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Impurity-induced magnetization in a three-dimensional antiferromagnet at the quantum
critical point
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We consider a single impurity with spin S embedded in a three-dimensional antiferromagnetic system which is
close to the quantum critical point (QCP) separating magnetically ordered and disordered phases. Approaching the
QCP from the disordered phase, we study the spatial distribution of the spin density and staggered magnetization
induced by the impurity. Using two methods (self-consistent Born approximation and renormalization group),
we found a power-law decay of the spin density ∝1/r3, and of the staggered magnetization ∝1/r with relevant
logarithmic corrections. We demonstrate that the local spin at the impurity’s site, r = 0, approaches to zero at
the QCP. We show that in the semiclassical limit of large S the problem is equivalent to the exactly solvable
independent boson model. Our results demonstrate existence of spin-charge separation in three-dimensional
systems at the QCP.
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I. INTRODUCTION

Quantum critical phenomena is extensively developing sub-
ject in modern condensed matter physics, in both theoretical
and experimental frontiers [1]. The most vivid manifestations
of quantum phase transitions (QPT) arise in low-dimensional
systems such as cuprates and iron pnictides. However, quantum
critical behavior is also found in three-dimensional (3D+time)
systems. A well-known example of a 3D compound with
a magnetic quantum critical point (QCP) is TlCuCl3 [2].
Under normal conditions, the material is in the magnetically
disordered phase, while pressure drives QPT to the antiferro-
magnetically ordered Neel phase.

The quantum critical properties of a system can be signifi-
cantly influenced by the presence of impurities. For instance,
substitution of Cu atoms in the parent compound TlCuCl3
with low concentration of nonmagnetic Mg impurities creates
an uncompensated spin 1/2 at the sites of the impurities,
which induces magnetization around the impurities and even
leads to the formation of a long-range magnetic order in the
macroscopic volume of the crystal [3]. In the magnetically
disordered phase, the magnetization cloud around each im-
purity exponentially decays over a few lattice spacings from
the impurity. However, in the vicinity of the QCP, the effect
of impurity-induced magnetization can be notably enhanced.
Experimental observations reveal an interplay between the
impurity-induced staggered magnetization and a quantum
criticality near the QCP [4–6].

Despite of the vast amount of theoretical work on the
impurity-induced magnetization in quasi-1D and 2D systems
(see Refs. [7–12] and references therein), we are not aware of
similar studies in the relation to 3D materials. In the present
paper, we consider a single impurity with spin S embedded
in a 3D antiferromagnet (AF), which is close to the QCP,
separating magnetically disordered and magnetically ordered
phases. Conceptually, the problem is similar to the Kondo
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effect (see, e.g., Refs. [13–15]), since, as we show below,
the spin cloud screens the impurity’s spin at the QCP. While
sometimes this phenomenon is called Bose-Kondo effect [16],
of course, it is significantly different from the usual Kondo
problem, for instance, there are no mobile fermions in our
case. In the present work, we study the spatial distribution
of the nonlocal spin density and the staggered magnetization
induced by the impurity using effective field theory formalism.
We show that when approaching the QCP from the disordered
phase, the spin density around the impurity decays as ∝1/r3

with logarithmic corrections and the total spin accumulated in
the delocalized cloud is equal to S. We also demonstrate that
the induced staggered magnetization decays as ∝1/r .

Closely related to the problem of impurity-induced spin
density and impurity-induced Neel order is the phenomenon
of spin-charge separation (SCS). The conventional definition
of SCS relies on the existence of two quasiparticles carrying
spin and charge (“spinon” and “holon”), which is the case
in 1D Tomonaga-Luttinger liquid of strongly interacting
electrons [17,18]. By contrast, in higher spatial dimensions,
there are no known systems with SCS in the conventional
definition. However, SCS exists in 2D models, such as hole-
doped AF [19–22]. Furthermore, recent research [23] reports
pronounced SCS in the vicinity of the magnetic QCP. In the
latter case, the precise meaning of SCS is different from SCS
in a Tomonaga-Luttinger liquid. A hole creates a spin cloud
around the charge with a radius which diverges at the QCP.
As a result, the hole’s spin becomes delocalized and spatially
separated from the impurity’s charge pinned to the impurity’s
site, which basically means SCS. In the present article we show
that such SCS also occurs in 3D systems near the QCP.

The paper is organized in the following way. In Sec. II, we
introduce an effective field theory describing a 3D AF doped
with a single impurity in the vicinity of the QCP. Considering
the interaction of the doped AF with a probe magnetic field,
we introduce an operator of the spin density and explain
how we calculate the induced spin density. Here, we also
provide a method of calculation of the staggered magnetization
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around the impurity. The rest of the paper is divided into
two parts, which corresponds to the two techniques of the
calculations: self-consistent Born approximation (SCBA) and
renormalization group (RG) approach in 3 + 1 dimensions.
Section III refers to the calculation of the spin density in SCBA
for the most physically interesting case of the impurity with
spin S = 1/2. In Sec. IV, we again calculate the impurity-
induced nonlocal spin density, the local spin of the impurity
and the staggered magnetization using the RG technique. We
also consider the semiclassical limit of an impurity with a large
spin. We draw our conclusions in Sec. V.

II. EFFECTIVE THEORY

An example of a 3D lattice model, which incorporates the
main features of magnetic quantum criticality, is presented in
Fig. 1. The model corresponds to a cubic lattice AF consisting
of spins S = 1/2 at each site with weak J bonds and strong
J ′ bonds. The system has a QCP driven by parameter g =
J ′/J and located at gc = 4.013, which separates the disordered
magnetic phase of spin dimers at g > gc from the Neel phase at
g < gc [24,25]. This lattice model describes various properties
of TlCuCl3 near the pressure-driven QCP in zero and nonzero
magnetic field [24].

Substitution of a S = 1/2 Cu2+ ion with a spinless Mg2+

creates a vacancy (hole). This is shown in Fig. 1. The vacancy
acts as an effective impurity with spin S = 1/2. The vacancy in
the lattice induces a nonlocal magnetization cloud around the
impurity site. In the present paper, we will calculate the spatial
distribution of the spin density and the staggered magnetization
in the spin cloud around the impurity.

The magnetic properties of the critical system are de-
termined by low-energy magnetic excitations. The magnetic
excitations are magnons in the Neel phase and triplons in the
paramagnetic phase. Hereafter, we use the term magnons for
both types of quasiparticles. The effective theory that describes
magnons in the vicinity of the QCP is based on the following

FIG. 1. (Color online) An example of a lattice model for 3D AF
with O(3) QCP. Spins S = 1/2 located at each site. Thin lines denote
weak J bonds and thick lines denote strong J ′ bonds. A quantum
phase transition between the Neel and the dimerized paramagnetic
phases occurs at (J ′/J )c = 4.013 [24,25]. The big blue sphere
represents an impurity (hole) introduced into the lattice.

Lagrangian, see, e.g., Ref. [26]:

LM = (∂tφ)2

2
− (∇iφμ)2

2
− �2

0φ
2

2
− α0(φ2)2

4!
, (1)

where φμ = (φx,φy,φz) is the magnon field, �2
0 ∝ g − gc is

the magnon gap (squared), α0 is a four-magnon coupling
constant, ∂t is the time derivative, ∇i = ∂/∂ri is the three-
dimensional gradient. Hereafter, we set the Plank constant and
magnon speed equal to unity � = c = 1. In the disordered
magnetic phase, �2

0 > 0. Near the QCP, the magnon gap
�0 → 0.

The Lagrangian (1) contains quadratic terms as well as
quartic term ∝φ4, describing the magnon self-action. The
magnon self-action results in the renormalization of the
magnon gap �0 in the Lagrangian (1). From one-loop RG
calculations [26] it follows that in the disordered phase, the
evolution of the renormalized gap is given by

�2 ∝ �2
0

[
ln

C(�)

g − gc

]− N+2
N+8

, (2)

where N = 3 in the present case of the O(3) universality
class system, and C(�) is a positive constant, determined
by an ultraviolet scale �. Besides that, the φ4 term leads to
a renormalization of the magnon quasiparticle residue [26].
However, the change of the residue appears only in the
two-loop renormalization group, and therefore is small. Hence,
for our purposes, we drop out the self-action term from the
Lagrangian (1) and substitute the bare magnon gap to the
renormalized value �0 → �.

The Lagrangian of a noninteracting spin-S impurity reads

Limp = i[ψ†(r,t)∂tψ(r,t) − (∂tψ
†(r,t))ψ(r,t)]. (3)

Here, ψ is the 2S + 1 component spinor. Hereafter, we set the
energy of the noninteracting impurity to zero. The Lagrangian,
which corresponds to the interaction between the impurity and
the magnon field in the disordered phase, is [10]

Lint = −λ

S
ψ†(S · φ)ψ , (4)

where λ is the coupling constant, S = (Sx,Sy,Sz) are the
operators of the impurity’s spin acting in the (2S + 1)-
dimensional Hilbert space.

The interaction of the impurity with magnons leads to
appearance of a nonlocal part of spin density s(r). In order to
find s(r), we use the Lagrangian of interaction of the system
with an external magnetic field (see, e.g., Refs. [27]):

LB = −(∂tφ · [B × φ]) + [B × φ]2

2
+ ψ†(S · B)ψ . (5)

We have set here μBg = 1. Note that Eq. (5) is still valid,
if the magnetic field B is nonuniform. In contrast to the
majority of previous works, where B is considered uniform,
the nonuniformity of the probe magnetic field is crucial for the
present paper. Linear in B terms in the Lagrangian (5) provide
the following expression for the spin density:

s(r) = 〈
1
2 ([φ × ∂tφ] + H.c.) + ψ†Sψ

〉
= snl(r) + Simpδ(r). (6)
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The brackets 〈· · · 〉 denote an averaging over the ground state
of the system. The term 1/2〈[φ × ∂tφ] + H.c.〉 in Eq. (6) is
the nonlocal part of the spin density snl(r), induced by the
impurity. The subscript “nl” stands hereafter for “nonlocal”.
The term 〈ψ†Sψ〉 in Eq. (6) corresponds to the local spin Simp

at the impurity’s site.
In addition to the spin density, we will consider the

staggered magnetization, induced by the impurity. Writing
down the Euler-Lagrange equation for the magnon field φ from
the action

∫
dtd3r {LM + Lint} and taking the expectation

value of the result, we obtain a Yukawa-like form of the
staggered magnetization:

〈φ(r)〉 = −λ
e−�r

4πr

Simp

S
. (7)

At the QCP, the exponent in Eq. (7) is close to unity and
〈φ(r)〉 ∝ 1/r . Therefore, in order to find the corresponding
prefactor, we only need to calculate the local spin at the
impurity site, Simp.

To find the local as well as the nonlocal components
of the impurity-induced spin density, we will proceed with
the following procedure. We calculate the shift εB of the
ground state energy, corresponding to the probe magnetic
field B(r ′) = Bδ(r ′ − r). The energy shift of the system reads
εB = B · s(r), therefore

s(r) = ∂εB

∂ B

∣∣∣∣
B=0

. (8)

The spin density s(r) = es(r) and the staggered magneti-
zation 〈φ(r)〉 = e〈φ(r)〉 are directed along the impurity’s spin
Simp = eSimp (e is a unit vector), and due to the spatial isotropy
of the system, depend only on r = |r|. The ground-state energy
εg of the system is the position of the singularity of the retarded
impurity’s Green’s function ĜB(ε) and can be found from the
Dyson’s equation

Ĝ−1
B (ε) = ε − �̂(ε) − Bμ̂μ(ε,r) = 0 , (9)

where �̂(ε) is the self-energy of the impurity at zero magnetic
field, ̂μ(ε,r) is the vertex function, corresponding to the
interaction of the system with the probe magnetic field. Note
that in Eq. (9), we need to keep only the linear in Bμ

terms. From rotational symmetry properties, the only possible
“kinematic” structure of the vertex is

̂μ(ε,r) = (ε,r)Ŝμ/S. (10)

The vertex function can be split in local and nonlocal parts:

̂μ(ε,r) =
{

̂
μ
imp(ε), r = 0,

̂
μ

nl(ε,r), r > 0.
(11)

Calculating the shift εB of the position of the singularity in the
Green’s function ĜB(ε) due to the probe magnetic field and
using formula (8), we find the local and nonlocal components
of spin density s(r). Below, we will calculate the spin density
using two approaches: the self-consistent Born approximation
(for S = 1/2) and the renormalization group (for arbitrary S).

= + +

+ . . .

FIG. 2. Dyson’s equation in SCBA. Double line is impurity’s
Green’s function.

III. SELF-CONSISTENT BORN
APPROXIMATION (S = 1/2)

The standard approach for the calculation of a single-
fermion Green’s function is the 1/N expansion for the O(N )
group, where N = 3 is the number of magnon components. A
summation of the leading terms in the 1/N expansion results
in the self-consistent Born approximation (SCBA), see Fig. 2.
We will apply SCBA to the case of S = 1/2 impurity only. As it
will be demonstrated in Sec. IV C, for S > 1/2, corrections to
the impurity-magnon vertex, which are disregarded in SCBA,
become relevant. Therefore, in the latter case, SCBA fails and
an application of the RG technique is necessary.

A. Impurity Green’s function at zero magnetic field

To consider the interaction of the system with a probe
magnetic field, we first calculate the Green’s function of the
impurity at zero magnetic field. The Green’s function of the
impurity at B = 0 is proportional to the identity matrix in
the spin space, Ĝ(ε) = G(ε). The Dyson’s equation for the
Green’s function is graphically represented in Fig. 2. The
analytical form of the equation reads

G(ε) = 1

ε − �(ε) + i0
, (12)

where the impurity self-energy is given by the following
expression:

�̂(ε) = λ2
∫

idω

2π

∑
q

σμĜ(ε − ω)Dμν(ω,q)σ ν

= 3
∑

q

M2
qĜ(ε − ωq) . (13)

Here, ωq =
√

�2 + q2 is the magnon dispersion, Mq =
λ/

√
2ωq is the matrix element corresponding to the emission of

a magnon with momentum q by the impurity, and Dμν(ω,q) =
δμν/(ω2 − ω2

q + i0) is the magnon propagator. We expressed
the spin-1/2 operators via Pauli matrices Sμ = σμ/2. The
combinatorial factor 3 in Eq. (13) comes from a summation
over the intermediate polarization states of the magnon.

The sum over momentum q in Eq. (13) diverges at large |q|,
therefore we have to introduce an ultraviolet cutoff �. The pa-
rameter � depends on a particular realization of the system and
can be estimated as the inverse lattice spacing in the host AF.

The solution to Dyson’s equation (12) near the QCP (� →
0) has the following form:

G−1(ε) = (ε − ε0 + i0)

√
1 + 3λ2

2π2
ln

(
�

ε0 + � − ε − i0

)
.

(14)
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FIG. 3. (Color online) Spectral function of an S = 1/2 impurity
obtained in SCBA. (a) corresponds to the QCP (� = 0) and (b)
corresponds to a magnon gap � = 0.05�. The effective coupling
constant is set to κ = 0.6. The solid black line corresponds to
the Green’s function, calculated numerically, the red dashed line
corresponds to analytical formula (14). Note that in (a), the position
of the pole and the branching point are merging.

In the vicinity of the singularity point ε0 ≈ −3�λ2/4π2.
Formula (14) is obtained with logarithmic accuracy, i.e.,
assuming that ln ( �

ε0+�−ε
) 	 1.

The Green’s function (14) has a nontrivial analytic struc-
ture. At finite magnon gaps, the quasiparticle pole at ε = ε0 is
separated by the gap � from the incoherent part of the Green’s
function. At the QCP, when � → 0, the pole and the branching
point singularity are merging. The quasiparticle residue of the
impurity Green’s function G(ε) vanishes in the vicinity of the
QCP:

Z =
(

1 − ∂�(ε0)

∂ε

)−1

= 1√
1 + 3λ2

2π2 ln
(

�
�

)
∣∣∣∣∣∣
�→0

→ 0. (15)

Vanishing quasiparticle residue is the first signal of delocal-
ization of the impurity-induced spin cloud and therefore is an
indication of SCS [23].

The typical value of the impurity-magnon coupling constant
λ can be estimated from the lattice model, shown in Fig. 1.
Lattice calculations [28] on the basis of bond-operator mean-
field theory result in the value of the effective coupling constant
κ = 3λ2/2π2 ∼ 0.5, appearing in front of the logarithm
in formula (14). Therefore the logarithmic corrections are
significant in the vicinity of the QCP.

The analytical result (14) for the impurity Green’s function
can be compared with the direct numerical solution of
Dyson’s equation (12), the corresponding plots for spectral
functions −1/π Im{G(ε)} are plotted in Fig. 3. An artificial
broadening i0 → i2.5 × 10−3� is introduced in the numer-
ical procedure and in analytical formula (14). We see an
excellent agreement between the numerical and the analytical
results.

Let us make a comment about the validity domain of SCBA
for the results in the present section, and all following results,
which will be derived in Secs. III B and III C. Formally, SCBA
relies only on a 1/N expansion of the O(N ) group, independent
of the value of the coupling constant λ. SCBA is applicable
for arbitrary λ, in contrast to the RG method, which works
only for small λ. We will return to this discussion later,
in Sec. IV A.

(a)

Bµ

Γ̂µ
imp =

(b)

Bµ

Γ̂µ
nl =

FIG. 4. Example of diagrams for a coupling between a probe
magnetic field B and (a) an impurity spin or (b) the nonlocal spin
density. The solid line corresponds to a bare (λ = 0) impurity Green’s
function, the wavy line represents magnons, and the dashed line
represents the probe magnetic field B. The cross on the magnon line
corresponds to the magnon-B vertex, provided by the term B[φ × φ̇]
in the Lagrangian (5).

B. Calculation of nonlocal spin density snl(r)

To evaluate the nonlocal spin density induced by the
impurity at distances r > 0, we substitute the Green’s function
pole position εg = ε0 + εB into Eq. (9), expand it in εB up to
the first order, and use Eq. (8). The result reads

snl(r) = Znl(ε0,r) . (16)

The leading in coupling constant λ contribution to the vertex
̂

μ

nl is represented by the Feynman diagram shown in Fig. 4(b).
The analytical expression for the diagram is the following:

̂
μ

nl(ε,r) = nl(ε,r)σμ

=
∫

idω

2π

∑
q,k

(λσ�)Ĝ0(ε − ω)(λσβ)

×D�ν(ω,k)[−2iω εμνα ei(q−k)r ]Dβα(ω,q) , (17)

where Ĝ0(ε) = 1/(ε + i0) is the bare retarded Green’s func-
tion of a noninteracting impurity. The expression in square
brackets corresponds to the magnon-probe magnetic field
vertex, which we show in Fig. 4(b) as a circle with a cross
inside.

The SCBA equation for the vertex ̂
μ

nl(ε,r) is graphically
represented in Fig. 5. The analytical form of the equation for
the vertex is

nl(ε,r) = 
(0)
nl (ε,r) −

∑
q

M2
qG2(ε − ωq)nl(ε − ωq,r),

(18)

where 
(0)
nl (ε,r) corresponds to the first term in the right-hand

side (rhs) of the diagrammatic equation in Fig. 5 and reads


(0)
nl (ε,r) = 2λ2

∑
q,k

ei(q−k)r G(ε − ωq) − G(ε − ωk)

ω2
q − ω2

k

. (19)

Γ̂µ
nl += Γ̂µ

nl

FIG. 5. Diagrammatic equation for “nonlocal” vertex function ̂
μ

nl.
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Δr

1
0
2
s n

l(
r)

r3

FIG. 6. (Color online) Spin density snl(r) (multiplied by r3)
induced by an S = 1/2 impurity as a function of the dimensionless
distance y = �r calculated in SCBA. Points represent numerical
results for different values of magnon gap and effective coupling
constant κ = 3λ2/2π 2. Squares correspond to � = 6.25 × 10−3�,
triangles correspond to � = 1.25 × 10−2�; filled markers represent
κ = 0.3, open markers correspond to κ = 0.6. The solid line is the
analytical approximation (20).

To obtain expressions (18) and (19), we performed an
integration over ω in the rhs of the original SCBA equation,
shown in Fig. 5. The factor (−1) in Eq. (18) comes from
the algebraic identity for the Pauli matrices σμσ νσμ = −σ ν .
Formula (19) follows from (17), where the bare impurity
Green’s function is changed to the “dressed” Green’s function
G(ε), shown in Fig. 2.

To find snl(r), we solve numerically Eq. (18) for the vertex
nl(ε,r) and substitute the result together with the quasiparticle
residue Z, obtained from a numerical solution of Dyson’s
equation (12), to Eq. (16). A solution to Eq. (18) has been found
iteratively, starting iterations from the nl(ε,r) = 

(0)
nl (ε,r).

The results of the calculation of the spin density snl(r) for
different values of the magnon gap � and coupling constant λ

are presented in Fig. 6.
For the purpose of computational efficiency, we use a

spherical cutoff |q|,|k| � � in integrals in Eqs. (18) and (19),
instead of integrating over a cubic Brillouin zone. This cutoff
scheme results in the appearance of significant r oscillations in
the induced spin density snl(r), where the period of oscillations
is r ∼ 1/� and the amplitude of the oscillations is decaying
with increasing r . It is clear that these oscillations are
byproducts of the rigid spherical cutoff and will be notably
suppressed, if one performs a proper 3D integration over the
cubic Brillouin zone. Hence, in Fig. 6, we plot numerical
data for the spin-density, averaged over the period of the
oscillations.

Our numerical calculations show that the starting approx-
imation 

(0)
nl (ε,r) for the vertex function and the solution

nl(ε,r) of the SCBA equation (18) are very close to each
other. Therefore, to obtain an analytical approximation for the
nonlocal spin density, we substitute (19) in Eq. (16) and use
formula (14) for the impurity’s Green’s function, the result

Δ/Λ

S
n

l,
S

im
p

FIG. 7. (Color online) Integral nonlocal spin Snl and local spin of
the imputity Simp as a function of the magnon gap � in SCBA. Full and
open markers correspond respectively to the following values of the
effective coupling constant: κ = 0.6 and κ = 0.3. Circles correspond
to Snl, squares represent Simp, and triangles show the net spin Snl +
Simp. The solid lines are theoretical predictions for the local impurity
spin Simp, given by Eq. (25). The dotted lines are visual guides for
Snl. The red dashed line corresponds to the net spin equal to 1/2.

reads

snl(r) = λ2�

4π3
√

1 + 3λ2

2π2 ln �
�

√
1 + 3λ2

2π2 ln �r

K1(2�r)

r2
. (20)

Here, K1(x) is the Macdonald function of the first kind.
At distances 1/� < r < 1/�, using an expansion of the
Macdonald function K1(x) → 1/x at x → 0, we obtain a
power-law asymptotics for the spin density with logarithmic
corrections:

snl(r) → λ2

8π3r3

1√(
1 + 3λ2

2π2 ln �
�

)(
1 + 3λ2

2π2 ln �r
) . (21)

At large distances r > 1/�, the spin density (20) is exponen-
tially suppressed: snl(r) ∝ e−2�r/r5/2. In Fig. 6, solid lines
correspond to the analytical result given by Eq. (20). One
can see an excellent agreement between the analytical and the
numerical results.

The net spin of the system, which is given by the sum of
the local impurity spin and the spin of the nonlocal cloud, is
conserved and must be equal to S = 1/2. The integral spin,
corresponding to the nonlocal spin density

Snl =
∫

d3rsnl(r), (22)

is plotted in Fig. 7 versus �/�. We use the numerical results
for snl(r), shown in Fig. 6, in order to obtain Snl. One can
see that the nonlocal spin Snl logarithmically increases with
decreasing � and tends to Snl = 1/2 at the critical point.
Therefore the rest of the spin should be attributed to the
impurity’s spin Simp = 1/2 − Snl, which vanishes at the QCP.
We check this statement in Sec. III C by calculating the local
spin of the impurity.
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Γ̂µ
imp = + Γ̂µ

imp

FIG. 8. Diagrammatic equation for “local” vertex function ̂μ
imp.

Cross represents bare vertex (0)
imp = 1.

C. Local spin of the impurity and staggered magnetization

To calculate the impurity spin, localized at r = 0, we use a
similar approach to that we used in the previous section. We
introduce a local magnetic field B(r) = Bδ(r) and calculate
the energy shift of the impurity due to the magnetic field. The
result for the impurity spin reads

Simp = Z

2
imp(ε)

∣∣∣∣
ε=ε0

. (23)

A diagrammatic equation for the vertex function ̂
μ
imp(ε) =

imp(ε)σμ in SCBA has the graphical representation shown in
Fig. 8.

The corresponding analytical form of the equation, repre-
sented in Fig. 8, is

imp(ε) = 1 −
∑

q

M2
qG2(ε − ωq)imp(ε − ωq) . (24)

Solving equation (24) and substituting the solution into
Eq. (23), we obtain the spin of the impurity with logarithmic
accuracy:

Simp = 1

2
(
1 + 3λ2

2π2 ln �
�

)2/3 . (25)

We also calculate the residual spin of the impurity numerically,
solving iteratively Eq. (24). Both analytical and numerical
results for Simp at different values of the parameters � and
λ are plotted in Fig. 7. We see good agreement between the
analytical and the numerical results. From Fig. 7, we can notice
that the impurity spin logarithmically tends to zero when we
approach to the QCP, � → 0. In Fig. 7, we also show the net
spin Simp + Snl for different values of � and λ.

The results of our calculations, presented in Eqs. (21)
and (25) and also in Figs. 6 and 7, show that at the QCP the
local spin is approaching to zero and the spin of the system is
accumulated in the nonlocal spin cloud. This delocalized spin
cloud around impurity has a size proportional to the inverse
magnon gap r � 1/�, and therefore a significant part of the
impurity spin is separated from the charge, localized at r = 0.
We will return to this discussion again in Sec. IV B.

The net spin of the system equals to 1/2. This is the
exact statement and can be demonstrated at the diagrammatic
level. One can trace mutual cancellations of corrections to the
impurity spin and integral spin of the nonlocal cloud in every
order in λ. Corrections to the impurity spin Simp are canceled
by corrections to the integral spin Snl. The numerical results
for the net spin of the system presented in Fig. 7 are consistent
with the conservation of spin.

Using Eqs. (7) and (25), we obtain the following expression
for the staggered magnetization induced by the spin-1/2

impurity:

〈φ(r)〉 = −λ
e−�r

4πr

1(
1 + 3λ2

2π2 ln �
�

)2/3 . (26)

Away from the QCP, the staggered magnetization, induced
by the impurity is exponentially small. In the vicinity of the
QCP, the prefactor in Eq. (26) becomes logarithmically sup-
pressed, however, the staggered magnetization decays only as
〈φ(r)〉 ∝ 1/r .

IV. RENORMALIZATION GROUP APPROACH IN (3+1)D

In this section, we calculate the nonlocal and local compo-
nents of the spin density using the RG technique in 3 + 1
dimensions. In the RG approach, the coupling constant λ

becomes dependent on the energy scale. Since (3 + 1)D is the
upper critical dimension, the evolution of the running coupling
constant is logarithmic. It leads to logarithmic corrections to snl

and 〈φ(r)〉, similar to results (21) and (26) obtained in SCBA.
We derive our results for the case of an arbitrary spin S of the
impurity in Secs. IV A and IV B, and then we analyze the limit
of a large spin S in Sec. IV C.

In the RG technique, we consider the evolution of the
coupling constant λ, quasiparticle residue Z, spin density,
and staggered magnetization with the energy scale μ, starting
evolution from the ultraviolet scale � and finishing at the
infrared scale �. The scale μ here has the meaning of the
characteristic energy transfer from magnons to the impurity.
At the ultraviolet scale �, we set the parameters of the theory
to the bare values; in our calculations, � plays the role of
a renormalization point. Observables in the vicinity of the
QCP are calculated as a result of the RG evolution from the
ultraviolet scale � to the infrared scale μ = �.

A. Evolution of the coupling constant and quasiparticle residue

First, we calculate the evolution of the coupling constant
λ(μ). The one-loop correction to the coupling constant is
represented by the sum of diagrams shown in Fig. 9.

Note that in the RG approach, the correction to the coupling
constant includes the vertex correction [Fig. 9(b)], and also the
self-energy correction [Fig. 9(c)]. This is different from SCBA,
in which we disregard diagram (b).

The contribution δλ(b) to the coupling constant correction
is given by the diagram (b) in Fig. 9 and reads

Sμδλ(b) = λ3 Sν SμSν

S2

∫
idω′

2π

∑
k

G0(μ − ω′)

×G0(μ − ω − ω′)D(ω′,k)

≈ Sμ (S(S + 1) − 1)
S2

λ3

4π2
ln

�

μ
. (27)

= + +

(a) (b) (c)

FIG. 9. One-loop corrections to the impurity-magnon coupling
constant λ.
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After canceling out the factor Sμ from both sides of Eq. (27),
we obtain δλ(b). The second contribution δλ(c), which comes
from the diagram (c) in Fig. 9 reads

δλ(c) = λ3

(
1 + 1

S

)
G0(μ − ω)

×
∫

idω′

2π

∑
k

G0(μ − ω − ω′)D(ω′,k) (28)

and contains linear in � and logarithmic in � terms. The linear
term corresponds to the shift of the position of the quasiparticle
pole ε0 in the impurity’s Green’s function and therefore is
irrelevant for our purposes. The logarithmic term in δλ(2) reads

δλ(c) → − λ3

4π2

(
1 + 1

S

)
ln

�

μ
. (29)

The total correction to the coupling constant λ is

δλ = δλ(b) + δλ(c) = − λ3

4S2π2
ln

�

μ
. (30)

Note that for S = 1/2 the vertex correction (27) is suppressed
by the factor 1/N = 1/3, comparing to δλ(c). This suppres-
sion corresponds to the standard 1/N expansion of O(N )
group. However, at large S, the 1/N suppression of δλ(b)

is compensated by S, and hence δλ(b) and δλ(c) to a large
extent compensate each other, δλ(b) ≈ −δλ(c). Thus, at large
S, the vertex correction becomes significant and can not be
disregarded. This is the reason why SCBA fails in the case of
large impurity spin.

In the paradigm of RG, the evolution of the physical
parameters on some energy scale μ is determined by the
value of λ(μ) on the same scale. Hence Eq. (30) results in
the following Gellman-Low equation:

dλ(μ)

d ln μ
= λ3(μ)

4S2π2
. (31)

The solution to Eq. (31) with the initial condition λ(�) = λ is

λ(μ) = λ√
1 + λ2

2S2π2 ln �
μ

. (32)

Note that the running coupling constant (32) vanishes in the
infrared limit: λ(μ) → 0 at μ � � → 0. The RG scale μ is
bounded from below by the value of the magnon gap μ � �.

In order to find the quasiparticle residue of the impurity
Green’s function, we consider a one-loop correction to the
impurity’s self-energy. The logarithmic part of this correction
was already calculated as a part of the diagram (c) in Fig. 9.
The corresponding equation for the evolution of Z(μ) reads

d ln Z(μ)

d ln μ
=

(
1 + 1

S

)
λ2(μ)

4π2
. (33)

The solution to Eq. (33) with an initial condition Z(�) = 1
reads

Z(μ) = 1(
1 + λ2

2S2π2 ln �
μ

)S(S+1)/2 =
(

λ(μ)

λ

)S(S+1)

. (34)

The quasiparticle residue Z(μ) vanishes, while approaching
to the QCP: μ � � → 0.

= + +

(a) (b) (c)

FIG. 10. One-loop corrections to “local” spin Simp.

Note that the RG approach, being used in the current
section, is valid if the effective coupling constant κ̃ =
λ2/2S2π2 < 1, since we perform a perturbative expansion,
such as in Eq. (30). However, the proper expansion parameter
in the vicinity of the QCP is not κ̃ , but κ̃ ln �/�. The RG
method (in the single-loop approximation) allows to sum
up (leading) logarithmic corrections of the following kind:
κ̃m

∑
n κ̃n lnn(�/�). Therefore the results obtained within

the one-loop RG in Sec. IV are valid when κ̃ < 1 and
κ̃2 ln(�/�) < 1, but the product κ̃ ln(�/�) can have an
arbitrary value.

B. Impurity spin and nonlocal spin density

Now we consider the RG evolution of the impurity spin
Simp and spin density distribution s(r) with the renormalization
scale μ. As in Sec. III, we calculate Simp and s(r), considering
the interaction of the system with a probe magnetic field B(r).

We start from a calculation of the corrections to Simp due
to the interaction of the impurity with magnons. One-loop
corrections to Simp are shown in Fig. 10.

Note that the diagrams in Fig. 10 are analogous to the
diagrams in Fig. 9 for corrections to the coupling constant
λ. The only difference is that the impurity-magnetic field
coupling Simp · B is proportional to the impurity spin Simp.
Hence, the RG evolution equation reads

dSimp(μ)

d ln μ
= λ2(μ)

4S2π2
Simp(μ). (35)

The solution to Eq. (35) with the initial condition Simp(�) = S

is

Simp(μ) = S√
1 + λ2

2S2π2 ln �
μ

, (36)

which is proportional to solution (32) for the running coupling
λ(μ). The local spin at the impurity site is equal to Simp(μ �
�) and approaches to zero at the QCP. Using the result (36)
and relation (7), we obtain the distribution of the staggered
magnetization around an impurity:

〈φ(r)〉 = − λ

4πr

e−�r√
1 + λ2

2S2π2 ln �
�

. (37)

Now we calculate the nonlocal spin density snl(r). In
the RG technique, it is more natural to use the momentum
representation for the spin density, therefore we write the
evolution equation for the Fourier component snl(q). Leading
in λ2 contributions to snl(q) are provided by the one-loop
diagram shown in Fig. 4(b). Evaluation of this diagram with
logarithmic precision leads to

s
(0)
nl (q) ≈

{
λ2

4Sπ2 ln �
μ
, μ 	 q,

λ2

4Sπ2 ln �
q
, μ � q.

(38)
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= + +

=

(a) (b) (c)

FIG. 11. One-loop corrections to the nonlocal spin density snl(q).

Fourier transform of the second line of Eq. (38) gives the
spin density s

(0)
nl (r) = λ2/16Sπ3r3 at the distances 1/� < r <

1/�. In analogy with the result (21), obtained in SCBA, in
RG calculations, we should expect logarithmic corrections
to ∝1/r3 distribution. Note that the logarithmic corrections
are important, because they provide a proper normalization
condition of the integral nonlocal spin

∫
d3rsnl(r) → S at

the QCP. The volume integral of the spin density ∝1/r3 is
logarithmically divergent, ∝ ln �/�, if we disregard the log
corrections.

In order to account for the RG evolution of the spin-density,
we evaluate the single-loop corrections to the leading diagram
presented in Fig. 4(b). Diagrams (b) and (c) in Fig. 11 represent
these corrections, which are similar to the corresponding
diagrams in Figs. 9 and 10.

The RG evolution of the nonlocal spin density distribution
reads

dsnl(q,μ)

d ln μ
=

{
λ2(μ)
4S2π2 snl(q,μ) − λ2(μ)

4Sπ2 , μ 	 q,

λ2(μ)
4S2π2 snl(q,μ), μ � q.

(39)

Note that the equation for the evolution of the spin density
with μ is different in two domains, μ 	 q and μ � q, which
is due to the fact that the one-loop expression (38) for the spin
density has different forms in both domains. We solve Eq. (39)
separately in the two domains and match the solutions at μ �
q. As an initial condition for the evolution equation (39), we set
snl(�) = 0. We obtain the following result for the spin density
at infrared scale μ � �:

snl(q) = S√
1 + λ2

2S2π2 ln �
�

(√
1 + λ2

2S2π2
ln

�

q
− 1

)
. (40)

The condition of the net spin conservation in the momentum
representation has the form snl(q)|q→0 + Simp = S. Using
expressions (36) and (40), it is easy to check the net spin
conservation, having in mind that the low bound for the
momentum q in our formulas is q � �.

Calculating the Fourier transform of Eq. (40), we obtain the
spatial distribution of the induced spin density:

snl(r) = λ2

16Sπ3r3
√

1 + λ2

2S2π2 ln �
�

√
1 + λ2

2S2π2 ln �r

(41)

at distances 1/� < r < 1/�. Using (41) and (36), one can
verify the conservation of the net spin in r representation:∫

d3r snl(r) + Simp = S. The integration of the nonlocal spin
density should be performed in the range of distances 1/� <

r < 1/�, which is defined by the infrared and the ultraviolet
cutoffs of our theory.

Note that at the QCP, the main contribution to the nonlocal
spin

∫
d3r snl(r) comes from large distances r < 1/� → ∞.

Indeed, the integral

∫
1/��r�R

d3r snl(r) = S

√
1 + λ2

2S2π2 ln �R − 1√
1 + λ2

2S2π2 ln �
�

(42)

logarithmically grows as a function of the upper integration
limit R, which means that a major part of spin in the nonlocal
cloud is accumulated at distances of the order of R � 1/�.
At the same time, the local spin of the impurity Simp vanishes
at the QCP, see Eq. (36). Therefore we conclude that at the
QCP the impurity spin is spatially separated from the impurity
charge.

The results (34), (37), and (41) obtained in RG technique
are similar to corresponding answers (15), (26), and (21)
obtained in SCBA. For the spin S = 1/2, the difference is in the
numerical factors in front of the logarithms: 3λ2/2π2 in SCBA,
comparing to 2λ2/π2 in RG. For Z and 〈φ(r)〉, the powers of
the logarithms are also insignificantly changed: 1/2 → 3/8
and 2/3 → 1/2, respectively. The reason for these minor
changes is the 1/N vertex correction, which is accounted in
the RG approach [see diagram (b) in Fig. 9], and is disregarded
in SCBA. The RG results are more accurate than the SCBA
results. However, the expansion of the RG results and the
SCBA results coincide up to the single-loop order (first order
in λ2).

Our results show that in a three-dimensional antiferromag-
net, the impurity-induced spin density at the QCP decays as
snl(r) ∝ 1/r3 [with corresponding ln(r) corrections] and the
staggered magnetization decays as 〈φ(r)〉 ∝ 1/r . The RG flow
in (3 + 1)D leads only to ln(r) corrections to snl(r), leaving the
power laws unchanged.

On the other hand, in (2 + 1)D, the RG flow has Wilson-
Fisher fixed points, which instead of logarithmic correc-
tions provide nontrivial critical exponents for the correlation
functions. For instance, the impurity quasiparticle residue
Z ∝ �η′/2 (see, e.g., Refs. [10,29]) acquires an anomalous
dimension near the QCP, η′ = 1 (in the one-loop approxi-
mation). It results in the following scaling law [10] in the
spin density distribution snl(r) ∝ 1/r2−η′/2 ≈ 1/r3/2. A more
accurate value of the anomalous dimension η′ ≈ 0.4 is known
from a quantum Monte Carlo study [11] of hole-induced mag-
netization in a Heisenberg bilayer model. Following similar
arguments to the ones used to obtain Eq. (7), the staggered
magnetization in (2 + 1)D reads [10] 〈φ(r)〉 ∝ �η′/2 ln(�r)
at �r � 1. Although the scaling laws are well known, the
problem of calculation of the corresponding prefactors still
remains unsolved.

As one can see, the integral spin
∫ R

d2rsnl(r) accumulated
in the nonlocal cloud in (2 + 1)D grows as a power law of
the upper integration limit ∝Rη′/2, in contrast with the slow
logarithmic growth in (3 + 1)D [see Eq. (42)]. Therefore the
effect of spatial spin-charge separation at the QCP is more
pronounced in two-dimensional systems, rather then in three-
dimensional systems.
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So far, we have considered the physics of spin-charge
separation when approaching the QCP from the disordered
phase. What happens when approaching the QCP from the AF
ordered Neel phase? In the ordered phase, the interaction of an
impurity (hole) with a probe magnetic field cannot be written as
ψ†(S · B)ψ since both the impurity and the antiferromagnetic
background interact with the magnetic field. The interaction
Lagrangian, instead, has quite an unusual form [30,31]:

δLB = (B · n) ψ†(S · n)ψ, (43)

where n(r) is the Neel ordering vector, n2 = 1. The interaction
energy (43) of the impurity with a probe magnetic field depends
on the direction of the spontaneous staggered magnetization
n. This implies that the notion of an impurity spin in the
phase with broken rotational invariance is not well defined.
This is why usually people use the notion of a pseudospin
originating from two AF sublattices. For example, a holon
carries charge and a psedospin, but it does not carry spin in the
usual sense. Therefore it is possible to say that deeply in the
Neel phase, the impurity spin and charge are always separated,
or more precisely, partially separated, see also the discussion
in Ref. [32].

Even though the notion of the impurity spin in the AF
phase is poorly defined, it is not meaningless to ask a question
about the distribution of the induced magnetization around the
impurity. We do not have a complete solution to this problem,
but rather propose an intuitive physical picture. Interestingly,
this problem has direct relevance to the transition to the Adler’s
theorem regime in the ordered phase. By analogy with the
case of 2D AF [33,34], we expect the spin density in the
cloud to decay as a power law snl(r) ∝ 1/rν in the Neel
phase. The value of the exponent ν should differ in different
spatial domains, provided by two characteristic scales in the
problem. The first scale is determined by the impurity spin-flip
energy [34], rA ∼ 1/λ|φ0| ∝ 1/λ|�|, here φ0 is the vacuum
expectation value of φ field in the Neel phase. The second
scale rH ∼ 1/mH ∼ 1/|�| is given by the energy gap of the
longitudinal mode. Subscripts A and H stand for Adler and
Higgs. For weak coupling, rA > rH . In the region r < rH ,
we expect the same exponent for the magnetization decay,
snl(r) ∝ 1/r3, as on the disordered side of the QCP. To put
it in another way, at small distances r < rH , only magnons
with large momenta are relevant, which do not “know”
the difference between the spontaneously broken and the
paramagnetic phases. On the other hand, at distances r > rA,
Adler’s theorem for the impurity-magnon vertex is valid and
hence the magnetization cloud decays faster than 1/r3—we
expect that it decays as 1/r5. A crossover between the two
decay laws is within the range rH < r < rA. At the QCP, both
scales diverge, which means the region with snl(r) ∝ 1/r3 is
unlimitedly extending at |�| → 0. This is the same behavior
as in the disordered phase.

C. Semiclassical limit: impurity with large spin

From theoretical point of view, it is interesting to consider
the semiclassical case of large spin of the impurity. Taking the
formal limit S → ∞ in Eqs. (36), (37), and (41), we obtain

Simp = S, snl(r) = 0, 〈φ(r)〉 = −λ
e−�r

4πr
. (44)

We see from Eq. (44), that in the semiclassical limit there is no
nonlocal spin density around the impurity and the local spin S

is “unscreened” in this case. Therefore there is no spin-charge
separation in the semiclassical limit.

Note that the local impurity spin, the nonlocal spin density,
and the staggered magnetization in the semiclassical limit are
provided just by a tree-level approximation. The reason is that
quantum fluctuations of the impurity spin are suppressed at
large S. Indeed, let us consider the case of the impurity in the
state with the maximal projection of spin on the quantization
axis z: |S,Sz = S〉. The interaction of the impurity with a
magnon either leaves projection Sz unchanged or changes it
by unity, �Sz = −1. The action of operator Ŝz on the state
|S,S〉 provides the eigenvalue S. On the other hand, the matrix
element of the lowering operator Ŝ− between states |S,S − 1〉
and |S,S〉 is equal to

√
2S. Therefore processes with a change

of the projection of the impurity spin are suppressed in the
limit of large S.

In the semiclassical limit, only the z component of the
operator of the impurity spin is relevant, as a result the
Lagrangian in Eq. (4), corresponding to the interaction of the
impurity with magnons, takes the form

Lint = −λψ†ψφz. (45)

Thus the problem of a classical impurity “dressed” with z-
polarized magnons is equivalent to the problem of an impurity
interacting with a scalar bosonic field φz.

The problem of interaction between an impurity and a scalar
boson field is known as an independent boson model; this
model is exactly solvable [35]. The exact solution agrees with
Eq. (44).

The retarded Green’s function of the impurity in time
representation at t > 0 reads [35]

G(t) = −i exp

[
itε0 − λ2

∑
q

(1 − e−iωq t )

2ω3
q

]
, (46)

where ε0 = −λ2 ∑
q 1/2ω2

q . Performing a Fourier transforma-
tion of the impurity Green’s function (46), and calculating the
quasiparticle residue at the Green’s function pole ε = ε0, we
obtain

Z = exp

(
−λ2

∑
q

1

2ω3
q

)
=

(
�

�

)λ2/4π2

. (47)

In the limit S → ∞, the RG result (34) is consistent with
Eq. (47).

V. DISCUSSION OF RESULTS AND CONCLUSION

The present paper has considered a single impurity with
spin S embedded into a 3D AF system. The system is close
to the O(3) quantum critical point (QCP) separating paramag-
netic from the Neel phase. The impurity spin induces the usual
magnetization and the staggered magnetization clouds around
the position of the impurity. Using the effective Lagrangian
method and approaching the QCP from the disordered phase,
we have calculated spatial distributions of the spin density
s(r) (magnetization) and the staggered magnetization 〈φ(r)〉
in the cloud. For the calculations, we use two different
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methods, the self-consistent Born approximation (SCBA) and
the renormalization group (RG). SCBA is justified by the small
parameter 1/N where N = 3 for the O(3) group, while RG is
justified by the small coupling constant. We show that for
S = 1/2, the results of both methods are consistent within
the expected accuracy 1/N . However, at larger values of the
impurity spin, the SCBA method is not valid because the small
parameter 1/N is compensated by the large spin. Therefore,
for S � 1, only the RG results are valid.

The impurity quasiparticle residue vanishes at the QCP, see
Eq. (34). This is the first indication that the impurity spin is
fully transferred to the magnon cloud. The screening of the
impurity spin by spin-one magnetic fluctuations is a Kondo-
like effect in a bosonic sector [16]. The spin density has a
local component Simpδ(r), which is localized at the site of the
impurity, as well as a spatially distributed nonlocal part snl(r).
As a result of the vanishing residue, the impurity’s average
spin Simp logarithmically vanishes at the QCP, see Eq. (34).
Of course, the total spin S is conserved and it is transferred
into the nonlocal spin cloud. The nonlocal spin density at
r < 1/�, where � is the magnon gap, decays as snl(r) ∝ 1/r3

with proper logarithmic corrections, see Eq. (41). Obviously,
at r > 1/�, the spin density decays exponentially.

Spin in the nonlocal cloud is mainly accumulated at large
distances r � 1/�, see Eq. (42). Therefore the spin is spatially
separated from the impurity and at � → 0 the separation scale
becomes infinite. In this sense, our results demonstrate the
spin-charge separation in 3D magnetic systems at the QCP.

Interestingly, the cloud of the staggered magnetization
at r < 1/� decays only as the first power of distance, see
Eq. (37). This is why a tiny concentration of impurities can
significantly influence the critical behavior of the system.

Finally, we have analyzed the semiclassical limit of a very
large impurity spin, S 	 1. In this limit, the quantum spin-flip
transitions become negligible and the spin impurity problem
is reduced to an exactly solvable textbook example [35].
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