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Several materials with energy bands crossing giving rise to relativisticlike electronic excitations have recently
been discovered beyond the seminal example of graphene. These relativistic phases exhibit remarkable properties,
among which is a finite minimal conductivity. While the density of propagating wave states vanishes at the band
crossing, the conductivity may remain finite due to evanescent modes in a confined geometry. Studying the
generalizations of graphene to three-band models we find that this property is intimately related to the existence
of topological Berry phases. We show that the topological robustness of the latter originates from geometrical
properties of the underlying lattice, which are encoded into duality properties of the Hamiltonian.
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I. INTRODUCTION

Graphene, discovered in 2004, still remains the canonical
example of a semimetal with a band crossing around which
excitations are described by a relativistic equation of motion.
However, many other realizations have since been identified
both in two dimensions [1–4] and in three dimensions [5–17].
Transport measurements provide a powerful tool to probe
the properties of relativistic excitations. In graphene, the
relativistic nature of the low-energy excitations is at the origin
of several characteristic signatures in transport, such as the
anomalous quantum Hall effect [18], the Klein tunneling [19],
and the nonzero minimal conductivity [19,20]. As opposed to
the anomalous quantum Hall effect and the Klein tunneling, the
nonzero minimal conductivity is due to evanescent relativistic
modes occurring in a confined geometry. While at the band
crossing the density of propagating wave states vanishes,
transport is still possible through these evanescent modes.
Hence, the finite minimal conductivity is a unique signature
of the band crossing unveiling the nature of the associated
evanescent modes.

To characterize semimetallic phases beyond graphene via
transport properties at the band crossing the question of the
origin of this minimal conductivity has to be addressed. The
minimal conductivity at the band crossing was associated to
the Zitterbewegung of Dirac particles, an intrinsic agitation
characteristic of ultrarelativistic particles, which leads to
diffusive motion even in perfectly clean samples [19,20].
However, whether the presence of Zitterbewegung is sufficient
or other constraints are required to infer a finite minimal
conductivity is an open question. Among the properties
naturally present in graphene at low energy are a chiral
symmetry, a pseudospin structure, and a quantized Berry
phase acquired by an electron when winding around the
crossing point. The latter also gives rise to another two
remarkable phenomena: the anomalous quantum Hall
effect [21,22] and the topological robustness of graphene [23].

In the present paper, we investigate the origin of the minimal
conductivity at the band crossing by considering three-band
extensions of graphene. We demonstrate that neither chiral
symmetry nor pseudospin structure, nor Zitterbewegung are
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at the origin of the finite minimal conductivity. On the other
hand, at least for the three-band models with chiral symmetry,
we relate the nonvanishing minimal conductivity with the
existence of topological Berry phases. This relation between
the nature of evanescent modes in a confined geometry and
a property of propagating wave states of a given gapless
relativistic Hamiltonian is reminiscent of the bulk-boundary
correspondence in gapped topological phases. To identify
the origin of the nonvanishing conductivity we study the
simplest models of chiral symmetric semimetals beyond
graphene, which are three-band models in two dimensions.
These models all possess the same spectrum, chiral symmetry,
and exhibit Zitterbewegung. As only some of them exhibit
nonvanishing minimal conductivity we can rule out these
properties as the origin of this phenomena. Moreover, the
conductivity of three-band models corresponding to spin
S = 1 vanishes ruling out the relevance of the pseudospin
structure. Instead, to discriminate between the models with
nonvanishing conductivity and those without, we introduce a
duality transformation. The duality generalizes the notion of
symmetry of Bloch Hamiltonians and allows one to distinguish
between models with different nature of evanescent states. We
show that the same duality also discriminates between the
models with and without topological Berry phase that allows
one to link the transport property to the topological one.

The paper is organized as follows. Section II introduces a
lattice realization of three-band models with chiral symmetry.
We define a duality transformation, which allows us to identify
two duality classes in Sec. III. In Sec. IV we discuss the Berry
phase properties of a band crossing. We show that the lattice
properties at the origin of a topological Berry phase are en-
coded by none of the standard symmetries of the Hamiltonian
but rather by the duality transformation. In Sec. V we study the
transport properties of wide junctions using both analytical and
numerical Landauer approaches. This allows us to establish
a link between a nonvanishing minimal conductivity and a
topological Berry phase via duality transformation.

II. CHIRALITY OR SUBLATTICE SYMMETRY

We consider three-band semimetals in two dimensions
characterized by two linearly crossing energy bands n = ±
and a third locally flat band n = 0, represented in Fig. 1.
We focus here on spinless models. This corresponds to
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FIG. 1. (Color online) Energy spectrum of a three-band chiral
semimetal, which consists of two linear energy bands n = ± and a
flat band n = 0 and displays a symmetry E(�k) → −E(�k).

the several materials in two and three dimensions [1,2,9].
The energy spectrum E(�k) as a function of the momentum
�k exhibits the symmetry E(�k) → −E(�k) at least locally
around the crossing point. This spectrum symmetry naturally
originates from a chiral symmetry of the corresponding
(low-energy) Hamiltonian. This symmetry is represented by
a unitary operator C that anticommutes with the Hamiltonian:
H = −CHC.

An explicit chiral operator can be defined when considering
the pedagogical examples of tight-binding Hamiltonians de-
fined on lattices. Similarly to graphene, only nearest-neighbor
couplings can be kept when focusing around the band-
crossing points. In this case chiral symmetry corresponds to
a sublattice symmetry: couplings are only present between
the two sublattices A and B of a bipartite lattice. This is the
case of the nearest-neighbor description of graphene on the
honeycomb lattice. In the case we consider in this article,
three-band crossing implies the existence of three orbitals
distributed on three Bravais lattices A1,A2 and B of same
geometry, as shown on Fig. 2. Chiral symmetry is satisfied if
the only couplings t1,t2 relevant at low energy are between
orbitals on the B and the A1,A2 lattices whereas A1 and A2

stay uncoupled. The corresponding Bloch Hamiltonian in the
orbital basis (A1,A2,B) is written

H (t1,t2; �k) =

⎛
⎜⎝

0 0 t1f1(�k)

0 0 t2f2(�k)

t1f
∗
1 (�k) t2f

∗
2 (�k) 0

⎞
⎟⎠. (1)

Such a Hamiltonian anticommutes with a chirality oper-
ator C = diag(1,1, − 1). The complex functions fj (�k) =
|fj (�k)|eiφj (�k) encode the geometry of the lattice of cou-
plings. Their amplitudes determine the spectrum of the
semimetal: E0(�k) = 0,E±(�k) = ±(t2

1 |f1(�k)|2 + t2
2 |f2(�k)|2)

1
2 .

A three-band crossing occurs when f1 and f2 vanish

FIG. 2. (Color online) Triangular Bravais lattices with three orbitals (A1, A2, and B) per unit cell are represented. The position of the A1

orbitals is chosen (a) arbitrary, (b) in the center of the BA1 hexagons for the T3 lattice, or (c) at the same location than the A2 orbitals for the H3

lattice. The duality transformation D exchanges the location of the orbitals A1 and A2 and the hopping amplitudes symbolized by full/dashed
lines. The original T3 lattice is recovered after an inversion in case (b) whereas the dual and the original lattices coincide for the H3 lattice in
case (c).
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simultaneously at a point �K in the Brillouin zone. Generically,
additional crystalline symmetries are required to guarantee
this vanishing. In the present paper we assume the existence
of these band crossings and study some of their transport
properties. In particular, we focus on properties, which depend
on the phases φj (�k) and which are thus independent of the
spectrum provided a band crossing occurs.

Quite generally, we will consider chiral symmetric Bloch
Hamiltonians describing a three-band semimetal with band
crossing at point �K , and whose linear expansion around the
crossing takes the form

H ( �K + �q)

=

⎛
⎜⎝

0 0 �11qx + �12qy

0 0 �21qx + �22qy

�∗
11qx + �∗

12qy �∗
21qx + �∗

22qy 0

⎞
⎟⎠.

(2)

Such a Hamiltonian is entirely parametrized by a matrix � =
{�ij } of complex coefficients. The phases of the coefficients
�ij encode the geometry of the underlying lattice. The
constraint from the lattice on these phases must be independent
of the amplitude of couplings between the orbitals. Hence,
it cannot result in a symmetry of the Hamiltonian, which
affects energies: we show that it corresponds to a duality
in a manner analogous to the Kramers-Wannier duality of
statistical mechanics [24].

III. LATTICE GEOMETRY AND DUALITY CONSTRAINTS

The geometry of the lattice can be described by two vectors
�e1 and �e2 relating a vector of the lattice B to neighbor
sites of the A1 and A2 lattices, as shown on Fig. 2. The
duality transformation D exchanges the lattices A1 and A2,
or equivalently the vectors �e1 and �e2, while simultaneously
exchanging the couplings between B and A1 orbitals with
couplings between B and A2 orbitals. Quite generally, this
duality is an involutive transformation, i.e., D2 = I, which
relates a Hamiltonian H on a lattice L to a Hamiltonian
H̃ on a different lattice L̃. However, on symmetric lattices
where initial and dual lattices L,L̃ are related by a geometrical
transformation R, this duality translates into constraints on
Hamiltonians defined on the same lattice (or same Hilbert
space). In this case, and focusing for simplicity on nearest-
neighbor Hamiltonians, the duality transformation can be
recast into the form

(DU )H (t2,t1;R�k)(DU )−1 = H (t1,t2; �k), (3)

where U is a unitary operator, R is the symmetry relating
initial and dual lattices, and D is the operator swapping A1

and A2 orbitals:

D =

⎛
⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎠. (4)

A very special case, which we call the duality class DI

corresponds to the situation where two orbitals lie on the
same site, i.e., when �e1 = �e2 �= �0. In this class, the duality

transformation simplifies and U and R reduce to the identity.
In this case, Bloch Hamiltonians encode the geometrical
properties of a bipartite lattice, whereas in the other case,
which we denote the duality class DII, the underlying lattices
are either Bravais lattices or possess three distinct sublattices.
This duality restricts the form of the chiral tight-binding
Hamiltonian (1): in the class DI we have f1(�k) = f2(�k) while a
much weaker constraint f1(�k) = f2(R�k) holds in class DII for
symmetric lattices. Specifying this constraint to a local Bloch
Hamiltonian (2) around a three-band crossing, the duality in
class DI implies the condition

�12

�11
= �22

�21
≡ λ, (5)

while generically it only relates Hamiltonians at different
crossing points in class DII. In the following we show that
Hamiltonians belonging to the duality class DI describe the
only three-band semimetals possessing quantized topological
Berry windings, which are also those whose conductivity does
not vanish at the band crossing and display a pseudodiffusive
regime.

To illustrate this relation, let us discuss two nearest-
neighbor lattice models of semimetals belonging to both
classes. A natural model in class DI, inspired by graphene,
corresponds to a honeycomb lattice with two orbitals on
one of the two sublattices, shown in Fig. 2(c). As shown in
Appendix A 1, the three bands of this model, which we call
H3, cross at points �K and �K ′ of the Brillouin zone. Around
those points, the Bloch Hamiltonian takes the form (2) with a
matrix of coefficients

�H3 = 3a

2

(
t1 −it1
t2 −it2

)
, (6)

with a being the honeycomb lattice spacing, while the charac-
teristic energy scale of nearest-neighbor couplings is encoded

into t =
√

t2
1 + t2

2 . This model satisfies the condition (5) with
λ = −i and belongs to the duality class DI. The T3 model [25]
is again defined on a honeycomb lattice but with additional
orbitals A2 at the center of each hexagon as shown in Fig. 2(b).
These orbitals are coupled by an amplitude t2 only to the B

sublattice of the honeycomb lattice, while A1 and B orbitals on
the honeycomb lattices are coupled by t1 (see Appendix A 2).
This model belongs to the duality class DII, with the inversion
R�k = −�k relating initial and dual lattices. Indeed, the Bloch
Hamiltonian linearized around the band-touching point �K is
written in the form (2) with

�T3
= 3a

2

(
t1 −it1
t2 it2

)
, (7)

which does not fulfill the condition (5). Note that when t1 = t2,
this linearized Hamiltonian can be written in the form HK(q) =
�vF S · q, where Sx , Sy and Sz ≡ diag(1, − 1,0) satisfy the
spin-1 algebra [Si,Sj ] = iεijkSk . Hence the T3 model realizes
a continuous deformation of spin-1 massless fermions within
the duality class DII.

We now characterize both the topological Berry phase
associated with the band crossing, as well as the electronic
transport properties around the crossing, which turn out to be
associated to the duality class of the semimetal.
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FIG. 3. (Color online) The Berry phase acquired by eigenstates around the band crossing point is shown for the three energy levels
n = −, 0, + for nearest neighbors models on the T3 (left) and on the H3 model (right). For the H3 lattice model, the Berry phase γn is
independent on the coupling amplitudes t1, t2 : it is quantized. The windings by ±π in the ± bands signals the presence of topological Berry
vortices at the band crossing points. This is not the case for the T3 lattice model: the Berry phase continuously depends on the ratio of hopping
amplitudes t2/t1 for all bands and is not topological.

IV. TOPOLOGICAL BERRY WINDING AROUND
A BAND CROSSING

When evolved along a closed loop in momentum space,
Bloch eigenstates can acquire a geometrical Berry phase.
Moreover, band-touching points act as sources of this Berry
phase in two dimensions: it is natural to characterize these
points by the Berry phases acquired by the different eigenstates
around it. In two dimensions these phases are independent of
the choice of loop winding once around the point �K , and are
defined as:

γn( �K) = −i

π

∮
d �q.〈�n| �∇�q |�n〉. (8)

Besides being only dependent on the homotopy class of the
loop around �K , these Berry phases can also be robust against
perturbations of the Hamiltonian, which do not lift the band
crossing, such as in graphene. In such cases, they are called
topological Berry phases. Such a robustness occurs when this
Berry winding is quantized. Note that one has to distinguish the
topological nature of such a Berry phase from the protection of
such a band crossing, which generically involves consideration
of crystalline symmetries like in graphene. In the following,
we will consider general perturbations of Hamiltonians, which

preserve both the chiral symmetry and the band crossing,
irrespective of the existence of additional symmetries.

Since the Berry windings are a property of the band crossing
solely, they can be conveniently computed from the low-energy
Hamiltonian (2). We find that these windings are topological
only when the condition (5) is fulfilled: the only semimetals
characterized by a topological Berry winding are those of the
duality class DI, with values

γ+ = γ− = sgn Im λ, γ0 = 0. (9)

The calculations are detailed in Appendix A 3: we find that the
quantized Berry windings γ+,γ− are stable with respect to any
perturbation compatible with the duality constraint, i.e., which
does not break the geometry of the underlying lattice. Figure 3
shows the phase winding of Bloch eigenstates �n around the
nodal point for the H3 model of class DI and for the T3 model
of class DII . The �k dependence of the phase is represented by
vectors in the two-dimensional momentum space. The color
scale gives the accumulated phase with respect to the negative
kx semiaxis. A clockwise vortex corresponds to a winding of
π , i.e., to a Berry phase 1. Eigenstates of the H3 model (6) are
characterized by Berry phases γ± = −1, γ0 = 0 as shown in
Fig. 3. These Berry phases are in particular robust to variations
of hopping amplitudes t1,t2. Remarkably for the T3 model (7),
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FIG. 4. (Color online) (a) Conductivity and (c) Fano factor as a function of a gate potential Vg applied to the sample in the geometry
represented in (b). The inset in (a) shows a zoom on the region of the crossing. Results for nearest-neighbor lattices models on the H3 and
T3 lattices are shown. They are independent on the coupling amplitudes for the H3 model, but depend on these couplings for the T3 model,
as illustrated by a choice of three ratio t2/t1. The symbols correspond to the results of a numerical Landauer approach on a system of size
L = 20,W = 100 in units of lattice spacing a. The curves correspond to analytical results of a continuous description around a single cone.

while the Berry phases γn are still independent of the path
winding, they are shown to vary continuously upon variation
of the ratio t2/t1 of nearest-neighbor couplings, in agreement
with the results of a previous study by Raoux et al. [25]
(see also Appendix A 3). In particular, they generically take
nonquantized values as illustrated by the discontinuity of the
vector field.

Thus, for any chiral symmetric semimetal, which does not
belong to the DI class, the Berry phase can take any real value
and depends continuously on deformations of the Hamiltonian.

V. MINIMAL CONDUCTIVITY AT THE BAND CROSSING

Transport measurements constitute a powerful tool to probe
the physical properties in the vicinity of the Fermi energy. We
will show that close to the band crossing electronic transport
is related to the phases φi(�k) entering the Hamiltonian in (1)
and not to the spectrum. Remarkably, in graphene, when the
Fermi level coincides with the twofold band-crossing point,
the conductivity of a clean sample was predicted to remain
finite despite a vanishing density of states. This result was first
derived by considering the conductivity of a narrow strip of
graphene between two contact electrodes as shown on Fig. 4.

Let us consider an analogous setup for a three band chiral
semimetal, i.e., a finite sample of length L and width W . The
conductance of a narrow sample is conveniently calculated
from the set of the transmission probabilities Tn of the
conduction channel labeled by n through the Landauer formula

G = e2

h

∑
n

Tn. (10)

The longitudinal conductivity σ is related to this conductance
as σ = LW−1G. The explicit calculation of the transmission
probabilities Tn requires solving the Schrödinger equation
piecewise and matching the solutions at the boundaries of the
sample. Confinement of the sample between the leads gives

rise to zero-energy evanescent states. At the band crossing, the
conductivity depends entirely on the nature of these evanescent
states. Prior to an explicit calculation of the conductivity, it is
instructive to consider the current operator jx(�k) = 〈∂kx

H (�k)〉ψ
defined from the tight-binding Bloch Hamiltonian (1). Intro-
ducing the amplitudes (ψA1 ,ψA2 ,ψB) of the electronic wave
function in the three sublattices the longitudinal current can
be expressed as jx(�k) = 2Re {ψB(�k)[∂kx

fi(�k)ψ∗
Ai

(�k)]} and is
found to be proportional to the amplitude ψB on the B

sublattice [26]. This hints that electronic transport at the
band crossing will occur provided the zero-energy evanescent
modes have a nonvanishing component on the B sublattice.

As expected from the previous qualitative argument, the
existence of a finite minimal conductivity at the threefold band
crossing point is uniquely determined by the nonvanishing
weight of the wave function on the hub lattice B as we
have checked using a Landauer description of transport in
Appendix B 1. From (2), this component is found to satisfy

�.

(
qx

qy

)
ψB = 0. (11)

Hence a necessary condition for the existence of a nonvan-
ishing minimal conductivity at the band crossing is simply
det � = 0. This constraint is equivalent to the duality con-
straint (5) defining the classDI: the only three-band semimetals
with a nonvanishing minimal conductivity belong to this
duality class DI. Reciprocally, any model in this duality class
has a finite minimal conductivity, as shown in Appendix B 1b.
Moreover for the H3 lattice model, this minimal conductivity
corresponds exactly to the value σ (min) = e2/(πh) predicted
for graphene. This result remains valid for any model in
the dual class DI, or more generally det σ = [e2/(πh)]2 for
an anisotropic dispersion relation. In contrast, any three-
band chiral symmetric semimetal in class DII possesses a
vanishing conductivity σ (min) = 0 in every direction. Beyond
the minimal conductivity, the fluctuations of this conductivity
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can also be considered : their amplitude is encoded in the
ratio between the shot-noise power and the averaged current,
the so-called Fano factor. This Fano factor is related to
the transmission coefficients as F = ∑

n Tn(1 − Tn)/
∑

n Tn.
We find that this factor F takes a constant value F = 1/3
within the duality class DI, a value already encountered in
graphene [20] and characteristic of diffusive metals [27]. Such
a result demonstrates that for all semimetals in this class the
transport through narrow, perfectly clean junctions displays
the characteristic features of diffusive metals.

We have evaluated the conductivity of different lattice mod-
els in the geometry of Fig. 4. We compare the analytical results
to a numerical Landauer approach to check for possible inter-
crossing-point effects, neglected in the analytical approach.
Numerical calculations were performed using the KWANT

code [28], based on a Green’s function recursive technique to
evaluate the transmission amplitude across a sample. Typical
samples of dimensions L = 20, W = 100 in lattice units were
considered, with semi-infinite one-dimensional (1D) chains
modeling the leads. A good agreement is found between both
approaches. The results for the H3 model are shown as a
function of the Fermi energy, or gate potential Vg , in Fig. 4: the
conductivity exhibits a plateau around the band crossing point
Vg = 0, corresponding to σ = e2/(πh). The results of a similar
study for the T3 model are also shown in Fig. 4 and display
a collapse of the conductivity around the band crossing point
Vg = 0 for three different values of the couplings between
orbitals (inset). Figure 4 displays the analytical results for
the dependance of the Fano factor on the gate potential
Vg . We show that for the T3 model F (Vg = 0) = 1, whereas
for the H3 model the Fano factor reaches the value F = 1

3
at the band crossing, characteristic of a disordered metal as
expected for class DI. Finally, let us mention that for graphene
the result of the Landauer formula for a narrow junction can
be recovered for a long junction by an approach based on the
Kubo formula [29]. While this equivalence remains valid for
three-band semimetals in the dual class DI, it does not hold
beyond it: we found that the Kubo conductivity for the T3

model diverges at the band crossing (see Appendix B 2), as
opposed to the vanishing Landauer conductivity for a narrow
junction, in agreement with a previous result in the disordered
limit [30].

VI. CONCLUSION

As follows from the results of this paper, the occurrence of
a transport regime at the band crossing with a nonvanishing
conductivity through evanescent modes is not a generic
property of linear dispersion relations near this crossing nor
a hallmark of relativistic physics of the associated electronic
excitations such as the Zitterbewegung, chiral symmetry or
pseudospin structure.

However, at least for three-band models with chiral sym-
metry in two dimensions, a nonvanishing conductivity is
surprisingly found to be related to a quantized Berry phase
of the Bloch bands. This result highlights a new connection
between the nature of evanescent states (and associated
minimal conductivity) and a topological property (topological
Berry phase) of wavelike eigenstates. This evanescent-bulk

state correspondence is reminiscent of the standard bulk-edge
correspondence in topological insulating phases. Here, the
nonvanishing conductivity through evanescent states and the
quantized Berry phase of Bloch states both follow from lattice
properties encoded into a duality property (class DI), in con-
trast with a symmetry property. Generically, the special lattice
properties required to belong the duality class DI are not met.
In that case the Berry phase is then found to be not quantized
and the conductivity vanishes at the band crossing. This puts
in perspective the existence of a minimal conductivity in
graphene that turns out to fulfill a very special criteria.

Our results open a new route to a fine probe of band
crossings through evanescent states that discriminates different
fundamental transport properties (conductivity and noise) of
semimetals. They constitute a key step toward the understand-
ing of the properties of evanescent modes in semimetals. Along
these lines, we have extended our analysis to a band crossing
described by the simple Hamiltonian H (�q) = Sxqx + Syqy ,
with Sx,Sy satisfying a spin-S algebra [31]. Again, we find that
the Berry topological winding and the minimal conductivity
are correlated and vanish for integer spin S. Beyond this,
several directions are particularly promising for future inves-
tigations, such as to release the constraint of chiral symmetry
or extensions to three-dimensional semimetals [32,33].
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APPENDIX A: BAND PROPERTIES

1. H3: Three-band hexagonal model

The three-band hexagonal model is a possible general-
ization of graphene, adding an extra orbital exactly on one
sublattice as shown on Fig. 2. To write the Bloch Hamiltonian
of our system, consider the triangular Bravais lattice with three
sites per unit cell. The spectrum therefore consists of three
energy bands, each carrying one third of the electronic states.
The Hamiltonian for a given value of ϕ = arctan( t2

t1
) reads, in

the (A1,A2,B) basis:

H (�k) =

⎛
⎜⎝

0 0 f (�k) cos ϕ

0 0 f (�k) sin ϕ

f ∗(�k) cos ϕ f ∗(�k) sin ϕ 0

⎞
⎟⎠, (A1)

where f (�k) = t(1 + ei�k.�u1 + ei�k.�u2 ). �u1 =
√

3a
2 (−�ex + √

3�ey),

and �u2 =
√

3a
2 (�ex + √

3�ey) are basis vectors of the triangular
Bravais lattice. Note that, due to the duality constraint
corresponding to class DI , matrix elements HA1B and HA2B

have equal complex phase. The spectrum does not depend on
ϕ. It consists of a flat band at zero energy ε0(�k) = 0 and two
dispersive bands ε±(�k) = ±|f (�k)|.
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In sublattice basis, the eigenstates of (A1) have the form:

�±(�k) = 1√
2

⎛
⎜⎝

cos ϕe−iθ

sin ϕe−iθ

±1

⎞
⎟⎠, ε(�k) = ±|f (�k)|; (A2a)

�0(�k) =

⎛
⎜⎝

− sin ϕ

cos ϕ

0

⎞
⎟⎠, ε(�k) = 0, (A2b)

where θ = arg[f (�k)].
The three bands touch at the corners of the first Brillouin

zone �K = 4π

3
√

3a
�ux and �K ′ = − �K . In the vicinity of band-

touching point �K , the low-energy Hamiltonian reads:

H ( �K + �q) = �vF

⎛
⎜⎝

0 0 q− cos ϕ

0 0 q− sin ϕ

q+ cos ϕ q+ sin ϕ 0

⎞
⎟⎠. (A3)

where we denote q± = qx ± iqy , and with vF = 3at/2�, a the
honeycomb lattice spacing and t the characteristic hopping
strength. When ϕ = 0 or π/2 (t1 = 0 or t2 = 0), the 2D Dirac
Hamiltonian of graphene is recovered, with an extra flat band
acting as a mere spectator.

2. T3 model

The T3 lattice consists of a honeycomb lattice with one
additional site at the center of each hexagon, connected to one
of the sublattices of the honeycomb lattice (see Fig. 2): it can be
seen as two shifted honeycomb lattices sharing one sublattice.
The dual lattices A1B and A2B are related by inversion
symmetryR�k = −�k; hence, this model belongs to duality class
DII . The 3 × 3 Bloch Hamiltonian at wave vector �k reads:

H (�k) =

⎛
⎜⎝

0 0 f (�k) cos ϕ

0 0 f ∗(�k) sin ϕ

f ∗(�k) cos ϕ f (�k) sin ϕ 0

⎞
⎟⎠, (A4)

where the function f (�k) has been defined in the previous
section. The spectrum is given by: ε(�k) = 0, ± |f (�k)|. It is
identical to the spectrum of the H3 model.

Let us have a look at the eigenstates of Hamiltonian (A4).
Corresponding wave functions read:

�±(�k) = 1√
2

⎛
⎜⎝

cos ϕe−iθ

sin ϕeiθ

±1

⎞
⎟⎠, ε(�k) = ±|f (�k)|; (A5a)

�0(�k) =

⎛
⎜⎝

− sin ϕeiθ

cos ϕe−iθ

0

⎞
⎟⎠, ε(�k) = 0, (A5b)

where θ = arg[f (�k)].

The low-energy Hamiltonian expanded around band-
touching point �K reads:

H ( �K + �q) = �vF

⎛
⎜⎝

0 0 q− cos ϕ

0 0 q+ sin ϕ

q+ cos ϕ q− sin ϕ 0

⎞
⎟⎠, (A6)

3. Berry phase around the nodal point

Upon winding around the band-touching point, electrons in
the nth energy band pick up a so-called Berry phase γn:

γn( �K) = −i

π

∮
d �q.〈�n| �∇�q |�n〉, (A7)

where �n is the corresponding Bloch eigenstate. The integrand
in (A7) is the Berry connection

�An(�q) = −i〈�n| �∇�q |�n〉 = Im(〈�n| �∇�q |�n〉). (A8)

Here we compute the Berry connection and the Berry
phase (A7) for eigenstates of the general Hamiltonian of the
DI duality class, and for the T3 model of the DII duality class.

a. DI class

The general low-energy DI class Hamiltonian can be
written in the following form:

H (�q) =

⎛
⎜⎝

0 0 α(qx + λqy)

0 0 β(qx + λqy)

α∗(qx + λ∗qy) β∗(qx + λ∗qy) 0

⎞
⎟⎠.

(A9)

The spectrum is given by: ε±(�q) = ±
√

|α|2 + |β|2|qx +
λqy |,ε0(�q) = 0. We may fix the total energy scale without
loss of generality by setting |α|2 + |β|2 = 1. The eigenstates
of (A9) read:

�±(�q) = 1√
2

⎛
⎜⎜⎝

α
qx+λqy

|qx+λqy |
β

qx+λqy

|qx+λqy |
±1

⎞
⎟⎟⎠, ε± = ±|qx + λqy |, (A10a)

�0(�q) =

⎛
⎜⎝

−β∗

α∗

0

⎞
⎟⎠, ε0 = 0. (A10b)

We then compute the Berry connection (A8) for the lower and
upper dispersive bands �+ and �− (A10a):

A±
x = Im(〈�±|∂qx

|�±〉)
= − qy

2|qx + λqy |2 Im(λ) (A11a)

A±
y = qx

2|qx + λqy |2 Im(λ). (A11b)
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Integrating along a loop of constant ||�q|| yields the Berry
phase:

γ± = 1

π

∫ 2π

0
qdθA±

θ =
∫ 2π

0
qdθ

(
qx

q
A±

y − qy

q
A±

x

)

=
(

1

2π

∫ 2π

0

dθ

| cos θ + λ sin θ |2
)

Im(λ)

= sgn[Im(λ)]. (A12)

The Berry phase is quantized and in particular does not change
under continuous variations of the Hamiltonian parameters,
provided the duality constraint of classDI is preserved. For the
flat band, (A10b) immediately gives �A = �0, and thus γ0 = 0.

The H3 model belongs to the DI class; it corresponds to
the case λ = −i. Thus from (A12) the invariants associated
with eigenstates of the H3 model are γ± = −1, γ0 = 0.
Alternatively, one can recover these results by an explicit
calculation from the eigenstates (A2).

b. T3 model: An example from the DI I class

We now consider low-energy excitations of the T3 model.
Using expression (A5a) for the eigenstates of the disper-
sive bands with f ( �K + �q) � qx − iqy = qe−iθ , the Berry
connection is given by:

�A± = − 1
2 cos 2ϕ �∇�qθ, (A13)

which yields for the Berry phase (A7):

γ± = − cos 2ϕ. (A14)

Similarly, eigenstates of the flat band (A5b) are characterized
by a Berry phase:

γ0 = 2 cos 2ϕ. (A15)

These phases vary continuously with the hopping parameter
ϕ, and vanish when ϕ = π/4. The only source of Berry
phases is the band-crossing point itself: this manifests into
the robustness of their value beyond the linear approxima-
tion. Keeping the general expression f (�k) = |f (�k)|eiφ(�k) and
integrating along an isoenergy contour |f (�k)| = const. as in
Ref. [25] still yields the windings (A14) and (A15).

c. Three-band chiral linear crossing with topological Berry phase

Here we show that for a three-band crossing described by
the linearized Hamiltonian (2) to have a topological Berry

phase, it must belong to the duality class DI . In particular, it
thus has a finite minimal conductivity. First, consider the �ij

coefficients characterizing Hamiltonian (2). Through a global
change of energy scale and phase of the Hamiltonian, they are
cast under the form:

� =
(

cos ϕeib cos ϕeibν

sin ϕ sin ϕμ

)
, (A16)

where ϕ is defined by tan ϕ = |�21|
|�11| . In the context of lattice

models it corresponds to the ratio of hoppings, as in (A1)
and (A4). Eigenstates from the dispersive bands now read:

ψ± = 1√
2

⎛
⎜⎝

cos ϕeib kx+νky

ε�k
sin ϕ

kx+μky

ε�k
±1

⎞
⎟⎠, (A17)

with energy

E = ±ε�k = ±
√

cos2 ϕ|kx + νky |2 + sin2 ϕ|kx + μky |2.
(A18)

From (A17) we then obtain the Berry connection:

A±
x = Im(〈�±|∂qx

|�±〉)
= − qy

2ε2
�k

[cos2 ϕIm(ν) + sin2 ϕIm(μ)] (A19a)

A±
y = qx

2ε2
�k

[cos2 ϕIm(ν) + sin2 ϕIm(μ)], (A19b)

from which in turn we compute the Berry phase:

γ± = 1

2π

∫ 2π

0
dθ

k2

ε2
�k

[cos2 ϕIm(ν) + sin2 ϕIm(μ)]. (A20)

Using the following formula:

1

2π

∫ 2π

0

dθ

cos2 θ + ρ2 sin2 θ + 2ρ cos φ cos θ sin θ

= 1

ρ
√

1 − cos2 φ
, (A21)

we can recast the last expression (A20) into the form:

γ± = cos2 ϕIm(ν) + sin2 ϕIm(μ)√
|ν|2 cos2 ϕ + |μ|2 sin2 ϕ − [cos2 ϕRe(ν) + sin2 ϕRe(μ)]2

. (A22)

From (A22) we recover the Berry phase expressions (A14)
and (A12) for the different models we considered. For the
Berry phase (A22) to be topological, it must in particular
be independent of ϕ, i.e., we must have ∂ϕγ± = 0∀ϕ. We
find that this condition is fulfilled when and only when
ν = μ, i.e., when the system is in duality class DI , according

to (5). Here we have thus shown that for a three-band
linear crossing with chiral symmetry to have a topological
Berry phase, it must necessarily belong to duality class
DI . Reciprocally we have shown in a previous section that
any model in this class has a quantized topological Berry
phase.
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APPENDIX B: TRANSPORT PROPERTIES

1. Landauer conductivity

a. Matching conditions for �k-linear Hamiltonians

To solve the scattering problem through a tunnel junction,
we want to compute the electronic wave functions in the
different regions of the setup and ensure that the solutions
obtained in neighbor regions satisfy the matching conditions
at the interface. To this end, we want to derive matching
conditions along the x direction for electronic wave packets
described by a k-linear Hamiltonian H = �S · �k. Let us consider
an interface at x = x0; the matching conditions at the interface
derive from the continuity of the eigenvalue equation �S · �kψ =
(ε − V )ψ , where V (x < x0) = V1,V (x > x0) = V2. Integrat-
ing the eigenvalue equation between x0 − η and x0 + η (η > 0)
gives:

Sx[ψ(x0 + η) − ψ(x0 − η)] =
∫ x0+η

x0−η

[ε − V (x)]ψ(x)dx,

(B1)
where we used �k = −i ∂

∂ �x in coordinate representation. Sending
η to 0, the integral in the right-hand side of (B1) vanishes,
yielding the following condition:

Sx · ψ(x−
0 ) = Sx · ψ(x+

0 ). (B2)

Note that, in contrast with the usual case of the Schrödinger
equation, for a k-linear Hamiltonian matching of the wave
function does not imply continuity of the wave function’s
derivatives, but only of linear combinations of its components.

In the models we study, the presence of a chiral symmetry
constrains the linearized low energy Hamiltonian to take
the form (2) in the (A1,A2,B) basis. Hence, condition (B2)
enforces the continuity of ψB at x0, provided �11 or �21 is
nonzero.

b. Derivation of the minimal conductivity in the DI class

We now consider a given material in the DI duality class:
its low-energy excitations are described by Hamiltonian (A9).
We now study the transmission of electronic current through
a sample of dimensions L × W contacted between two
electrodes, respectively at x = 0 and x = L. The chemical
potential in the sample is set exactly at the band-touching
point, whereas the electrodes are doped at a very large potential
V∞. Momentum in the transverse direction y is quantized
in all three regions—the two electrodes and the sample. It
is determined by the transverse boundary conditions: for
instance, periodic boundary conditions give qy = 2πn

W
.

The dimensionless dispersion relation in the electrodes
writes: V 2

∞ = q2
x + q2

y . Since qy is quantized and thus fixed,
for a large enough potential V∞ the normal incidence approx-
imation qx/qy � 0 becomes valid. Electronic wave functions
[see Eq. (A10a)] in the left electrode then read:

ψ(x < 0) = 1√
2

⎛
⎜⎝

α

β

1

⎞
⎟⎠ei�q�r + rn√

2

⎛
⎜⎝

−α

−β

1

⎞
⎟⎠e−i�q�r , (B3)

and in the right electrode:

ψ(x > L) = tn√
2

⎛
⎜⎝

α

β

1

⎞
⎟⎠ei�q�r . (B4)

tn and rn are the transmission and reflexion amplitude of
mode n.

In the sample, the Fermi level lies exactly at the nodal point
E = 0. Evanescent zero-energy modes ψT = (ψA1,ψA2,ψB )T

of Hamiltonian (A9) satisfy:

ψB(0 < x < L) = Ce−iλqyx+iqyy (B5a)

(α∗ψA1 + β∗ψA2)(0 < x < L) = C ′e−iλ∗qyx+iqyy . (B5b)

Besides, matching conditions at the interfaces x = 0 and x =
L, given by equation (B2), correspond to the continuity of
ψB and (α∗ψA1 + β∗ψA2). Enforcing this continuity at x = 0
and x = L and solving the system of equations yields for the
transmission coefficient of mode n:

Tn = |tn|2 = 1

| cosh(Im(λ)qnL)|2 , (B6)

where qy = qn = 2πn
W

. In the limit W � L, where we can
neglect the impact of transverse boundary conditions, equa-
tion (B6) leads to the following expression for Landauer
conductivity:

σ = L

W

e2

h

∑
n

Tn = e2

πh

1

Im(λ)
. (B7)

Note that the conductivity depends on the direction of the
junction θ . The dependance can be carried out from (A9)
taking into account the dependance of λ on θ . Assuming that
θ = 0 corresponds to a principal axis one finds that λ(θ ) := λ0

is pure imaginary and the conductivity in the direction θ is
given by

σ (θ ) = e2

πh

(
1

|λ0| cos2 θ + |λ0| sin2 θ

)
. (B8)

The minimal conductivity takes its extrema values along the
principal axes of the dispersion relation, σ1 = 1

|λ0|
e2

πh
and

σ2 = |λ0| e2

πh
. The determinant of the conductivity tensor reads

straightforwardly from its expression in the principal axes
basis: σ̄ = diag(σ1,σ2), which gives det σ̄ = (e2/πh)2.

The H3 model corresponds to λ = −i, leading to σ = e2

πh
.

Since the dispersion relation is isotropic in this case, the value
of the minimal conductivity in the H3 model is independent of
the direction of the junction.

Note that reciprocally we have shown that any three-band
chiral semimetal with finite minimal conductivity necessarily
belongs to the DI class. Indeed, a necessary condition for the
existence of a minimal conductivity is given by (11) which,
when it is fulfilled, implies in turn that theDI criteria (5) is met.

c. Absence of minimal conductivity in the T3 model

We study a strip of the T3 material contacted between two
electrodes, in a similar fashion as in the previous section. In
the strip, the Fermi level is set at the band-touching point
E = 0. Let us consider the propagation of an electronic wave
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packet incident from the left electrode into the sample. In
the strip, the zero-energy wave functions of (A6) must satisfy
ψB = 0 (for 0 < ϕ < π/2, ky �= 0). In the right electrode,
the wave function is ψ(x > L) = tnψ

+(�q)ei�q�r , where tn gives
the transmission coefficient of mode n: Tn = |tn|2 and ψ+ is
defined by Eq. (A5a). Thus, we have

ψB(0 < x < L) = 0 (B9a)

ψB(x > L) = tn√
2
ei�q�r . (B9b)

Matching conditions (B2) enforce the continuity of ψB at
the interface, leading to tn = 0. This is true for all modes with
nonzero transverse momentum ky . Hence, the conductance
G = e2

h

∑
n Tn can be zero or finite, independent of the system

size, depending whether a mode with ky = 0 is allowed or
not by transverse boundary conditions. In any case, for the
conductivity one finds:

σ = L

W

e2

h

∑
n

Tn = 0 (B10)

in the limit W � L.

2. Kubo conductivity of the T3 model

We now compute the Kubo conductivity at the nodal point in
the T3 lattice. For simplicity we only show here the calculation
in the case t1 = t2: the final result remains valid for any nonzero
value of the hoppings. The low-energy Hamiltonian writes:

H ( �K + �q) = �vF

⎛
⎜⎝

0 0 q−
0 0 q+
q+ q− 0

⎞
⎟⎠, (B11)

where we denote q± = qx ± iqy , and with vF = 3at/2, a the
honeycomb lattice spacing and t the hopping strength.

We perform the computation using Kubo formula, which
gives the linear response of the system at temperature 1/β to
an ac electric field with frequency ω. Here we use the scheme

that was introduced in Ref. [29] in the case of graphene: a
phenomenological scattering rate η > 0 has to be introduced,
which models a finite lifetime of the electronic excitations
in the presence of electrodes and allows us to recover the
Landauer conductivity within the Kubo formalism. The Kubo
conductivity is computed in the limit of zero frequency and
zero temperature, while keeping η finite. The final result for
graphene is independent of η, a sign of the robustness of this
material towards disorder.

The starting point is the Kubo formula:

σμν(ω,η,β) = �

4πL2

∫
dε

fβ (ε + �ω) − fβ(ε)

�ω

× Tr
[
GA−R

η (ε)ĵμGA−R
η (ε + �ω)ĵν

]
, (B12)

where η > 0 is the imaginary part of the self-energy, and fβ is
the Fermi-Dirac distribution at temperature β−1. The trace Tr
runs over the basis of eigenstates of the T3 Hamiltonian:

|q,±〉 = 1√
2

⎛
⎜⎝

1√
2
e−iθ

1√
2
eiθ

±1

⎞
⎟⎠, εm = ±ε(q) ≡ ±�vF q

(B13)

|q,0〉 =

⎛
⎜⎝

−e−iθ

eiθ

0

⎞
⎟⎠, εm = 0,

with q± = qe±iθ , t1 = t2. Performing the trace over (B13)
in (B12) and taking the limits ω → 0, β → ∞ while keeping
η > 0, one finds:

σKubo = e2

πh

(
1 +

∫ ∞

0

k3dk

(η2 + k2)2

)
→ ∞. (B14)

The integral in (B14) is divergent. The Kubo conductivity
diverges for the T3 model with a finite electronic lifetime; in
particular we do not recover the Landauer conductivity (B10)
σLandauer = 0. We note that the result for Kubo conductivity
result is consistent with the value obtained in the zero disorder
limit in Ref. [30].
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