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Single-ion anisotropy and magnetic field response in the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7
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Motivated by its role as a central pillar of current theories of the dynamics of spin ice in and out of equilibrium,
we study the single-ion dynamics of the magnetic rare-earth ions in their local environments, subject to the
effective fields set up by the magnetic moments with which they interact. This effective field has a transverse
component with respect to the local easy axis of the crystal electric field, which can induce quantum tunneling.
We go beyond the projective spin-1/2 picture and use instead the full crystal-field Hamiltonian. We find that the
Kramers versus non-Kramers nature, as well as the symmetries of the crystal-field Hamiltonian, result in different
perturbative behavior at small fields (�1 T), with transverse field effects being more pronounced in Ho2Ti2O7

than in Dy2Ti2O7. Remarkably, the energy splitting range we find is consistent with time scales extracted from
experiments. We also present a study of the static magnetic response, which highlights the anisotropy of the
system in the form of an off-diagonal g tensor, and we investigate the effects of thermal fluctuations in the
temperature regime of relevance to experiments. We show that there is a narrow but accessible window of
experimental parameters where the anisotropic response can be observed.

DOI: 10.1103/PhysRevB.92.155120 PACS number(s): 75.10.Dg, 75.10.Hk, 71.70.Ch, 75.30.Cr

I. INTRODUCTION

The properties and behavior of spin-ice materials, such
as Ho2Ti2O7 (HTO) and Dy2Ti2O7 (DTO), among others,
are deeply rooted in the characteristic single-ion anisotropy
of rare-earth (RE) magnetism. The two lowest-energy states
(degenerate at the single-ion level) are separated by a large
energy gap (�200 K) from the other excited states, thus
projecting the system onto an effective spin-1/2 space at
low temperatures. The lowest-energy doublet has moreover a
strong easy-axis anisotropy, which is responsible for its classi-
cal Ising-like behavior [1] (for a recent detailed discussion, see
also Ref. [2]). These properties justify modeling the magnetic
moments as classical Ising spins with a local easy axis. The rich
thermodynamic behavior of spin-ice systems can be largely
accounted for by the physics of the ground-state doublet
combined with the pyrochlore lattice structure and exchange
and dipolar interactions: frustration leads to an extensively
degenerate ground state [1], topological order, and an emergent
gauge symmetry hosting magnetic monopole excitations [3,4].

This thermodynamic model of spin ice was later promoted
to a dynamical one by introducing an experimentally in-
spired [5–8] single spin-flip time scale [9] (see also Ref. [10]).
This choice was motivated by the experimental observation
of a well-defined microscopic time scale in the magnetic
response of these materials, which appears to be largely
temperature-independent in the regime of interest. Such dy-
namical modeling of spin ice proved reasonably successful at
capturing the experimental response and relaxation properties,
and it triggered a new research direction into the behavior
of these systems out of equilibrium—an interesting and
highly tuneable setting that combines topological properties,
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kinematic constraints, emergent pointlike quasiparticles, and
long-range Coulombic interactions [11,12].

A temperature-independent microscopic spin-flip time
scale is typically associated with quantum tunneling under
an energy barrier that the ion has to traverse in order to
reverse its magnetic polarization. Understanding this behavior
clearly requires that we go beyond the single-ion ground-state
doublet (spin-1/2) approximation, and we investigate the role
of possible quantum perturbations that may be responsible for
the tunneling dynamics. To date, such understanding appears
to be lacking in the literature.

The work presented herein is a step toward gaining insight
into the quantum single-ion dynamics in spin-ice HTO and
DTO. Specifically, we focus on spin-spin interactions as a
source of quantum fluctuations. The exchange and dipolar
fields acting on a given ion due to others in the system have
both a longitudinal and a transverse component with respect
to the local easy axis. The latter acts as a transverse field in
the effective Ising model. We study in detail the effects of
such a transverse field on the single-ion behavior, obtaining
the resulting energy splitting (namely, inverse characteristic
time scales) and anisotropic response, both at zero as well as
finite temperature.

There exists a concrete motivation for studying the specific
case of an exclusively transverse magnetic field, a setting
that at first seems to require fine-tuning the longitudinal
component to vanish. This may not appear straightforward
in spin ice, a dense assembly of large rare-earth moments
interacting via long-range and geometrically complex dipolar
interactions; see Eq. (1).

However, spin ice is no stranger to such fine-tuning. It
is now well understood how the geometry of the pyrochlore
lattice conspires with that of the dipolar interaction to ensure
that the longitudinal total field on each spin is, to a good
approximation, equal for all spins in all ground states [13],
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which are exponentially numerous [14] and in general not
related by any symmetry transformation.

Similarly, a pointlike defect in a spin-ice ground state,
known as a magnetic monopole [3], has an energy independent
of its location, as long as it is spatially well separated from
other monopoles. As the spatial displacement of a monopole
proceeds via the flip of a single spin, this spin must be subject to
a vanishing longitudinal field—otherwise the excitation energy
in the system, encoded in that of the monopole, would change
as the monopole moves.

Therefore, our study can be thought of as providing a picture
of the quantum mechanics underpinning the motion of an
isolated monopole defect in a ground state of spin ice. The
properties of such mobile monopoles are currently subject to
both experimental [15–17] and theoretical work [18].

For the purpose of the present paper, we approximate the
exchange interactions by their classical form. Namely, we
consider the interaction Hamiltonian

H = −J
∑
〈ij〉

�Si · �Sj ,

+Dr3
nn

∑
(ij )

[ �Si · �Sj

|rij |3 − 3(�Si · rij )(�Sj · rij )

|rij |5
]
, (1)

where i,j label the sites of the pyrochlore lattice; �Si = σi zi ,
where σi = ±1 and zi are the (four inequivalent) unit vectors
pointing from one tetrahedral sublattice to the other; J and D

are the exchange and dipolar coupling constants, respectively;
rnn is the nearest-neighbor distance on the pyrochlore lattice;
and rij is the distance between the two sites i and j . Within
the approximation of this Hamiltonian, the action of all other
ions on a given one is an effective magnetic field,

H =
∑

i

�Beff(i) · �Si,

�Beff(i) = −J
∑
j, 〈ij〉

�Sj + Dr3
nn

∑
j

[ �Sj

|rij |3 − 3(�Sj · rij ) rij

|rij |5
]
,

whose strength and direction were studied in Ref. [19]. Here
we thus limit ourselves to considering the action of an applied
field on the full single-ion Hamiltonian, beyond the customary
projection to its lowest-lying states.

We find that the Kramers versus non-Kramers nature of
HTO versus DTO results in a different perturbative behavior
at small fields, whereby in HTO the ground-state doublet
splits at second order in the applied field strength, whereas
DTO only splits at third order, as illustrated in Fig. 5. One
therefore expects transverse fields in HTO to be more effective
at inducing quantum tunneling dynamics than in DTO (at
small fields, �0.5 T). Using degenerate perturbation theory,
we provide an analytical understanding of this difference in
behavior in terms of symmetries of the CF Hamiltonian. Re-
markably, the energy splitting range we find is consistent with
quantum tunneling time scales observed in experiments [7].

We also present a detailed study of the static magnetic
response to a transverse field, which highlights the anisotropy
of the system. We find interesting resonances as a function
of the in-plane direction of the field, where off-diagonal
components of the g tensor become nonvanishing (namely,

a purely transverse field in the xy plane induces a longitudinal
response along the local z axis).

We investigate the effects of thermal fluctuations in the
temperature regime of relevance to experiments. We find that
in thermal equilibrium, much of the anisotropic response
averages out up to rather large fields (approximately a few
Tesla) for temperatures as low as a 100 mK. Nonetheless,
signatures of the anisotropic response in spin ice could be
experimentally observed at low temperatures in fields ∼10 T.
Our results further support the robustness of the classical easy-
axis Ising approximation for the single-ion behavior in spin ice,
while at the same time helping to quantify its limit of validity.

We stress that all of the above features can only be
grasped via a full description of the single-ion Hamiltonian
capturing the complexity of its interaction with the other
spins/environment. They cannot be understood (but at most
added at an effective level) if we limit our modeling projec-
tively to the lowest CF levels.

The paper is organized as follows. Section II introduces the
full single-ion crystal-field (CF) Hamiltonian for rare-earth
ions Ho3+ and Dy3+ in spin ice. Section III investigates the
effects of a magnetic field at zero temperature, with specific
focus on fields transverse to the local easy axis. We use exact
diagonalization (Sec. III A) as well as degenerate perturbation
theory in the limit of small fields (Sec. III B). Thanks to the
large CF energy scales typical of these systems, perturbation
theory is indeed valid well into the range of field strengths
of experimental interest. Finally, Sec. IV discusses thermal
effects in the relevant temperature range and explores the
behavior of the resulting single-ion magnetic susceptibility,
and in Sec. V we summarize and discuss our results.

II. CRYSTAL FIELD OF SPIN-ICE RE3+ IONS

The general formula for spin-ice pyrochlore oxides is
A3+

2 B4+
2 O2−

7 , where the A and B species are rare-earth
(RE) and transition-metal (TM) cations, respectively [20–22].
The structure is given by the space group Fd3̄m featuring
two sublattices that interpenetrate each other and consist of
networks of corner-sharing tetrahedra. In HTO and DTO, the
A magnetic sites host, respectively, the Ho3+ and Dy3+ ions,
while the B sites are occupied by nonmagnetic Ti4+ ions.

The local point-group symmetry for the RE3+ ions in mag-
netic pyrochlore oxides is a trigonal D3d (see Appendix A).
This is schematically shown in Fig. 1 and it accounts for
the arrangement of the eight oxygen ions (yellow spheres)
surrounding the rare-earth ion (green sphere). The oxygen sites
are distinguished in two main subclasses according to their
position with respect to the central RE site: the O1 sites and
the O2 sites. The strong axial alignment of the O1 ions (above
and below the central RE3+ ion) drives the classical Ising-like
anisotropy typical of spin-ice materials. The O2 ions, displaced
in equilateral triangles lying in parallel planes transverse to the
easy axis of the O1 ions, are responsible for the antiprismatic
character of the D3d symmetry.

The crystal-field Hamiltonian of a rare-earth ion in D3d

symmetry can be conveniently expressed as [23,24]

ĤCF = B̃2
0 Ô2

0 + B̃4
0 Ô4

0 + B̃4
3 Ô4

3 + B̃6
0 Ô6

0 + B̃6
3 Ô6

3 + B̃6
6 Ô6

6 ,

(2)
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(a) Perspective view

(b) Side view (c) Top view

FIG. 1. (Color online) The crystal-field environment of a RE3+

ion in a magnetic pyrochlore oxide. Ho3+ is used for concreteness.
Panels (a), (b), and (c) show, respectively, a tilted, side, and top view
of the same structure. For clarity, panel (a) additionally displays the
six surrounding Ho3+ ions and their second axial oxygens. The Ti4+

ions are arranged in a hexagon coplanar with the RE3+ ion in the
center. The edges of the triangles connect the coplanar O2 oxygens:
three above and three below the plane of the RE3+ and Ti4+ ions.
The two green planes shown are parallel to each other and contain
the respective triangles of O2 ions. The antiprismatic arrangement of
the six O2 gives the D3d point-group symmetry. The two remaining
O1 ions, aligned along the 〈111〉 axis with the central RE3+, drive the
local Ising anisotropy.

where the Stevens operators Ôk
q together with the respective

parameters B̃k
q determine the CF spectrum and eigenfunctions

of each compound. Following the general convention [23],
the Ôk

q are such that the q = 0 operators are k polynomials

of only diagonal operators Ĵ2,Ĵz, while those with q > 0
include also q powers of the ladder operators Ĵ+,Ĵ−. A
list of the matrix elements of the Stevens operators in the
|J,MJ 〉 basis, where J,MJ are the quantum numbers for the
total angular momentum and its projection along the local
〈111〉 axis, respectively, is given in Ref. [25], and it can be
straightforwardly obtained from their operator expressions in
Appendix B. The crystal-field parameters for HTO and DTO
are listed in Table I.

The CF Hamiltonian can be diagonalized to obtain the CF
states. The spectrum is, in general, made of multiplets and
singlets since the Stark splitting, induced by the crystalline
electric fields, removes only partially the 2J + 1 degeneracy
of the ground-state multiplet. The spectrum of HTO [Fig. 2(a)]
features five singlets and six doublets, while the spectrum of
DTO [Fig. 2(b)] is only made of doublets. This discrepancy
is due to Kramers’ theorem forbidding singlets in spectra of

TABLE I. The crystal-field parameters (in meV) for the Hamil-
tonian in Eq. (2) obtained from Refs. [26,27] (see also Appendix C).

HTO (meV) DTO (meV)

B̃2
0 −7.6×10−2 −1.6×10−1

B̃4
0 −1.1×10−3 −2.3×10−3

B̃4
3 8.2×10−3 1.6×10−2

B̃6
0 −7.0×10−6 6.5×10−6

B̃6
3 −1.0×10−4 9.9×10−5

B̃6
6 −1.3×10−4 1.0×10−4

atoms with an odd number of electrons (Ho3+ has n = 10
electrons in the 4-f shell, while Dy3+ has n = 9). The order
of magnitude for the energies, however, is roughly the same,
and the ground state is a doublet in both. The energy gap
between the ground-state doublet energy and the first excited
level is in excess of 200 K.

Two possible basis eigenfunctions for the ground-state
doublets are displayed in Fig. 3, showing that they can
be well approximated by the fully polarized states |ψ0〉 ≈
|MJ = J 〉 , |ψ1〉 ≈ |MJ = −J 〉. This illustrates the strong
anisotropy along the local quantization axis in both systems.

III. EFFECT OF A MAGNETIC FIELD

The degeneracy of the crystal-field spectra is removed in
the presence of a magnetic field B:

Ĥ = ĤCF − gJ μB Ĵ · B. (3)

In this equation, μB = e�/2me is the Bohr magneton (e and
me are, respectively, the charge and the mass of the electron)
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FIG. 2. (Color online) Crystal-field spectra for HTO (a) and DTO
(b), respectively. The spectrum of HTO features both doublets (solid
lines) and singlets (dashed dotted lines). In meV, bottom to top, the
series of doublets is 0, 21.96, 25.99, 59.59, 71.51, and 76.80, while the
series of singlets is 20.42, 27.71, 69.36, 69.94, and 80.52. In contrast,
since Dy3+ is a Kramers ion, DTO features only doublets. These are
eight in total: 0, 25.23, 38.0, 38.21, 51.75, 77.49, 87.65, and 89.16.
Note that the thicker line just below 40 meV is not a quadruplet, but
rather it corresponds to the two doublets 38.0 and 38.21.
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FIG. 3. (Color online) A possible choice of basis wave functions,
|ψ0〉 (solid lines) and |ψ1〉 (dotted gray lines), for the ground-state
doublet of Ho3+ (a) and Dy3+ (b). The wave functions have been
obtained by diagonalizing the crystal-field Hamiltonian in Eq. (2)
with the crystal-field parameters given in Table I. Insets: the same
shown over a narrower vertical range.

and gJ is the Landé factor for the RE3+ ion with total angular
momentum Ĵ (gJ = 5/4 and 4/3, respectively, for Ho3+ and
Dy3+).

In the following, we use the local coordinate system

x0 = 1√
6

(1,1,−2), y0 = 1√
2

(−1,1,0), z0 = 1√
3

(1,1,1),

(4)

with respect to the global axes X,Y,Z of the cubic pyrochlore
unit cell (see Fig. 4), with the z0 axis conveniently pointing
along the high-symmetry direction of the crystal-field Hamil-
tonian [26,27].

A. Exact diagonalization

A longitudinal field along the local easy axis leads to
conventional Zeeman splitting linear in field strength and
selects one of the two polarized states in Fig. 3. At similar

FIG. 4. (Color online) The local coordinate frame x0,y0,z0 (red
arrows) used to describe the transverse magnetic field B (green arrow)
and its direction angle φ in Eq. (5). The atoms are shown in the same
top-view as in Fig. 1(c).

field strengths, this is the field direction that results in the
largest energy splitting due to the anisotropy.

If the longitudinal component vanishes and a purely trans-
verse field component is present, then the chosen polarized
basis states split into symmetric “bonding” and antisymmetric
“antibonding” combinations with, respectively, E0 and E1

energies. A polarization in the plane perpendicular to the
easy axis is, however, opposed by the anisotropy, and this
competition results in unusual effects that will be discussed in
the following.

The coupling of the total angular momentum to the
transverse magnetic field can be written in terms of ladder
operators as

Ĵ · B⊥ = 1
2 |B⊥|(e−iφ Ĵ+ + eiφĴ−) . (5)

In the local coordinate system, φ is the angle of the field
with respect to x0 in the plane transverse to the easy axis z0

(see Fig. 4).
The dependence of the splitting of the ground-state doublet

�E01 = E1 − E0 versus the magnitude of the transverse field
is shown in Fig. 5 for both HTO and DTO. For very large
fields, the anisotropic effect of the CF environment becomes
negligible and the magnetic moments undergo simple Larmor
precession with frequency ωL given by

�E01 = �ωL = gJ μB|B|. (6)

Due to the strong crystal fields in HTO and DTO, such a
regime is clearly experimentally unattainable (B > 103 T).
This illustrates the strength of the energy scales set by the
crystal field, and it provides a reference for magnetic field
values that can be considered a small perturbation.

At lower fields, when the two competing terms in Eq. (3)
have comparable energies, the response of the system becomes
anisotropic. This anisotropy is much stronger for Ho3+ than for
Dy3+, and, for φ = 30◦ + n 60◦, with n an integer, it leads to
resonances (due to level crossing between E0 and E1) shown
in Fig. 5 (red dotted-dashed line) and in Fig. 6(a).

Finally, at fields of the order of 1 T or less, the ion enters
a perturbative regime where �E01 is given by the following
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FIG. 5. (Color online) Splitting of the ground-state doublet under
the influence of a purely transverse magnetic field. The red curves
correspond to the non-Kramers behavior of HTO, while the blue
curves correspond to the Kramers behavior of DTO. Note that
the y axis is dimensionless to allow a consistent comparison of the
two systems. The different curves correspond to fixed angles of the
transverse field: φ = 0 ◦ (solid curve), φ = 10 ◦, (short-dashed), φ =
20 ◦ (dotted), and φ = 30 ◦ (dotted-dashed); angles of φ + n 120◦,
with n integer, give exactly the same curves because of the CF
trigonal symmetry of the O2 ions. The two long-dashed straight lines
show the limiting behaviors at very high fields—Larmor precession,
Eq. (6)—and at low fields for HTO—degenerate perturbation theory,
Eqs. (7a) and (8).

power laws:

�E01 = α
(2)
HTO|B|2 for HTO, (7a)

�E01 = α
(3)
DTO(φ)|B|3 for DTO. (7b)

Ho3+ is not a Kramers ion and features some singlets in its
unperturbed energy spectrum. These are responsible for the
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FIG. 6. (Color online) Ground-state splitting for both HTO (a)
and DTO (b), as a function of the angle φ at four particular values
of the transverse field (from bottom to top in each figure): B = 0.03,
0.55, 11.31, and 228.33 T. For HTO, the two strongest field values
resonate and make the splitting close at φ = 30◦ + n 60◦ (where n is
an integer).

quadratic behavior (low-field asymptotics in Fig. 5), whose
coefficient

α
(2)
HTO = 2.68×10−6 meV

T2 (8)

can be obtained analytically from perturbation theory (see
Sec. III B). Dy3+ instead is a Kramers ion, and all unperturbed
energy levels are doublets. As we explain in the next section,
this causes the quadratic correction to vanish identically,
leading to a cubic dependence on the applied field. Fitting
the corresponding asymptotic low-field behavior in Fig. 5, we
obtain the angle-dependent coefficient

α
(3)
DTO(φ) = 6.8×10−7[ 1 + A cos(6φ)]

meV

T3 (9)

with A = 0.114.

B. Perturbation theory

We can gain insight into the low-field behavior by using
(degenerate) perturbation theory on

Ĥ = Ĥ0 − λV̂ , (10)

where Ĥ0 ≡ ĤCF is the CF Hamiltonian in Eq. (2), and the
perturbation V̂ ≡ ECF Ĵ · B/|B| corresponds to the Zeeman
energy in Eq. (5), tuned by the dimensionless parameter
λ = gJ μB|B|/ECF, where ECF is an arbitrary reference energy
scale, e.g., related to the CF bandwidth. It is useful to introduce
|ψ (0)

n 〉 as the (unperturbed) CF eigenstates with energy E(0)
n

(n = 0, . . . ,2J ).
The splitting of the RE3+ ground-state doublet is given by

�E01 = λ

√
(V0,0 − V1,1)2 + 4|V0,1|2

+ λ2

√√√√(∑
k>1

|V0,k|2 − |V1,k|2
�E

(0)
0k

)2

+ 4

∣∣∣∣∣∑
k>1

V0,kVk,1

�E
(0)
0k

∣∣∣∣∣
2

(11)

up to second order in λ. In this expression, Vn,m ≡ 〈ψ (0)
n | V̂

|ψ (0)
m 〉 and �E

(0)
0k = E

(0)
k − E

(0)
0 .

First, we notice that both HTO and DTO have V0,0 =
V1,1 = V0,1 = 0 (see Appendix E), and therefore the first-order
contribution vanishes identically. To evaluate the second-order
contribution, we need to consider matrix elements of the trans-
verse field perturbation V̂ between the ground-state doublet
and the excited states. The symmetries of these matrix elements
reflect the symmetries of the crystal-field environment.

In Appendix E, we discuss the different contributions in
detail. We find two different behaviors for the excited states
that form doublets. Some of them (type A) have identically
vanishing matrix elements with the ground-state doublet,
V0,n = V1,n = 0 for n belonging to type A, and they trivially
do not contribute to the splitting at second order. The other
doublets (type B) have nonvanishing matrix elements that
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satisfy the following relations:

|V0,m|2 = |V1,m+1|2, (12)

|V1,m|2 = |V0,m+1|2, (13)

V0,mVm,1 + V0,m+1Vm+1,1 = 0, (14)

where |ψ (0)
m 〉 and |ψ (0)

m+1〉 are the two eigenstates belonging
to an excited doublet of type B [see Eqs. (E6) and (E10)
in Appendix E]. These relations imply that also doublets of
type B do not contribute to the splitting at second order.
(Details of the A- and B-type doublet wave functions and
their matrix elements with the transverse field operator are
given in Tables IV and V in Appendix E.)

These results hold for both DTO and HTO. The former
only has doublets (of either type A or B) in the spectrum
due to Kramers degeneracy, and no splitting occurs at second
order. Indeed, the second-order term in Eq. (11) generally
reduces to the sum of the contributions from the singlets alone
[see Eq. (E7) in Appendix E]. Figure 5 clearly shows that
a nonvanishing third-order contribution does exist, which we
extract by fitting Eq. (9).

HTO, on the contrary, has some singlets among its excited
states, which give a nonvanishing second-order contribution to
the splitting. This can be readily computed, Eq. (8), and is in
excellent agreement with the slope found from the numerical
simulations (see the corresponding long-dashed straight line
in Fig. 5). We notice that the third-order contribution has an
angular dependence on φ that is absent at second order.

It is interesting to notice in Fig. 5 that the cubic power-law
found for DTO persists up to ∼100 T. In contrast, the quadratic
power law in HTO begins to break at fields of the order of 0.1
T, depending on the in-plane angle φ, holding up to almost 10
T for φ = 30 ◦; for all other angles, the cubic term becomes
clearly dominant in the range from 1 to 10 T, with an angular
dependence similar to the one for DTO.

C. Doublet splitting and time scales

Let us compare the observed ground-state doublet splitting
in Fig. 5 with experimental magnetic relaxation time scales in
spin ice [7]. The latter are typically of the order of 1 ms (at
least in DTO), which corresponds to an approximate energy
splitting of 10−7–10−8 K.

To estimate the former, one needs typical values for the
exchange and dipolar transverse field strength. Reference [19]
suggests the range 0.1–1 T. Using Eqs. (7a), (7b), (8), and (9),
we find that this corresponds to splittings in the range of
10−8–10−5 K.

This rough theoretical estimate is consistent with the
experimental value. While further investigation is needed, the
result is nonetheless suggestive that internal fields generated
by exchange and dipolar interactions can in principle be
responsible for single-ion quantum spin-flip dynamics in
spin ice. Clearly, the experimentally observed collective
dynamics [8,28–32] pose a more complex problem, of which
this is only one ingredient.

D. Anisotropic response to a transverse field

The strong single-ion anisotropy plays a crucial role also
in the magnetostatic behavior of the RE3+ ions at zero

temperature. This is illustrated in Figs. 7(a)–7(f) as a function
of the angle φ and of the field strength |B|, where 〈Ĵα〉 =
〈ψ |Ĵα|ψ〉, and α = x,y,z label the three components for the
local coordinate system in Fig. 4.

Both HTO and DTO acquire negligibly small values of
〈Ĵx〉 and 〈Ĵy〉 for fields up to 10 T (see also Sec. IV A).
Moreover, we observe a sizable (zero-temperature) response
in 〈Ĵz〉 to a purely transverse field, signaling nonvanishing
off-diagonal components of the g tensor. Of course, for high
enough fields (|B| � 10 T), all expectation values tend to the
angular dependence of the Larmor regime, as expected when
the Zeeman energy dominates over the CF Hamiltonian.

The main difference between HTO and DTO is in the
behavior of 〈Ĵz〉 below 10 T. In HTO, for fields 1 � |B| � 10 T,
〈Ĵz〉 oscillates rather abruptly with respect to the angle φ

between the saturated values −8 and 8; for fields below
1 T, the amplitude of oscillation decreases and it becomes
vanishingly small at low fields. On the contrary, in DTO the
angular dependence is smoother, and it approaches a constant
(maximum) amplitude for fields below 10 T; the amplitude,
however, never reaches saturation. We emphasize that there
is no suppression below ∼1 T, unlike the case of HTO. The
period of oscillations is the same in both HTO and DTO (120◦),
but we observe a phase difference of 60◦. Testing the resilience
of these results to changes in values of the DTO crystal-field
parameters reveals that the lack of saturation is connected to the
relative strength of the parameters from Ref. [27], i.e., it is due
to the details of the crystal-field environment in such material.
Likewise, the different phase in the oscillations as a function of
φ is due to the negative sign of the q = 6 Stevens’ parameters in
Table I (as opposed to the positive ones for HTO). In contrast,
the lack of suppression of 〈Ĵz〉 at low fields found in DTO, but
not in HTO, seems to have a more fundamental reason in the
Kramers degeneracy of the ground-state doublet of the former
(we note that the suppression in HTO occurs below the same
field values where the quadratic power-law of the ground-state
splitting arises, while in DTO the ground-state splitting shows
a cubic dependence, together with no suppression of 〈Ĵz〉, all
the way down to the smallest fields).

We notice that the behavior of 〈Ĵz〉 in Fig. 7 is consistent
with the arrangement of the oxygens surrounding the rare-earth
ions. Depending on the φ angle in the x0,y0 plane (Fig. 4),
the magnetic field can take three inequivalent high-symmetry
directions: either toward an oxygen that lies above the plane
(0◦ + n 120◦), or toward an oxygen that lies below the plane
(60◦ + n 120◦), or else precisely in between two oxygens
(30◦ + n60 ◦), where in all cases n is an integer. The first
two directions correspond to the maxima and minima of
mz = gJ μB 〈Ĵz〉, respectively. The latter direction corresponds
to nodes where mz vanishes. Curiously, as we noted before,
the sign of mz in the first two cases switches between DTO
and HTO. We notice that this switching is highly dependent
on the precise values of the CF parameters used.

IV. FINITE TEMPERATURES

The splitting between the ground and first excited state
can be very small at low fields (see Fig. 5), far smaller than
any temperature of experimental interest. Since the two states
originate (adiabatically) from the splitting of the ground-state
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(b) 〈Ĵx〉 - T = 0 K - DTO

 0
 90

 180
 270

 360 10-2 10-1 100 101 102 103 104

-8
-4
 0
 4
 8

φ (deg)
B (Tesla)
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(e) 〈Ĵz〉 - T = 0 K - HTO
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(f) 〈Ĵz〉 - T = 0 K - DTO
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(g) 〈Ĵz〉 - T = 500 mK - HTO
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(h) 〈Ĵz〉 - T = 500 mK - DTO

FIG. 7. (Color online) (a)–(f) Expectation values for the three components of the total angular momentum Ĵ in the ground state of the
Hamiltonian in Eq. (3) with a purely transverse magnetic field: 〈Ĵα〉 = 〈ψ |Ĵα|ψ〉, α = x,y,z, as a function of the angle φ and the strength |B|
of the field on a logarithmic scale. For both HTO (left) and DTO (right), the x,y components are negligible for fields up to 10 T. In contrast,
the mz components feature a sizable periodic dependence on the angle φ below 10 T. This is a manifestation of the strong axial anisotropy
characterizing the ground state of the spin-ice RE3+ ions. Note the different response in the two systems: DTO features a smooth angular
dependence that becomes asymptotically constant in the low-field limit (from 10 T down to the lowest fields), whereas the oscillatory behavior
in HTO is more abrupt and its amplitude decreases from the saturated value reached at approximately 10 T, down to zero at low fields. (g) and
(h) Finite-temperature behavior of the expectation value 〈Ĵz〉 = Tr(Ĵαρ̂)/Tr(ρ̂) at T = 0.5 K for HTO (left) and DTO (right). The Boltzmann
weights from the density operator average the two (lowest-energy) states with opposite polarization along z0.
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CF doublet, they will, in general, preserve the (symmetric)
property of being polarized in opposite directions [that is, the
equivalent behavior of Figs. 7(e) and 7(f) for the first excited
state—not shown—is simply opposite in sign with respect to
that for the ground state]. In the absence of a longitudinal field,
thermal averages between the two will therefore cancel out the
single-ion moment.

A. Magnetic moment

At finite temperature T , 〈Ĵα〉 = Tr(Ĵαρ̂)/Tr(ρ̂), where
ρ̂ = e−Ĥ/kBT is the density operator in the microcanonical
ensemble, Ĥ is the Hamiltonian in Eq. (3), and kB is the
Boltzmann constant.

Since 〈Ĵx〉 and 〈Ĵy〉 take on negligible values at applied
fields below the (trivial) Larmor threshold [see Figs. 7(a)–
7(d)], we focus our discussion on 〈Ĵz〉. Its behavior as a func-
tion of φ and |B| is shown in Figs. 7(g) and 7(h) for T = 0.5 K.

We find that the anisotropic response survives at interme-
diate fields, in between a high- and a low-field threshold. The
high-field threshold is the (temperature-independent) onset of
Larmor precession. The low-field threshold instead is set by the
ground-state doublet splitting (Fig. 5). The low-field threshold
is temperature-dependent, namely ∼T 1/2 for HTO and ∼T 1/3

(i.e., more easily observed) for DTO, according to the results
in Sec. III.

B. Magnetic susceptibility

The susceptibility of the α component of the magnetic
moment with respect to the β component of the applied field

B is given by

χαβ = μ0μBgJ

∂ 〈Ĵα〉
∂Bβ

. (15)

At high temperatures, we expect the system to behave as an
ordinary paramagnet, whose zero-field magnetic susceptibility
(per spin) is given by the Curie law

χC
αβ = μ0

μ2

3kBT
δαβ ≡ χC, (16)

where μ2 = g2
J μ2

BJ (J + 1). Therefore, it is convenient to
define the dimensionless quantity

χαβ

χC
= 3kBT

gJ μBJ (J + 1)

∂ 〈Ĵα〉
∂Bβ

, (17)

whose behavior is shown for β = α in Fig. 8. All curves exhibit
Curie behavior at (unphysically) high temperatures. (Only χxx

and χzz are shown, as χyy behaves analogously to χxx .)
The behavior of χzz at low temperatures is perhaps most

remarkable. It exhibits a Curie-like intermediate temperature
regime where χ

plateau
zz ≈ 2.5 χC for both HTO and DTO. At

high temperatures, this regime crosses over to the expected
Curie law at an (approximately) field-independent threshold
T ∼ 102 K, set by the CF energy gap between the ground-state
doublet and higher excited states. Below this threshold, the
system is effectively projected onto its ground-state doublet.
The magnetic response is thus enhanced since these two states
carry the largest magnetic moments of all CF levels.

In the presence of a finite applied magnetic field, as is
the case in Fig. 8, one trivially expects a lower threshold to

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

10-4 10-3 10-2 10-1 100 101 102 103 104

χzz

χxx

10
-1
T

10
-2
T

10
-3
T

χ α
α 

/ χ
C

T (Kelvin)

0.01

0.02

0.03

0.04

 0  0.5  1

104K

10
3K

10
2 K

<10K

<
 J

x 
>

Bx (Tesla)

(a) HTO

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

10-4 10-3 10-2 10-1 100 101 102 103 104

χzz

χxx

10
-1
T

10
-2
T

10
-3
T

χ α
α 

/ χ
C

T (Kelvin)

0.01

0.02

0.03

 0  0.5  1

104K

10
2 K

10
3K

<10K

<
 J

x 
>

Bx (Tesla)

(b) DTO

FIG. 8. (Color online) Logarithmic plots of χαα/χ
C, with α = x,z, as a function of temperature T and in the presence of a static applied

field. When the temperature is lowered, the xx component deviates from the Curie law by decreasing approximately linearly, while the zz

component exhibits an intermediate (higher) plateau (χ plateau
zz /χC ≈ 2.5). [Note that χαα/χ

C ∝ T corresponds, following Eq. (17), to χαα being
T -independent. The dashed line in each panel illustrates a linear behavior as a guide to the eye.] Each component is shown for three values of
applied fields: 0.001, 0.01, and 0.1 T. For χxx , the three curves overlap almost perfectly, signaling that the susceptibility is field-independent
below 0.1 T. For χzz, the three curves overlap only for sufficiently large (field-dependent) threshold temperatures; in the main text, we
discuss how this behavior is directly related to the different ground-state splittings opened in the crystal-field spectrum by the applied fields.
The insets show 〈Ĵx〉 vs field Bx at different temperatures, demonstrating a linear regime up to at least 1 T. The temperature-independent
susceptibility below 10 K is reflected in the perfect overlap of the magnetization curves 〈Ĵx〉 vs Bx at these temperatures (χxx ∼ Cμ0μ

2/3kB,
with C = 0.015 K−1 for HTO and C = 0.02 K−1 for DTO).
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the effective spin-1/2 Curie behavior when the temperature
becomes smaller than the (linear) Zeeman splitting between
the two levels. The system then crosses over to a regime
where the susceptibility is temperature-independent, but finite,
corresponding to a small residual polarizability in the ground
state.

Interestingly, χxx displays a similar behavior, in spite of the
fact that the splitting between the two lowest-lying states in a
transverse field is now much smaller than temperature. In this
case, the temperature-independent regime extends all the way
to T ∼ 10 K.

V. SUMMARY AND DISCUSSION

We have presented a detailed study of single-ion behavior in
spin-ice HTO and DTO in the presence of an applied magnetic
field, based on the full description of the single-ion crystal-
field Hamiltonian. We have considered both zero and finite
temperature, and we focused in particular on the case of a field
transverse to the local easy axis. We find that the Kramers
versus non-Kramers nature of HTO versus DTO results in a
different perturbative behavior at small fields.

We also present a detailed study of the static magnetic re-
sponse to a transverse field, which highlights the anisotropy of
the system. We find that as a function of the in-plane direction
of the field, off-diagonal components of the g tensor become
nonvanishing (namely, a purely transverse field in the xy plane
induces a longitudinal response along the local z axis).

Within the classical exchange and dipolar Hamiltonian
approximation, the action of all other ions on a given one is
an effective magnetic field, whose strength and direction were
studied in Ref. [19]. The transverse component of this effective
field can be thought of as a potential source of quantum
dynamics in spin systems, and the corresponding ground-state
splitting studied in the present paper corresponds in this view
to an inverse characteristic time scale. It is then remarkable
to notice that—in spite of these simplifying assumptions—the
resulting time scales for HTO and DTO are consistent with the
ones observed in experiments [7].

There are a number of natural directions for future work.
One is toward a yet more microscopic picture, going beyond
the effective field approximation we have employed here, by
determining the actual exchange Hamiltonian, for example via
a superexchange calculation. Another lies in considering the
interplay of the spin degrees of freedom in the same spirit as
we have considered the coupling to an external field. For the
case of magnetoelastic couplings, a simple calculation in this
spirit was reported in Ref. [33].

Indeed, the issue of coupling to nonmagnetic degrees of
freedom is of relevance given the remarkably long millisecond
time scale of the spin flip and the small splitting of the
ground doublet. These are below 10−5 K in temperature units,
well below the scale at which experiments are conducted.
Understanding the spin tunneling process in the presence of a
coupling to the “hot” environment is therefore an interesting
exercise, close in spirit to the study of molecular magnets,
which may be of relevance to some of the unexplained features
of the slow low-temperature dynamics of spin ice.

Many of our results can be tested experimentally, perhaps
best in heavily Y-diluted systems in an externally applied

magnetic field, to reduce the added complexity of spin-spin
interactions. Figure 7 shows that the anisotropic response of a
RE ion in spin ice could be observed at temperatures ∼100 mK
under externally applied fields ∼10 T. At lower fields, the
induced magnetic moment is much lower, but, as the insets of
Fig. 8 show, it could still be detectable, for example by muon
spin rotation. Such experiments could provide a quantitative
validation of the present description, which is a crucial step
toward gaining further insight into the quantum dynamics of
spin-ice materials.
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APPENDIX A: OXYGEN ENVIRONMENT

The crystal-field interactions, i.e., the Stark effect due
to the negative charges of the oxygen ions, deeply affect
the single-ion quantum states. The physics dictated by the
crystalline fields of the oxygens is so fundamental that, in the
context of magnetic pyrochlore oxides, often it is preferable to
use the expression A2B2O6O′, instead of A2B2O7, simply to
emphasize the role played by the oxygens according to their
crystallographic and ligand character. Referring to a given
RE3+ (A) site, e.g., a Ho3+ ion, the oxygens are arranged
around it in an antiprismatic fashion, which is often referred
to as a distorted cube (see Fig. 1 in the main text).

The level of distortion is, however, huge compared to an
ideal cube, as the two O1 oxygens form a linear O-A-O stick
oriented normal to the average plane of the remaining six O2
oxygens arranged in triangles above and below the central
A ion. The A-O1 and A-O2 bond distances are different:
the former, ∼2.2 Å, is among the shortest bonds ever found
in nature; the latter can vary depending on the compound,
although in general it is between 2.4 and 2.5 Å [20,21].
This implies that each RE3+ ion is characterized by a very
pronounced axial symmetry along the local 〈111〉 axis, which
joins the two centers (O1 sites) of the tetrahedra, through the
magnetic ion sitting at the shared vertex [see Fig. 1(a)]. The
axial symmetry is affected by the antiprismatic arrangement
of the O2 ions with respect to the central RE3+ ion. These, as
shown in Fig. 1 in the main text, are grouped in triangles lying
on planes, above and below the RE3+ ion, which are parallel
to each other.
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APPENDIX B: STEVENS OPERATORS

The Stevens operators Ôk
q in Eq. (2), expressed in terms of

the angular momentum operators, can be written as

Ô2
0 = 3Ĵ 2

z − Ĵ2,

Ô4
0 = 35Ĵ 4

z + 25Ĵ 2
z − 30Ĵ2Ĵ 2

z − 6Ĵ2 + 3Ĵ4,

Ô4
3 = 1

4 {(Ĵ 3
+ + Ĵ 3

−),Ĵz},
Ô6

0 = 231Ĵ 6
z + (735−315Ĵ2)Ĵ 4

z + (294−525Ĵ2 + 105Ĵ4)Ĵ 2
z

− 60Ĵ2 + 40Ĵ4 − 5Ĵ6,

Ô6
3 = 1

4

{
(Ĵ 3

+ + Ĵ 3
−),

(
11Ĵ 3

z + 59Ĵz − 3Ĵ2Ĵz

)}
,

Ô6
6 = 1

2 (Ĵ 6
+ + Ĵ 6

−), (B1)

where Ĵ± = Ĵx ± iĴy and the anticommutator {Â,B̂} =
ÂB̂ + B̂Â.

Since each Ôk
q is a function of Ĵ = (Ĵx,Ĵy,Ĵz), the total

angular momentum operator of the magnetic ion, the single-ion
CF states can be conveniently expressed in terms of |J,MJ 〉,
where J,MJ are the quantum numbers for, respectively, the
total angular momentum and its projection along the local
〈111〉 axis. A list of the matrix elements of the Stevens
operators in the |J,MJ 〉 basis is given in Ref. [25].

APPENDIX C: DERIVATION OF THE STEVENS
CRYSTAL-FIELD PARAMETERS

The interaction between a magnetic RE3+ ion and its sur-
rounding crystalline environment is usually described starting
from the simple Hamiltonian

ĤCF = −
∑

i

|ei |VCF(r̂i), (C1)

where VCF represents the crystal-field potential from the
surrounding ions acting on the electrons in the unfilled
shells of the central RE. Each ith electron feels a potential
VCF(ri) ≡ VCF(ri,θi,φi) at position r i . To study the crystal-
field interaction, it is convenient to make use of spherical
coordinates centered on the RE site because of the spherical
symmetries of the electrons of an atomic system [25]. It
is customary to write the Hamiltonian in terms of tensor
operators. The tensor operator for the ith electron is

Ĉk
q (i) =

√
4π

2k + 1
Ŷ

q

k (θi,φi), (C2)

and it obeys the same transformation rules as the spherical
harmonics. In terms of these, the CF Hamiltonian for a
magnetic ion in a crystalline D3d point-group symmetry
reads [23]

ĤCF = B2
0 Ĉ2

0 + B4
0 Ĉ4

0 + B4
3

(
Ĉ4

3 − Ĉ4
−3

)
+B6

0 Ĉ6
0 + B6

3

(
Ĉ6

3 − Ĉ6
−3

) + B6
6

(
Ĉ6

6 + Ĉ6
−6

)
. (C3)

Here the sum over the 4-f electrons (
∑n

i=1) is omitted together
with the index i for simplicity.

The Bk
q parameters encapsulate the effect of the surrounding

charges. Equation (C3) is thus an alternative notation to the
one based on the Stevens operators, Eq. (2). The latter is
convenient for RE3+ ions, where |J,MJ 〉 is a good basis for

TABLE II. The θk values (αJ , βJ , and γJ for k = 2, 4, and 6,
respectively) for holmium and dysprosium trivalent ions [25].

Ho3+ Dy3+

αJ

−1

450

−2

315

βJ

−1

30 030

−8

135 135

γJ

−5

3 864 861

4

3 864 861

the quantum states of the correlated 4-f electrons, because
they are explicit functions of the angular momentum operators
Ĵ2,Ĵz,Ĵ+,Ĵ− [23]. The B̃k

q are related to the Bk
q by means of

the following expressions:

B̃k
0 =

√
4π

2k + 1
θkD

k
0B

k
0 ,

B̃k
q = (−1)q

√
8π

2k + 1
θkD

k
qB

k
q for q > 0. (C4)

The Dk
q are the factors outside the square brackets [· · · ] in the

list of tesseral harmonics in Cartesian coordinates in Table IV
of Ref. [25]. The θk (with k = 2,4,6; θ2 =αJ ,θ4 =βJ ,θ6 =γJ )
calculated by Stevens for different RE ions [34] are given in
Table VI of the same Ref. [25]. In Table II, we reproduce the
values for αJ ,βJ ,γJ for the two magnetic ions Ho3+ and Dy3+

in spin-ice materials.
Experimental techniques based on inelastic neutron scat-

tering are the most suitable to measure accurately the crystal-
field energies in real compounds. From these measurements,
a reliable estimate of the CF parameters can be inferred
beyond the level of accuracy allowed by the point-charge
approximation [23,24,35].

The crystal-field energies and parameters common in the
literature of spin-ice materials are based mainly on the
experiment presented by Rosenkranz et al. in Ref. [26]. There,
the neutron scattering measurement of all the CF energy levels
allowed a complete parametrization of the Hamiltonian in
Eq. (C3). The full list of the Bk

q parameters for HTO found
in that reference is reproduced in the first column of Table III.
Similarly for DTO, the second column of Table III gives the

TABLE III. Crystal-field parameters Bk
q for the tensor operators

formalism. The parameters for HTO have been measured by means
of inelastic neutron scattering in Ref. [26]. The ones for DTO were
derived as an interpolation of the parameters known for Ho2Ti2O7

and Tb2Ti2O7 in Ref. [27].

HTO (meV) DTO (meV)

B2
0 68.2 51.1

B4
0 274.8 306.2

B4
3 83.7 90.5

B6
0 86.8 100.4

B6
3 −62.5 −74.4

B6
6 101.6 102.9
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Bk
q suggested in Ref. [27] as an interpolation of the values

known for Ho2Ti2O7 and Tb2Ti2O7. However, to the best of
our knowledge, no neutron scattering experiments have been
carried out successfully to determine the CF parameters of
DTO. The corresponding B̃

q

k parameters, listed in Table I for
the Hamiltonian Eq. (2) in the main text, follow from Eq. (C4)
and Table III.

APPENDIX D: DEGENERATE PERTURBATION THEORY

The results in Sec. III A, namely Eqs. (7a)–(11), follow
from conventional degenerate perturbation theory (see, e.g.,
Ref. [36]). In this appendix, we outline the main steps of the
derivation for convenience. This will help us to understand the
role that the symmetries of the unperturbed CF Hamiltonian
play in determining the perturbative behavior, as discussed in
the main text and in detail in Appendix E. (The interested
reader can find all the details of the calculations in Ref. [37].)

We use the notation

Ĥ = Ĥ0 + λV̂ , (D1)

where λ is a small (real) parameter tuning the strength of the
perturbation V̂ , and where the eigenstates and eigenvalues of
Ĥ0 are

Ĥ0

∣∣ψ (0)
n

〉 = E(0)
n

∣∣ψ (0)
n

〉
. (D2)

Here Ĥ0 ≡ ĤCF in Eq. (2) of the main text, and V̂ is the
applied magnetic field; see Eqs. (5) and (10). We focus on the
case of interest in which the first two energy levels are exactly
degenerate (E(0)

1 = E
(0)
0 ). Of course, in this case the choice

of basis for the ground-state doublet, |ψ (0)
0 〉 and |ψ (0)

1 〉, is not
unique.

Expanding both eigenstates and eigenvalues of the per-
turbed Hamiltonian in powers of the parameter λ, one obtains
the contributions to the GS doublet splitting order by order.
The form of the contribution at a given order depends of course
on whether the two levels did or did not split at lower order.

For notational convenience, it is useful to define the matrix
elements Vn,m = 〈ψ (0)

n | V̂ |ψ (0)
m 〉.

1. First order

The first-order contribution is written as√
(V0,0 − V1,1)2 + 4|V0,1|2. (D3)

However (see the main text and Appendix E), both DTO and
HTO have V0,1 = V0,0 = V1,1 = 0 so that the degeneracy is
not resolved at first order in λ.

2. Second order

We focus on the case of interest in which V0,0 = V1,1 =
V1,0 = V0,1 = 0. After a few lines of algebra, one obtains that
the second-order (GS doublet) contribution to the splitting
takes the form√√√√(∑

k>1

|V0,k|2 − |V1,k|2
�E

(0)
k

)2

+ 4

∣∣∣∣∣∑
k>1

V0,kVk,1

�E
(0)
k

∣∣∣∣∣
2

, (D4)

where �E
(0)
k is the energy difference between the GS doublet

and the kth excited state of the unperturbed Hamiltonian Ĥ0.
The summation over k > 1 spans all unperturbed states other
than the GS doublet.

As discussed in the main text and in Appendix E,
we find that all excited states that form doublets in the
unperturbed spectrum amount to a vanishing contribution to
the second-order GS doublet splitting in Eq. (D4). This is not
the case for singlets, which are present in the spectrum of
non-Kramers HTO, where splitting occurs at second order and
Eq. (D4) is in good agreement with the numerical solution at
sufficiently small values of the perturbation parameter λ (see
the main text). On the other hand, Kramers’ theorem forbids
the appearance of singlets in DTO, resulting in a vanishing
second-order splitting.

APPENDIX E: MATRIX ELEMENTS
OF THE PERTURBATION

In this appendix, we give details of the calculation of
the matrix elements Ṽn,m = 〈ψ (0)

n | ˆ̃V |ψ (0)
m 〉, where |ψ (0)

m 〉 are
the eigenstates of the unperturbed CF Hamiltonian, and the
dimensionless operator

ˆ̃V = e−iφ Ĵ+ + e+iφ Ĵ− (E1)

represents the applied magnetic field (perturbation) purely
transverse to the local quantization axis of the RE ion
[see Eq. (5) in the main text]. Namely, the operator V̂ ≡
ECF Ĵ · B/|B| in Sec. III A relates to Eq. (E1) via ˆ̃V = 2V̂ /ECF.
The perturbative regime corresponds to field values within the
initial power-law behavior of the splitting observed in Fig. 5.

The quantum states for HTO and DTO are represented in
Tables IV and V, respectively. Each state |ψ〉 is given by a
superposition |ψ〉 = ∑

MJ
CMJ

|MJ 〉. Reading from the left,

the first two columns account for |ψ (0)
A 〉 and |ψ (0)

A+1〉. These are
called A doublets of the CF spectra to underline their different
structure compared to |ψ (0)

B 〉 and |ψ (0)
B+1〉, the B doublets

listed in the fifth and sixth columns. The ground states,
|ψ (0)

0 〉 , |ψ (0)
1 〉, belong to the A-type doublets (explicit values

of the coefficients are given in the captions of each table).
In the third and fourth columns, the states ˆ̃V |ψ (0)

A 〉 and
ˆ̃V |ψ (0)

A+1〉, obtained by applying the perturbation ˆ̃V to the A

doublets, are given to facilitate the calculation of Ṽ0,m and
Ṽ1,m, i.e., the coupling between the ground-state doublet and
the other CF states. The perturbed states in the third and fourth
column are expressed in terms of coefficients j±

M defined as

ˆ̃V |MJ 〉 = j+
MJ

|MJ + 1〉 + j−
MJ

|MJ − 1〉 ,

j±
MJ

= e∓iφ
√

J (J + 1) − MJ (MJ ± 1). (E2)

The j±
MJ

only depend on the angle φ of the field in Eq. (E1)
and on the quantum numbers J,MJ . Furthermore, from the
general properties of the ladder operators, we have

j±
MJ

= j±
−(MJ ±1), (E3)

which leads to characteristic symmetries of the Ṽn,m elements
that are key to determining the behavior of the leading orders
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TABLE IV. The coefficients for the decomposition of the single-
ion states of HTO with respect to the angular momentum eigenstates
|MJ 〉. A generic state |ψ〉 at the top of a column of coefficients
CMJ

is given by a superposition |ψ〉 = ∑
MJ

CMJ
|MJ 〉. It is useful

to distinguish between A-type and B-type doublet states, as well as
singlets s and s ′. The ground-state doublet |ψ (0)

0 〉 , |ψ (0)
1 〉 is of the A

type; the coefficients are {a8 = 0.982,a5 = 0.156,a2 = 0.065,a−1 =
0.071,a−4 = 0.049,a−7 = 0.006} and account for the strong Ising
anisotropy characteristic of the spin-ice single-ion physics. The
second and third column from the left are the first-order terms
obtained by applying ˆ̃V to an A-type doublet.

HTO |ψ (0)
A 〉 |ψ (0)

A+1〉 ˆ̃V |ψ (0)
A 〉 ˆ̃V |ψ (0)

A+1〉 |ψ (0)
B 〉 |ψ (0)

B+1〉 |ψ (0)
s 〉 |ψ (0)

s′ 〉
|8〉 a8 0 0 −j+

7 a−7 b8 b−8 0 0

|7〉 0 −a−7 j−
8 a8 0 b7 b−7 0 0

|6〉 0 0 j+
5 a5 −j−

7 a−7 0 0 s6 s ′
6

|5〉 a5 0 0 j+
4 a−4 b5 −b−5 0 0

|4〉 0 a−4 j−
5 a5 0 b4 −b−4 0 0

|3〉 0 0 j+
2 a2 j−

4 a−4 0 0 s3 s ′
3

|2〉 a2 0 0 −j+
1 a−1 b2 b−2 0 0

|1〉 0 −a−1 j−
2 a2 0 b1 b−1 0 0

|0〉 0 0 j+
−1 a−1 −j−

1 a−1 0 0 s0 0

|−1〉 a−1 0 0 j+
−2 a2 b−1 −b1 0 0

|−2〉 0 a2 j−
−1 a−1 0 b−2 −b2 0 0

|−3〉 0 0 j+
−4 a−4 j−

−2 a2 0 0 −s3 s ′
3

|−4〉 a−4 0 0 −j+
−5 a5 b−4 b4 0 0

|−5〉 0 −a5 j−
−4 a−4 0 b−5 b5 0 0

|−6〉 0 0 j+
−7 a−7 −j−

−5 a5 0 0 s6 −s ′
6

|−7〉 a−7 0 0 j+
−8 a8 b−7 −b7 0 0

|−8〉 0 a8 j−
−7 a−7 0 b−8 −b8 0 0

of the perturbative splitting of the ground-state doublet. Since
HTO is a non-Kramers system, Table IV also shows two kinds
of singlets in the last two columns on the right.

1. HTO

The crystal-field spectrum of HTO is made of five singlets
and six doublets [see Fig. 2(a)]. As summarized in Table IV,
there are two types of doublets, A and B, and two types of
singlets, s and s ′.

a. A doublets

The ground-state doublet in HTO, |ψ (0)
0 〉 and |ψ (0)

1 〉, is
made up of A-type states, as defined in Table IV. It is then
immediate to prove that Ṽ0,0 = 0 and Ṽ1,1 = 0 since in general

〈ψ (0)
A | ˆ̃V |ψ (0)

A 〉 = 0 and 〈ψ (0)
A+1| ˆ̃V |ψ (0)

A+1〉 = 0. Namely, the
first and the third column (and the second and fourth) of
Table IV have trivially vanishing overlap.

On the contrary, the first and fourth (second and third)
columns have a priori nonvanishing overlap. To see again that
Ṽ1,0 = Ṽ0,1 = 0, one ought to consider the explicit form of the
matrix elements,〈

ψ
(0)
A+1

∣∣ ˆ̃V
∣∣ψ (0)

A

〉 = a−7a8(j−
−7 − j−

8 ) + a−4a5(j−
−4 − j−

5 )

+ a−1a2(j−
−1 − j−

2 ), (E4)

TABLE V. The coefficients for the decomposition of the single-
ion states of DTO with respect to the angular momentum eigenstates
|MJ 〉. The CF states for DTO are all doublets. These are either of type
A: |ψ (0)

A 〉 and |ψ (0)
A+1〉 in the first and second column, respectively,

or of type B: |ψ (0)
B 〉 and |ψ (0)

B+1〉 in the fifth and sixth column,
respectively. The ground-state doublet |ψ (0)

0 〉 , |ψ (0)
1 〉 belongs to the A-

type states; the coefficients are {a15/2 = 0.983,a9/2 = −0.171,a3/2 =
0.044,a−3/2 = 0.044,a−9/2 = 0.008,a−15/2 = 0}. The second and

third column are the first-order terms obtained by applying ˆ̃V to
a pair of A-doublet states.

DTO |ψ (0)
A 〉 |ψ (0)

A+1〉 ˆ̃V |ψ (0)
A 〉 ˆ̃V |ψ (0)

A+1〉 |ψ (0)
B 〉 |ψ (0)

B+1〉
|15/2〉 a15/2 a−15/2 0 0 0 0

|13/2〉 0 0 j−
15/2 a15/2 j−

15/2 a−15/2 b13/2 b−13/2

|11/2〉 0 0 j+
9/2 a9/2 −j+

9/2 a−9/2 b11/2 −b−11/2

|9/2〉 a9/2 −a−9/2 0 0 0 0

|7/2〉 0 0 j−
9/2 a9/2 −j−

9/2 a−9/2 b7/2 −b−7/2

|5/2〉 0 0 j+
3/2 a3/2 j+

3/2 a−3/2 b5/2 b−5/2

|3/2〉 a3/2 a−3/2 0 0 0 0

|1/2〉 0 0 j−
3/2 a3/2 j−

3/2 a−3/2 b1/2 b−1/2

|−1/2〉 0 0 j+
−3/2 a−3/2 j+

−3/2 − a3/2 b−1/2 −b1/2

|−3/2〉 a−3/2 −a3/2 0 0 0 0

|−5/2〉 0 0 j−
−3/2 a−3/2 −j−

−3/2 a3/2 b−5/2 −b5/2

|−7/2〉 0 0 j+
−9/2 a−9/2 j+

−9/2 a9/2 b−7/2 b7/2

|−9/2〉 a−9/2 a9/2 0 0 0 0

|−11/2〉 0 0 j−
−9/2 a−9/2 j−

−9/2 a9/2 b−11/2 b11/2

|−13/2〉 0 0 j+
−15/2 a−15/2 −j+

−15/2 a15/2 b−13/2 −b13/2

|−15/2〉 a−15/2 −a15/2 0 0 0 0

which vanishes because all elements within round brackets
cancel out, according to Eq. (E3).

This shows not only that Ṽ0,0 = Ṽ1,1 = Ṽ1,0 = Ṽ0,1 = 0,
accounting for the vanishing first-order splitting in Eq. (11)
in the main text, but also that all matrix elements coupling
the ground state with any other A doublet of the CF spectrum
have to be null. Summarizing, Table IV and Eq. (E4) prove
the general property 〈ψ (0)

A′ | ˆ̃V |ψ (0)
A 〉 = 〈ψ (0)

A′+1| ˆ̃V |ψ (0)
A+1〉 =

〈ψ (0)
A′+1| ˆ̃V |ψ (0)

A 〉 = 0 for any two doublets A and A′ in the CF
spectrum of HTO.

b. B doublets

The other type of doublets in the CF spectrum of HTO
are the B doublets. The matrix elements 〈ψ (0)

B | ˆ̃V |ψ (0)
m 〉 and

〈ψ (0)
B+1| ˆ̃V |ψ (0)

m 〉 are nonzero for both states of the ground-
state doublet (m = 0,1). This is because in general the overlap
between the perturbed A states, in columns three and four,
with the B states, in columns five and six, is nonzero. Here,
for brevity, only the results for |ψ (0)

A 〉 are shown explicitly:〈
ψ

(0)
B

∣∣ ˆ̃V
∣∣ψ (0)

A

〉 =
∑

M=2,5,8

j−
M (aMbM−1 + a−(M−1)b−M ),

〈
ψ

(0)
B+1

∣∣ ˆ̃V
∣∣ψ (0)

A

〉 =
∑

M=2,5,8

(−1)Mj−
M (aMb−(M−1) − a−(M−1)bM ).

(E5)
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Analogously one can show that also 〈ψ (0)
B | ˆ̃V |ψ (0)

A+1〉 and

〈ψ (0)
B+1| ˆ̃V |ψ (0)

A+1〉 are nonzero.
Using their conjugation properties, one finds that〈

ψ
(0)
B

∣∣ ˆ̃V
∣∣ψ (0)

A+1

〉 = 〈
ψ

(0)
A

∣∣ ˆ̃V
∣∣ψ (0)

B+1

〉
,〈

ψ
(0)
B+1

∣∣ ˆ̃V
∣∣ψ (0)

A+1

〉 = − 〈
ψ

(0)
A

∣∣ ˆ̃V
∣∣ψ (0)

B

〉
, (E6)

whose implications, in the context of the ground-state splitting,
are discussed in Sec. III B of the main text. Namely, the
contribution to second-order splitting due to B doublets
vanishes identically.

Whereas for notational convenience we have worked with
a given choice of eigenstates for both the GS doublet and
excited-state doublets, the main results are independent of
it. For instance, one can verify with a few lines of algebra
that the relations in Eq. (E6) are invariant under generic basis
transformations within each doublet involved.

c. Singlets

Another interesting feature of the CF eigenstates for HTO is
the structure of the singlets |ψ (0)

s 〉 and |ψ (0)
s ′ 〉. These are shown,

respectively, in the fifth and sixth columns (from the left) of
Table IV. To avoid confusion, it is important to underline that,
in general, si �= s ′

j for all i,j . The perturbative coupling of the
singlets with the ground-state doublet is nonvanishing for both
kind of singlets. Here, for brevity, we show explicitly only the
matrix elements for |ψ (0)

A 〉:〈
ψ (0)

s

∣∣ ˆ̃V
∣∣ψ (0)

A

〉 = s3(a2j
+
2 − a−4j

+
−4) + s6(a5j

+
5 + a−7j

+
−7)

+ s0a−1j
+
−1,〈

ψ
(0)
s ′

∣∣ ˆ̃V
∣∣ψ (0)

A

〉 = s ′
3(a2j

+
2 + a−4j

+
−4) + s ′

6(a5j
+
5 − a−7j

+
−7).

(E7)

Analogously, it is straightforward to show that 〈ψ (0)
s | ˆ̃V

|ψ (0)
A+1〉 �= 0 and 〈ψ (0)

s ′ | ˆ̃V |ψ (0)
A+1〉 �= 0.

The matrix elements coupling the ground-state doublet
to the singlets provide the only nonvanishing second-order
contribution to the ground-state splitting in Eq. (11), marking
the difference in the power-law dependence found for HTO
and DTO, as discussed in Sec. III B.

2. DTO

All the energy levels in the crystal-field spectrum of DTO
are doublets [see Fig. 2(b)]. In Table V these are distinguished
into A and B doublets, in analogy with HTO.

a. A doublets

The two basis states, |ψ (0)
0 〉 and |ψ (0)

1 〉, of the ground doublet
of the DTO crystal-field spectrum are of type A, as defined in

Table V. It is then straightforward to verify that Ṽ0,0 = Ṽ1,1 =
Ṽ0,1 = Ṽ0,1 = 0 since in general

〈
ψ

(0)
A′

∣∣ ˆ̃V
∣∣ψ (0)

A

〉 = 〈
ψ

(0)
A′+1

∣∣ ˆ̃V
∣∣ψ (0)

A+1

〉 = 〈
ψ

(0)
A′+1

∣∣ ˆ̃V
∣∣ψ (0)

A

〉 = 0,

(E8)

by comparing the first pair and the second pair of columns in
Table V. The null matrix elements in Eq. (E8) are responsible
for the vanishing of the first-order contribution to the ground-
state splitting in Eq. (11).

b. B doublets

As for HTO, also for DTO the matrix elements coupling
the A and B doublets are nonvanishing:

〈
ψ

(0)
B

∣∣ ˆ̃V
∣∣ψ (0)

A

〉 =
15/2∑

M=−9/2

(j−
M aMbM−1 + j+

−M a−Mb−(M−1)),

〈
ψ

(0)
B+1

∣∣ ˆ̃V
∣∣ψ (0)

A

〉
=

15/2∑
M=−9/2

(−1)M+ 1
2 (j−

M aMb−(M−1) + j+
−M a−MbM−1), (E9)

where the sum over the M quantum numbers runs, from −9/2
to 15/2, in intervals of 3 (M = −9/2,−3/2, 3/2, 9/2, 15/2).

Their conjugation properties give

〈
ψ

(0)
B

∣∣ ˆ̃V
∣∣ψ (0)

A+1

〉 = − 〈
ψ

(0)
A

∣∣ ˆ̃V
∣∣ψ (0)

B+1

〉
,〈

ψ
(0)
B+1

∣∣ ˆ̃V
∣∣ψ (0)

A+1

〉 = 〈
ψ

(0)
A

∣∣ ˆ̃V
∣∣ψ (0)

B

〉
, (E10)

whose signs are opposite to the case of HTO in Eq. (E6).
Similarly to the case of HTO, however, Eqs. (E10) give a
vanishing second-order contribution to the splitting of the
ground-state doublet. Since there are no singlets in DTO, no
splitting at all takes place to second order.

Because all the matrix elements in Eq. (E8) are null, the
matrix elements in Eqs. (E10) are the only ones ultimately
responsible for the DTO energy splitting, which takes place
to third order in (transverse field) perturbation theory, as
illustrated in Sec. III.

We stress once again that, whereas for notational conve-
nience we have worked with a given choice of eigenstates for
both the GS doublet and excited-state doublets, the main results
are independent of it. For instance, one can readily verify that
the relations in Eqs. (E10) are invariant under generic basis
transformations within each doublet involved.
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