Coulomb interaction. The
ground states of bilayer or chiral multilayer graphene in an
N �= 0 LL are valley pseudospin Ising QHFs [9,10]. The SU(2)
symmetry of valley pseudospin is broken to a Z2 symmetry
because there is a factor e−qd difference between the interlayer
and intralayer Coulomb potentials, where q is the momentum
and d is the distance between two layers. We follow the
formalism in [9,10] to present a more general classification
of the QHFs of the ground states in a buckled Dirac material.
We assume a buckling d in the z direction between the two
elements of the wave-function spinors in Eq. (3). The buckling
divides the wave functions into two pseudolayers. The density
matrix ρ in the momentum space is

ρσ,σ ′ (q) = 1

Nφ

∑
X1,X2

e− i
2 qx (X1+X2)δX1,X2+qy�

2c
†
σ,X1

cσ ′,X2
, (4)

where σ,σ ′ = 1 → (K, ↑),2 → (K, ↓),3 → (K ′, ↑),4 →
(K ′, ↓) are the valley-spin indices, the LL degeneracy is
Nφ, and the creation and annihilation operators of electrons
are c†,c. The average values of the elements of the density
matrix fully describe the system with the Hamiltonian in the
Hartree-Fock approximation (HFA). The filling factor for
level i is then given by νi = 〈ρi,i(0)〉.

The many-body Hamiltonian in the Hartree-Fock approxi-
mation (HFA) is then given by

H =
∑

σ

Eσρσ,σ (0) + e2

κ�

d

2�

∑
σ,σ ′

yσ ′ 〈ρσ ′,σ ′(0)〉yσρσ,σ (0)

+ e2

κ�

∑
σ,σ ′

∑
q

Hη,η′ (q)〈ρσ,σ (−q)〉ρσ ′,σ ′(q)

− e2

κ�

∑
σ,σ ′

∑
q

Xη,η′ (q)〈ρσ,σ ′ (−q)〉ρσ ′,σ (q), (5)

where κ is the dielectric constant, η and η′ are the valley
indices in σ and σ ′, respectively, and y1 = y2 = a2,y3 = y4 =

−b2. Eσ is the kinetic energy of level σ with the Zeeman
coupling. The summation with a bar excludes the term of
q = 0. The functions Hη,η′ and Xη,η′ describe the Hartree and
Fock interactions between valleys η and η′,

Hη,η′ (q) = 1

q�
ξη,η′ (q�), (6)

Xη,η′ (q) =
∫ ∞

0
dp J0(pq�)ξη,η′ (p), (7)

where J is the Bessel function and

ξη,η = a4fn,n + b4fn−1,n−1 + 2a2b2fn,n−1e
−qd/�, (8)

ξη,η = (a4fn,n + b4fn−1,n−1)e−qd/� + 2a2b2fn,n−1, (9)

with η being the valley other than η. The function f is

fn,m(q) = e−q2/2Ln(q2/2)Lm(q2/2), (10)

with a Laguerre polynomial Ln (Ln<0 = 0).
For a quarter filling of a LL, which is equivalent to the case

of three-quarter filling due to the electron-hole symmetry, the
ground state satisfies ν1 + ν3 = 1 and 〈ρ1,3(0)〉 = 〈ρ3,1(0)〉 =√

ν1ν3, where we choose a property global phase to set all order
parameters real. Hence, we obtain the energy per electron of the
liquid phase by using the conditions XK,K ′ = XK ′,K,XK,K =
XK ′,K ′ and abandoning the constant kinetic energy,

E = 2
e2

κ�
Qν1(ν1 − 1), (11)

where

Q̃(q) = (a2 − b2)2d/� − XK,K (q) + XK,K ′ (q), (12)

and Q ≡ Q̃(q = 0). The first term in Eq. (12) is the capacitive
energy. We can classify the ground states as follows. If Q = 0,
the ground state is a SU(2) QHF, since ν1 and ν3 could be any
value to minimize the energy. If Q < 0, the ground state is an
Ising QHF. The energy is minimized when ν1 is either 0 or 1.
Finally, if Q > 0, the ground state is an easy-plane QHF, i.e.,
the energy is minimum only when ν1 = ν3 = 1/2.

We solve the two-particle Green’s function,

χ
σ,σ ′
γ,γ ′ (q,q′; τ − τ ′) = −Nφ〈T δρσ,σ ′(q,τ )δργ,γ ′(−q′,τ ′)〉,

with the time order operator T and δρ = ρ − 〈ρ〉, in the
generalized random-phase approximation (GRPA) [20,21] to
study the collective behavior of the system. The lowest-energy
collective mode given by the poles of the retarded Green’s
functions is

C(q = 0) = e2

κ�
|Q(ν1 − ν3)|, (13)

where C(q) is the dispersion relation between the collective
and the momentum. This mode, which is similar to that of
an easy-plane QHF in a double-quantum-well system without
tunneling, is a precess mode of the valley pseudospin in the
xy plane [20,22]. In the three types of QHFs, when q → 0,

the collective modes are distinguished by their gaps and the
behaviors at small q. In a SU(2) QHF, Q = 0, so C(0) = 0. It
is a goldstone mode. In an easy-plane QHF, ν1 − ν3 = 0, so
C(0) = 0, which means a goldstone mode still exists. In these
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two QHFs, C(q → 0) ∝ q. In an Ising QHF, C(q → 0) ∝ q2,
Q �= 0, and |ν1 − ν3| = 1. The goldstone mode disappears and
all modes are gapped.

IV. MANY-BODY HAMILTONIAN OF
SILICENE/GERMANENE IN THE PRESENCE

OF A MAGNETIC FIELD

The Hamiltonian in Eq. (1) is more complex than that
in Eq. (2) since the electric field and the RSO coupling are
included. In the QH, the wave function in valley α and orbital
o is

ψα
o = (

cα
o,1ho+α1

cα
o,2ho+α2

cα
o,3ho+α3

cα
o,4ho+α4

)T
, (14)

with the normalization condition
∑4

i=1 |cα
o,i |2 = 1, where

αi = Ki,K
′
i shortens the indices of the wave-function spinors

in valley α and corresponds to K1 = K4 = 0,K2 = −1,K3 =
1; K ′

1 = −1,K ′
2 = K ′

3 = 0,K ′
4 = 1. Because of the RSO cou-

pling, the eigenvectors are not spin-polarized. We introduce
another degree of freedom, the orbital, to replace the spin.
We find that without Zeeman coupling, the energies of the
orbitals o = N,N − 1 are close to each other in the LL N .
The concept of the orbital degree of freedom here is similar to
that in the N = 0 LL in bilayer graphene. The RSO interaction
couples different spins in a valley. For zero RSO coupling,
the orbital degree of freedom is identical to spin. In reality,
|cα

N−1,1|,|cα
N−1,2|,|cα

N,3|,|cα
N,4| � 10−4, and so approximately

the orbital N is associated with spin up and the orbital N − 1
is associated with spin down. Note that the coefficients cα

o,i

depend not only on the magnetic field but also on the electric
field.

We neglect the LL mixing since the LL gap is large (EN=0 ∼
0,EN=1 ≈ 60 meV for silicene). The elements of the density
matrix with an extra orbital index can be obtained by modifying
Eq. (4):

ρα,o;β,o′ (q) = 1

Nφ

∑
X1,X2

e− i
2 qx (X1+X2)δX1,X2+qy�

2

×c
†
α,o,X1

cβ,o′,X2
, (15)

where α,β are valley indices and o,o′ are orbital indices.
There is not conservation between orbitals, so the many-body
Hamiltonian in the HFA is more complex than that in Eq. (5),

H = e2

κ�

∑
α,o

Ẽα,oρα,o;α,o(0)

+ e2

κ�

∑
α,β

∑
o1,...,o4

∑
q

Hα,β
o1,o2,o3,o4

(q)

×〈ρα,o1;α,o2
(−q)〉ρβ,o3;β,o4

(q)

− e2

κ�

∑
α,β

∑
o1,...,o4

∑
q

Xα,β
o1,o4,o3,o2

(q)

×〈ρα,o1;β,o2 (−q)〉ρβ,o3;α,o4 (q), (16)

where Ẽα,o contains the kinetic energy Eα,o of the orbital o in
valley α and a capacitive energy,

Ẽα,o = Eα,o + d

�

⎡⎣ν

2
−

∑
β,o′

U 0
α,o;β,o′ 〈ρβ,o′;β,o′ (0)〉

⎤⎦,

U 0
α,o;β,o′ =

⎛⎝∑
i=1,3

∑
j=2,4

+
∑
i=2,4

∑
j=1,3

⎞⎠∣∣cα
o,i

∣∣2∣∣cβ

o′,j

∣∣2
,

with the filling factor ν. The Hartree interaction is

Hα,β
o1,o2,o3,o4

(q) =
2∑

m,n=1

∑
i=m,m+2

∑
j=n,n+2

G
α,β;i,j
1,2,3,4

(17)

×Pm,n(q�)
F1,2,3,4

q�
�o1+αi ,o2+αi

(q�)�o3+βj ,o4+βj
(q�),

where we define a function Pm,n(q) = e−|m−n|qd/�−q2/2 and
coefficients

G
α,β;i,j
1,2,3,4 = cα∗

o1,i
cα
o2,i

c
β∗
o3,j

c
β

o4,j
, (18)

F1,2,3,4 = e−i(o1−o2)θ e−i(o3−o4)(θ+π), (19)

with the angle θ between vector q and the x axis. Function �

is defined by

�k,l(p) =
√

min(k,l)!√
max(k,l)!

(ip)|k−l|
√

2
|k−l| L

|k−l|
min(k,l)

(
p2

2

)
. (20)

The Fock interaction is

Xα,β
o1,o4,o3,o2

(q) =
2∑

m,n=1

∑
i=m,m+2

∑
j=n,n+2

G
α,β;i,j
1,4,3,2e

−(o1−o4+o3−o2)iθ

×
∫

dp Pm,n(p)Jo1−o4+o3−o2 (pq�)

×�o1+αi ,o4+αi
(p)�o3+βj ,o2+βj

(−p). (21)

We define the Green’s function

Gα,o;β,o′ (X,X′,τ ) = −〈T cα,o,X(τ )c†β,o′,X′(0)〉, (22)

with a relation to the density matrix at zero temperature,
Gα,o;β,o′ (q,τ = 0−) = 〈ρβ,o′;α,o(q)〉. Solving the equation of
motion of the Green’s function, we could obtain the ground
states of the system [23]. In what follows, we define the valley-
orbital (or, say, valley-spin if λR = 0) indices as (K,N ) →
1,(K,N − 1) → 2,(K ′,N ) → 3,(K ′,N − 1) → 4 in the den-
sity matrix. The orbital degree of freedom replaces the spin, so
the two-particle Green’s function based on the density matrix
in Eq. (15) should be written as

χη1,o1;η2,o2
η3,o3;η4,o4

(q,q′; τ − τ ′) = −Nφ〈T δρη1,o1;η2,o2
(q,τ )

×δρη3,o3;η4,o4
(−q′,τ ′)〉, (23)

where ηi = K,K ′ is the valley index.
Due to the electron-hole symmetry, we consider only the

quarter- and half-filled LLs. The system can be described in the
(pseudo)spin language. The valley pseudospin field in orbital
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o is defined by

po,x + ipo,y = 〈ρK,o;K ′,o〉, (24)

po,z = 〈ρK,o;K,o〉 − 〈ρK ′,o;K ′,o〉, (25)

p =
∑

o

po. (26)

We could approximately associate the orbital with the real spin:
o = N associated with spin up and o = N − 1 associated with
spin down. Hence, we define the spin field

Sα,x + iSα,y = 〈ρα,N ;α,N−1〉, (27)

Sα,z = 〈ρα,N ;α,N 〉 − 〈ρα,N−1;α,N−1〉, (28)

S =
∑

α

Sα. (29)

V. NUMERICAL RESULTS OF LLs N = 0,1

Filling factor ν = −1: When Ez = 0, the ground state is
an easy-plane QHF in valley pseudospin with 〈ρ1,1(0)〉 =
〈ρ3,3(0)〉 = 1/2, which is essentially equivalent to that in a
double-quantum-well system [24]. It can also be obtained by
the classification parameter Q in Eq. (12): If we approximate
λR = 0, then Q > 0, i.e., easy-plane QHF. When the electric
field increases, there is a bias between the two states |1〉 and
|3〉 so that the ground state is a bonding state |GS〉 = a1|1〉 +
a3|3〉. When the electric field Ez � 0.08 mV/nm, the bias is
large enough to polarize the valley. The coherence between |1〉
and |3〉 also vanishes gradually. The order parameters in the
phase transition are shown in Fig. 1(a).

For an easy-plane QHF, the charged excitation is a bimeron
or an antibimeron described in the anisotropic nonlinear σ

model [25]. At Ez = 0, we extract the Fock energy functional
from the Hamiltonian

HF = − e2

κ�

∑
α,β

∑
o1,o2,o3,o4

∑
q

Xα,β
o1,o4,o3,o2

(q)

×〈ρα,o1;β,o2 (−q)〉ρβ,o3;α,o4 (q), (30)

Electric field (mV/nm)

P
su

ed
o

-s
p

in
 a

n
d

 c
o

h
er

en
ce

0 0.05 0.1
-1

-0.5

0

0.5

1

<ρ1,1>
<ρ3,3>
<pz>

(a)

Electric field (mV/nm)

P
su

ed
o

-s
p

in
 a

n
d

 c
o

h
er

en
ce

219 219.2 219.4

0

0.2

0.4

0.6

0.8

1

<ρ1,1>
<ρ4,4>
<Sz>

(b)

FIG. 1. (Color online) (a) The occupation of the states |1〉 and
|3〉, and the valley polarization 〈pz〉 at ν = −1. (b) Order parameters
around the phase-transition region at ν = 0. The dielectric constant
κ is 1.

where we neglect the kinetic energy, capacitive energy, and
Hartree interaction. This is because the kinetic energy is a
constant, capacitive energy is very small, and the Hartree term
is zero in the slow varied density approximation. This field
theory is only valid when Ez = 0. If Ez �= 0, then the ground
state is no longer an easy-plane QHF. The ground state will
be valley-polarized very rapidly, i.e., the Ez is very small
to polarize the valley pseudospin. In the finite Ez case, the
best way is to calculate the microscopic Hamiltonian in the
symmetric gauge [10,26].

If we consider the two valleys only in orbital o = N , then
the orbital index could be neglected. The energy is given by

EF = −1

2

e2

κ�

∑
α,β

∑
q

X
α,β

N,N,N,N (q)

×〈ρα,β (−q)〉〈ρβ,α(q)〉. (31)

Then the Lagrangian of the anisotropic nonlinear σ model is
obtained by calculating the excitation energy when the density
matrix is slowly varied [25],

L = 1

2

∑
μ=x,y,z

ρμ(∂μmμ)2, (32)

where the normalized pseudospin field m is defined in real
space by

mx(r) + imy(r) = 4π�2〈ρK,K ′ (r)〉, (33)

mz(r) = 4π�2[〈ρK,K (r)〉 − 〈ρK ′,K ′ (r)〉], (34)

and the pseudospin stiffnesses are given by

ρz = − 1

8π�2
lim
q→0

∇2
qX

K,K
N,N,N,N (q), (35)

ρx = ρy = − 1

8π�2
lim
q→0

∇2
qX

K,K ′
N,N,N,N (q). (36)

The excitation energy of a bimeron or an antibimeron is

δE = 4π

3
(ρx + ρy + ρz). (37)

Note that this energy that is obtained in the field theory is not
identical to a single charged excitation of the electron gas. But
the excitation energy of a bimeron-antibimeron pair in the field
theory is identical to that in the electron gas, which is double
δE, δEpair = 2δE. This energy is related to the transport
property of the system, which can be measured in a transport
experiment. For B = 10 T and κ = 1, the excitation energy of
a bimeron-antibimeron pair is 39.2 meV. In comparison, the
excitation energy of an electron-hole pair is 156 meV. Hence,
the transport gap is due to the bimeron-antibimeron pair.

Filling factor ν = 0: When Ez < 219.05 mV/nm, |1〉 and
|3〉 are fully occupied, the ground state is spin-polarized
and is valley-unpolarized. In the region Ez ∈ [219.05,219.25]
mV/nm, the coherence 〈ρ1,4〉 between |1〉 and |4〉 arises.
When Ez > 219.25 mV/nm, the system is spin-unpolarized
but valley-polarized, and all electrons are in valley K ′. The
phase transition, where 〈ρ1,1〉 and 〈ρ4,4〉 are gradually changed,
is shown in Fig. 1(b). The spin and the valley are also controlled
gradually by the electric field.
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FIG. 2. (Color online) The excitation energy contour of the
quasiparticle around the triple point at ν = 3,κ = 5. The dashed lines
are located at the phase transitions. The red dot is the triple point.

In the N > 0 LLs, the nature of the broken symmetry states
is different from that in LL N = 0. For N > 0, the ground
state at integer filling factor is an Ising QHF, which is similar
to bilayer graphene [9,10]. We only study the filling factors
ν = 3,4, since the LL mixing is important in higher LLs.

Filling factor ν = 3: For Ez = 0, we assume λR = 0 to
obtain Q < 0. Hence the ground state is an Ising QHF, which is
also supported by our numerical calculation including λR . The
SU(2) valley symmetry is broken to a Z2 symmetry. Figure 2
shows the phase diagram in an electric field for κ = 5. The
SU(2) spin symmetry is also broken to a Z2 symmetry at the
phase transition between phase I (III) and phase II. These
symmetry broken states are all induced by the small buckling.
The valley and spin can also be controlled by the electric or
the magnetic field, since the valley or spin is reversed at the
two sides of the phase transition line in Fig. 2.

Interestingly, for B = 15.5 T and Ez = 1180 mV/nm,
there is a triple point (the red dot in Fig. 2) in the phase
diagram. This triple point occurs only when κ � 3. When the
dielectric constant is very large, the electron gas is close to
a noninteracting system and the triple point disappears. The
phase diagram is also changed by the dielectric constant κ .
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FIG. 3. (Color online) The phase diagrams at ν = 4 and (a) κ =
1, (b) κ = 4.
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FIG. 4. (Color online) The collective modes for (a) the easy-
plane QHF ground state at ν = −1 and (b) the Ising QHF ground
state at ν = 3, when B = 10 T, κ = 1, and Ez = 0. The small-q
region is given as an inset.

For κ = 1, the phase III disappears and only other two phases
survive when Ez < 2000 mV/nm.

The Ising QHF here is similar to that in bilayer or multilayer
graphene [10], but it is different from the Ising QHF with
different LLs [27] in semiconductor quantum wells. Hence, the
lowest charged excitation may be a skyrmion around Ez = 0.
However, the skyrmion must be calculated numerically with a
microscopic Hamiltonian in the symmetric gauge.

There is no domain wall at zero temperature. At finite
temperature, the domain wall could exist to lower the free
energy of the system [28] when we consider the wall entropy.
Below a critical temperature TC , domain walls provide one-
dimensional (1D) channels carrying extra charges (electron-
hole pairs) to dissipate the transport charge of the 2DEG when
the domain walls are dense enough to overlap. So the resistance
spike in Rxx appears. Above TC , the domain wall will be
infinitely long and expand to the sample perimeter. The charge
in the domain wall cannot dissipate the transport electrons
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B = 10 T, κ = 1, and Ez = 219.15 mV/nm at ν = 0.
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anymore and hence the resistance spike disappears. Following
the study of the domain wall in a graphene bilayer [10],
we obtain the kink domain wall of the valley pseudospin
at Ez = 0: mx(r) = sin θ (r), my = 0, and mz(r) = cos θ (r)
with

θ = 2 arctan exp

[√
2
Kz − K⊥

ρs

x

]
, (38)

where we approximate ρs = ρx ≈ ρz, and we define K⊥ =
X

K,K ′
N,N,N,N (0)/(8π ) and Kz = X

K,K
N,N,N,N (0)/(8π ). It should be

noted that some other edge states that are important, especially
in the N = 0 LL of monolayer and bilayer graphene [29], may
change the transport properties to a certain extent.

We also present the quasiparticle (QP) energy EQP around
the triple point in Fig. 2. Experimentally, the phase transitions
between different spins can be observed in a NMR experi-
ment. The phase transition between different valleys may be
observed in a circular light absorption experiment [30]. At
the phase transitions, a resistivity spike may be observed in a
transport experiment due to the existence of the domain walls
at finite temperature, which has been reported in a LL Ising
QHF [27,28] and in the Ising QHF of bilayer graphene [10,11].

Filling factor ν = 4: For κ = 1, the phase diagram in a
magnetic field is shown in Fig. 3(a). The triple point also
appears when κ � 3. It is marked as a red dot located at B =
9.2 T and Ez = 635 mV/nm for κ = 4 in Fig. 3(b). Phase C
sets in when B < 9.2 T, since the kinetic energy contributes
more and the Coulomb interaction is decreased by large κ .

As we discussed above, the easy-plane QHFs have a
goldstone mode while all the modes of Ising QHFs are
gapped. In silicene, we are also able to find the goldstone
and the gapped modes for the easy-plane QHF and Ising QHF
(ν = −1 and 3, respectively) in Fig. 4. Moreover, in the region
Ez ∈ [219.05,219.25] mV/nm, the ground state is a bonding
state with a goldstone mode at ν = 0. The dispersion of the
collective modes is shown in Fig. 5.

VI. CONCLUSION

We classify the ground states of a generic buckled Dirac
material in a magnetic field into three different QHFs. The
low-energy collective modes of the three QHFs are given
analytically in the GRPA. A goldstone mode exists in the
SU(2) and the easy-plane QHFs, but not in the Ising QHF. We
then focus on a real material, viz., silicene. Without an electric
field we note that the magnetic field is able to change the
coefficients cα

o,i in the wave functions. However, in a very small
magnetic field (B � 0.01 T), the ground state becomes an
easy-plane QHF at ν = 3. In such a low magnetic field, the QH
effect cannot be realized and the LL mixing is not negligible.
If the SO coupling can be tuned, then the coefficients of
wave functions can be modified. For B = 10 T, ν = 3, and
κ = 1, we find that when λSO > 750 meV, the ground state is
an easy-plane QHF. For λSO ≈ 750 meV, the ground state
is a SU(2) QHF. If we could efficiently tune the wave
function, we may realize the phase transition between different
QHFs (also in germanene). Experimentally, this transition is
observable: the domain wall induced resistivity spike occurs
only in an Ising QHF. The phase diagrams and transport
properties in the N = 0,1 LLs in silicene depend on the
magnetic field and the dielectric constant, which dramatically
change the Coulomb interaction. At ν = 0, the intervalley
scattering or lattice-scale interactions make the ground state
inhomogeneous with various orders in graphene [31]. In
silicene/germanene systems, this interactions may also change
the QHF ground state to other ordered states at ν = 0, which
needs to be verified experimentally. We show the triple points
in Figs. 2 and 3. The SU(2) symmetry of the spin and valley
are broken by the electric field and the buckling structure. The
phase transitions may indeed be observed in NMR, transport,
or light absorption experiments.
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