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Superfluid phases of 3He in nanoscale channels
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Confinement of superfluid 3He on length scales comparable to the radial size of the p-wave Cooper pairs can
greatly alter the phase diagram by stabilizing broken symmetry phases not observed in bulk 3He. We consider
superfluid 3He confined within long cylindrical channels of radius 100 nm, and report new theoretical predictions
for the equilibrium superfluid phases under strong confinement. The results are based on the strong-coupling
formulation of Ginzburg-Landau (GL) theory with precise numerical minimization of the free energy functional
to identify the equilibrium phases and their regions of stability. We introduce an extension of the standard GL
strong-coupling theory that accurately accounts for the phase diagram at high pressures, including the tricritical
point and TAB (p) line defining the region of stability for the bulk A phase. We also introduce tuneable boundary
conditions that allow us to explore boundary scattering ranging from maximal to minimal pairbreaking, and
report results for the phase diagram as a function of pressure, temperature, and boundary conditions. Four stable
phases are found: a polar phase stable in the vicinity of Tc, a strongly anisotropic, cylindrical analog of the bulk
B phase stable at sufficiently low temperatures, and two chiral A-like phases with distinctly different orbital
symmetry, one of which spontaneously breaks rotation symmetry about the axis of the cylindrical channel. The
relative stability of these phases depends sensitively on pressure and the degree of pairbreaking by boundary
scattering. The broken symmetries exhibited by these phases give rise to distinct signatures in transverse nuclear
magnetic resonance (NMR) spectroscopy. We present theoretical results for the transverse NMR frequency shifts
as functions of temperature, the rf pulse tipping angle, and the static NMR field orientation.
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I. INTRODUCTION

Superfluid 3He is a spin-triplet, p-wave Fermi superfluid,
where not only is U(1)N symmetry spontaneously broken but
also spin and orbital rotation symmetries SO(3)S × SO(3)L.
There are a myriad of ways to break these symmetries,
leading to many potential superfluid phases. In bulk 3He, in
the absence of a magnetic field, only two stable phases are
observed: the A phase and the B phase. However, other phases
may be stabilized by introducing symmetry breaking terms,
such as a magnetic field, impurities, or boundaries, which
couple to the spin and orbital degrees of freedom of the Cooper
pairs. In particular, confining surfaces suppress Cooper pairs
with relative momentum normal to the surface, which leads to
a long-range orienting effect on the orbital order parameter [1].
When confined within distances comparable to the Cooper pair
coherence length, ξ0 ≈ 160–770 Å depending on pressure, the
influence of the confining surfaces can stabilize phases very
different than those of bulk superfluid 3He.

Advances in nanoscale fabrication techniques [2], as well
as the production of porous materials with interesting structure
on the coherence length scale [3,4], have made studies of the
effects of strong confinement on broken symmetry phases of
topological quantum materials feasible, and have brought a
surge of research on the effects of confinement on superfluid
3He [5–9]. One of the simplest confining geometries is the
pore: a long, small radius cylinder. The pore has long been
of theoretical interest due to the number of different A-phase
textures that might be stabilized [10], as well the effects of
radial confinement on the superfluid phase diagram [11–13].
Nuclear magnetic resonance (NMR) experiments in 2 μm
diameter pores have observed A-like textures [14,15], but have
had difficulty definitively identifying the textures present [16].
New fabrication techniques for porous membranes [17] have

made available pores with diameters below 1 μm, which, cou-
pled with an array of new experimental techniques [2,18–20],
open new windows into superfluid 3He under strong confine-
ment.

In this paper we consider an infinitely long cylindrical pore
of radius R = 100 nm, and we study the equilibrium phases
in Ginzburg-Landau (GL) theory and identify their signatures
in nonlinear NMR spectroscopy. By incorporating pressure
dependent strong-coupling corrections to the GL material co-
efficients, and a tuneable pairbreaking boundary condition, we
obtain phase diagrams as functions of temperature, pressure,
and surface condition. Finally, we derive expressions for the
transverse NMR frequency shifts of the equilibrium phases of
3He confined in the pore as functions of rf pulse driven tipping
angle, and show how they vary with order parameter symmetry
and orientation of the static magnetic field.

II. GINZBURG-LANDAU THEORY

We use Ginzburg-Landau theory calculations of the super-
fluid 3He order parameter and free energy to determine the
stable phases present in the pore. The order parameter for
superfluid 3He, given by the manifold of spin-triplet, p-wave
BCS pairing states, may be represented by the 2 × 2 gap
matrix,

�̂(p̂) =
∑
αi

Aαi (iσασy) p̂i , (1)

which depends on the direction of the relative momentum p̂

of the Cooper pairs, and is parametrized by the 3 × 3 complex
matrix order parameter A. The matrix A transforms as a vector
under spin rotations, and separately as a vector under orbital
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rotations. In cylindrical coordinates Aαi can be represented as

A =

⎛
⎜⎝

Arr Arφ Arz

Aφr Aφφ Aφz

Azr Azφ Azz

⎞
⎟⎠, (2)

where we have chosen aligned spin and orbital coordinate axes.
The presence of boundaries reduces the possible residual

orbital symmetries of the superfluid phases to be elements
of the point group of the confining cylindrical geometry.
However, this reduction in symmetry is due to interactions
atomically close to the boundary surface; away from the
surface, the 3He particle-particle interactions are still invariant
under the maximal symmetry group of bulk 3He. Thus,
the Ginzburg-Landau free energy functional is given by the
invariants of the bulk 3He symmetry group,

Gbulk = U(1) × SO(3)S × SO(3)L × P × T, (3)

which is the product of global gauge rotations, spin rotations,
orbital rotations, space inversion, and time-reversal, respec-
tively. The resulting free energy functional is

�[A] =
∫

V

d3r (fbulk[A] + fgrad[A]). (4)

The terms fbulk and fgrad are given by

fbulk[A] = α(T ) Tr (AA†) + β1| Tr (AAT )|2 + β2[Tr (AA†)]2

+β3 Tr [AAT (AAT )∗] + β4 Tr [(AA†)2]

+β5 Tr [AA†(AA†)∗], (5)

fgrad[A]

= K1A
∗
αj,kAαj,k + K2A

∗
αj,jAαk,k + K3A

∗
αj,kAαk,j

+ 2

r
Re{K1(A∗

rjAφj,j − A∗
φjArj,φ + A∗

irAiφ,φ − A∗
iφAir,φ)

+K2(A∗
rφAφj,j − A∗

φφArj,j + A∗
irAij,j )

+K3(A∗
rjAφφ,j − A∗

φjArφ,j + A∗
irAiφ,φ − A∗

iφAiφ,r )}

+ 1

r2
{K1[A∗

rjArj + A∗
φjAφj + A∗

irAir + A∗
iφAiφ

+ 4 Re(A∗
rφArφ − A∗

rrAφφ)]

+ (K2 + K3)[|Arφ|2 + |Aφφ|2 + A∗
irAir

+ 2 Re(A∗
rφAφr − A∗

rrAφφ)]}, (6)

where A† (AT ) is the adjoint (transpose) of A, and

Aαi,j ≡
{

∂Aαi

∂r
,

1

r

∂Aαi

∂φ
,

∂Aαi

∂z

}
j

. (7)

The term fbulk holds for any orthogonal coordinate system,
whereas fgrad is coordinate specific and given in the form
derived by Buchholtz and Fetter [21]. In the weak-coupling
BCS limit the material parameters,

αwc(T ) = 1
3N (0)(T/Tc − 1), (8)

2βwc
1 = −βwc

2 = −βwc
3 = −βwc

4 = βwc
5 , (9)

βwc
1 = − N (0)

(πkBTc)2

{
1

30

[
7

8
ζ (3)

]}
, (10)

Kwc
1 = Kwc

2 = Kwc
3 = 7ζ (3)

60
N (0) ξ 2

0 , (11)

are determined by the normal-state (single-spin) density of
states at the Fermi energy, N (0), the bulk superfluid transition
temperature, Tc, and the Fermi velocity, vf . Note that ξ0 =
�vf /2πkBTc is the Cooper pair correlation length, which
varies from ξ0 � 770 Å at p = 0 bar to ξ0 � 160 Å at
p = 34 bar. The equilibrium order parameter is obtained
from minimization of the free energy functional by solving
the Euler-Lagrange equations obtained from the functional
gradient δ�[A]/δA† = 0.

A. Strong-coupling corrections

The weak-coupling GL material parameters are derived
from the leading order contribution to the full Luttinger-Ward
free energy functional as an expansion in the small parameter
T/TF , where TF = EF /kB ≈ 1 K is the Fermi temperature. In
particular, �wc ∼ (Tc/TF )2EN , where EN is the ground-state
energy of the normal Fermi liquid. The next-to-leading correc-
tions to the weak-coupling GL functional enter as corrections
to the fourth-order weak-coupling material coefficients. These
corrections are of order �βsc

i ≈ βwc
i (T/TF )〈wi |A|2〉, where

〈wi |A|2〉 is a weighted average of the square of the scattering
amplitude for binary collisions between quasiparticles on
the Fermi surface [22]. At high pressures, scattering due
to ferromagnetic spin fluctuations largely compensates the
small parameter T/TF , resulting in substantial strong-coupling
corrections [23].

While the �βsc
i ’s may be calculated theoretically through

a model of the quasiparticle scattering amplitude [23], the
most current determinations come from comparison with
experiment [24]. In the main analysis presented here we
use the set of {βi} reported by Choi et al. [24]. These β

parameters reproduce the heat capacity jumps for the A
and B transitions, which is essential when considering the
energetics of A- and B-like phases. In particular, the A phase
correctly appears as a stable phase above the polycritical point
pPCP = 21.22 bar; however, in fourth-order GL theory it is
the only stable phase at all temperatures above the PCP;
i.e., the standard fourth-order GL theory fails to account
for the A-B transition line, TAB(p). The missing transition
line is traced to the omission of the temperature dependence
of the fourth-order β parameters in the neighborhood of a
tricritical point. In particular, the tricritical point is defined
by the intersection of the second-order transition line given
by α(Tc,p) = 0, and the first-order boundary line separating
the A and B phases given by �βAB(TAB,p) ≡ βA − βB = 0.
Note that βA ≡ β245 and βB ≡ β12 + 1

3β345, where we use
the standard notation βijk··· = βi + βj + βk + · · · [22]. At the
PCP we have TAB(pPCP) = Tc(pPCP). But, for p > pPCP the
lines separate and we must retain both the temperature and
pressure dependences of �βAB(T ,p) to account for TAB(p)
in the vicinity of pPCP. This is achieved with remarkable
success by making a single correction to the standard
treatment of strong-coupling corrections within GL theory.
Near Tc the leading-order strong-coupling corrections to the

144515-2



SUPERFLUID PHASES OF 3He IN NANOSCALE CHANNELS PHYSICAL REVIEW B 92, 144515 (2015)

0.0 0.5 1.0 1.5 2.0 2.5
0

6

12

18

24

30

34

A

B
pPCP

TAB

Tc

(b
ar

)
p

(mK)T

FIG. 1. (Color online) The bulk phase diagram showing the
regions of stability of the A (blue) and B (red) phases using the exper-
imental βs with linear T scaling. The dashed line is the experimental
A-B transition line terminating at the experimental PCP point.

weak-coupling β parameters scale as �βsc
i ∼ (T/TF )|βwc

1 |,
where the linear scaling with T/TF originates from the
limited phase space for binary collisions of quasiparticles at
low temperatures. Resolving the degeneracy between the A
and B phases near pPCP is achieved by retaining the linear
T dependence of the strong-coupling corrections to the β

parameters. Thus, we separate the β parameters determined
at p and Tc(p) into the weak- and strong-coupling parts using
Eq. (9), and then scale the strong-coupling corrections, �βsc

i ,
determined at Tc(p) in Ref. [24] and listed in Tables I and II
of the Appendix,

βi(T ,p) = βwc
i (p,Tc(p)) + T

Tc

�βsc
i (p), (12)

with

�βsc
i (p) = βi(p,Tc(p)) − βwc

i (p,Tc(p)). (13)

The resulting bulk phase diagram predicted by these GL
parameters accounts remarkably well for the experimental
A-B transition line, TAB(p), as shown in Fig. 1, as well
as the heat capacity jumps and the PCP along Tc(p). This
result for the bulk phase diagram gives us confidence in our
predictions for the equilibrium phases of confined 3He based
on strong-coupling GL theory. The main analysis and predic-
tions for inhomogeneous phases of superfluid 3He reported
here are based on the strong-coupling material parameters
from Ref. [24] combined with the known pressure-dependent
material parameters, vf , Tc, and ξ0 as listed in Table I in
the Appendix, and the temperature scaling in Eq. (12) that
accounts for the relative reduction of strong-coupling effects
below Tc.

B. Sauls-Serene β parameters

The individual �βsc
i parameters reported by Choi et al. [24]

differ from those calculated from leading order strong-
coupling theory, or those obtained from the analysis of
different experiments, even though the different sets predict
the same bulk phase diagram.

As a test of the sensitivity of our GL predictions for
new phases in confined geometries to the details of the
model for the strong-coupling GL β parameters we also
calculated the phase diagram based on the {βi} predicted
by the leading order strong-coupling theory [22,23]. The
theoretical values for the strong-coupling β parameters are
determined by angular averages of the normal-state quasipar-
ticle scattering rate. The analysis of Sauls and Serene is based
on a quasiparticle scattering amplitude that accounts for the
effective mass, the ferromagnetic enhancement of the spin
susceptibility, and the normal-state transport coefficients [23].
The Sauls-Serene β parameters, summarized in Tables III
and IV, reproduce the relative stability of the bulk A and B
phases, albeit with an elevated polycrital pressure of pPCP �
28 bar.

The results for the phase diagram with these two different
sets of �βsc

i , discussed in Sec. IV, give robust predictions for
the relative stability of new inhomogeneous phases of 3He
confined in cylindrical pores.

C. Boundary conditions

For planar surfaces there are two limiting boundary con-
ditions applicable within GL theory: maximal pairbreaking,
resulting from retroreflection of quasiparticles [25], and
minimal pairbreaking, resulting from specular reflection [1].
If we use Cartesian coordinates and take the surface to lie
along the x-y plane with 3He occupying z > 0, then maximal
pairbreaking is defined by the condition

Aαi |z=0 = 0 ∀i ∈ {x,y,z}, (14)

while minimal pairbreaking is defined by the conditions

Aαz|z=0 = 0,

∇zAαx |z=0 = ∇zAαy |z=0 = 0. (15)

In a cylindrical pore, additional care needs to be given to
the boundary conditions due to the presence of curvature on
scales comparable to the coherence length. While the boundary
condition for maximal pairbreaking is not modified, the
curved surface of the pore modifies the minimal pairbreaking
boundary condition for the azimuthal orbital components of
the order parameter, Aαφ . Fetter and Buchholtz proposed a
minimal pairbreaking boundary condition in GL theory based
on the Euler-Lagrange boundary term of the GL equations
with a cylindrical surface [21],

∂Aαz

∂r

∣∣∣∣
r=R

= 0, Aαr |r=R = 0, (16)

∂Aαφ

∂r

∣∣∣∣
r=R

= 1

R
Aαφ|r=R . (17)

We introduce an extension of these boundary conditions
which interpolates between the two extremes of minimal and
maximal pairbreaking. The extension is based on Ambegaokar,
de Gennes, and Rainer’s (AdGR) analysis [1] of the effects
of diffuse scattering by an atomically rough surface on the
transverse components of the p-wave orbital order parameter.
AdGR showed that diffuse scattering leads to a boundary
condition in which the components that are transverse to
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the average normal direction of the surface are finite, but
extrapolate linearly to zero past the boundary at a distance
bT = 0.54ξ0. This idea can be turned into a more general
boundary condition for GL theory in a cylindrical geometry as

Aαr |r=R = 0,

∂Aαz

∂r

∣∣∣∣
r=R

= − 1

bT

Aαz|r=R , (18)

∂Aαφ

∂r

∣∣∣∣
r=R

=
(

1

R
− 1

bT

)
Aαφ|r=R ,

where b′
T ≡ bT /ξ0 can be treated as a parameter that varies

between the maximal pairbreaking (b′
T → 0) and minimal

pairbreaking (b′
T → ∞) limits. This generalized “AdGR”

boundary condition provides a useful extension of the typical
Ginzburg-Landau boundary conditions.

III. SUPERFLUID PHASES

The pore geometry reduces the maximal symmetry group
for confined 3He to

G = U(1)N × SO(3)S × D∞h × T, (19)

where D∞h is the point group of the pore and is obtained
from the point group of the circle, C∞v = SO(2) × {e, πzx},
by D∞h = C∞v × {e, πxy}, where πxy is a reflection through
the x-y plane. By numerically minimizing the GL free energy
with respect to all order parameter components we identify
four equilibrium superfluid phases for the 100 nm pore. In
these calculations we assume the phases are translationally
invariant along the z axis.1

A. Polar (Pz) phase

Radial confinement in a cylindrical pore leads to the
stability of the one-dimensional polar (Pz) phase below Tc1 �
Tc, where Tc1 is the transition temperature from the normal
state. The Pz phase is a time-reversal invariant equal-spin
pairing (ESP) phase with an order parameter of form

Aαi = �z(r) d̂α ẑi , (20)

with radial profile shown in Fig. 2. The Pz order parameter
becomes spatially homogeneous with Tc1 → Tc in the limit
of specular scattering, and will be the first superfluid phase
upon cooling from the normal state, except for the exceptional
case of perfect specular reflection and perfect cylindrical cross
section (see Sec. III C). The residual symmetry group of the
Pz phase is H = SO(2)Sd × Zspin

2 × DL,π
∞h × T, where DL,π

∞h ≡
C∞v × {e, eiππxy}. Thus, the Pz phase breaks spin rotational

1Recently Aoyama has shown that a translational symmetry
breaking “stripe” B-like phase along the axis of the channel may
be possible in cylindrical geometries, stabilized with an anisotropic
boundary condition that implements specular reflection for scattering
along z, but retroreflection in the r-φ plane. This enhances Aαz

on the boundary relative to Aαφ [26]. Our boundary condition has
the opposite anisotropy. Thus, with our formulation it is unclear if
conditions allow for an energetically stable B-like stripe phase. This
question will be addressed in a separate report.
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FIG. 2. (Color online) Order parameter amplitudes for the Pz

phase as a function of r at p = 26 bar and T = 0.5 Tc for retrore-
flection (maximal pairbreaking), diffuse (b′

T = 0.54), and specular
(minimal pairbreaking) boundary conditions. Values are scaled by
the unconfined polar phase amplitude �2

P = |α(T )|/2β12345. For
minimal pairbreaking boundary conditions the Pz phase is spatially
homogeneous within the pore.

symmetry but retains the full orbital point group, D∞h, by
combining it with an element of the gauge group. Since the
radius R = 100 nm of the pore is much less than the dipole
coherence length, ξD ≈ 10–20 μm, the spin quantization axis,
d̂ , for the ESP state is to high accuracy uniform in space. All
transitions to and from the Pz phase that we find are second
order.

B. BSO(2) phase

The BSO(2) phase is the analog to the bulk B phase
for the cylindrical pore geometry, and is stabilized at low
temperatures and preferentially favored by strong pairbreaking
on the boundary. The residual symmetry of the BSO(2) phase
is H = DL+S

∞h × T, joint spin and orbital D∞h transformations
combined with time reversal. The order parameter is repre-
sented as

Aαi = �r (r)r̂α r̂i + �φ(r)φ̂αφ̂i + �z(r)ẑαẑi , (21)

with the radial profiles shown in Fig. 3.
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FIG. 3. (Color online) Order parameter amplitudes for the BSO(2)

phase as a function of r at p = 26 bar and T = 0.5 Tc. The left figure
depicts maximal pairbreaking (b′

T = 0) while the right shows minimal
pairbreaking (b′

T = ∞). Values are scaled by the bulk B phase order
parameter, �2

B = |α(T )|/6(β12 + 1/3β345).

144515-4



SUPERFLUID PHASES OF 3He IN NANOSCALE CHANNELS PHYSICAL REVIEW B 92, 144515 (2015)

0 0.5 1
r/R

0.0

0.5

1.0

Δ
/
Δ

A

ASO(2)

0 0.5 1
r/R

Δφ
Δz

FIG. 4. (Color online) Order parameter amplitudes for the ASO(2)

phase as a function of r at p = 26 bar and T = 0.5 Tc. The left
figure depicts maximal pairbreaking while the right shows minimal
pairbreaking. Values are scaled by the bulk A phase order parameter,
�2

A = |α(T )|/4β245.

C. ASO(2) phase

In addition to the Pz and BSO(2) phases, we find two stable
chiral A-like phases. The higher symmetry ASO(2) phase,
reminiscent of the “radial disgyration texture” of bulk 3He-A,
is favored by weak pairbreaking on the boundary. The residual
symmetry group of the ASO(2) phase is H = SO(2)Sd × Zspin

2 ×
DL,T

∞h, where DL,T
∞h ≡ SO(2) × {e, tπzx} × {e, eiπ tπxy} and t is

time reversal. The order parameter takes the form

Aαi = d̂α[�z(r)ẑi + i �φ(r)φ̂i], (22)

which is transverse to the pore boundary with radial profiles
shown in Fig. 4. The chiral vector,

�l = −�z(r)�φ(r) r̂ , (23)

shown in Fig. 5, is radial except at the origin where �l vanishes;
the gradient terms in the GL functional require �φ = 0,
yielding a polar order parameter at the core of the cylindrical
pore. The resulting chiral field is analogous to a radial
disgyration: a topological line defect of bulk 3He-A. This
form for �l results in a zero average of �l(r) over the cylindrical
pore, which leads to distinctly different NMR frequency shift
for the ASO(2) phase as compared with a chiral state with
a nonvanishing average chiral axis, 〈�l(�r)〉 �= 0, as discussed
in Sec. V. For the specular boundary condition proposed in
Ref. [21] [Eq. (19) with b′

T → ∞], the ASO(2) phase entirely

ASO(2)

�l

FIG. 5. (Color online) Chiral axis �l for the ASO(2) phase at p =
26 bar, T = 0.5 Tc, and minimal pairbreaking boundaries. Arrow
lengths are scaled by |�φ |.

AC2

�l

FIG. 6. (Color online) Chiral axis �l for the AC2 phase at p =
26 bar and T = 0.5 Tc. (Left) Maximal pairbreaking boundaries result
in a nearly uniform l̂ direction. (Right) Minimal pairbreaking, on the
other hand, gives the characteristic “Pan Am” configuration. Arrow
lengths are scaled by (�2

r + �2
φ)1/2.

supplants the Pz phase, and onsets at the bulk transition
temperature Tc, despite being spatially inhomogeneous.

D. AC2 phase

A lower symmetry A-like phase, denoted as AC2 , is an
inhomogenous version of the the circular disgyration, or
Pan Am texture [10,14]. This phase spontaneously breaks
continuous SO(2)L symmetry of the cylinder and, unlike the
ASO(2) phase, has a finite value for the spatially averaged chiral
axis, 〈�l〉 �= 0, that may point in any direction in the x-y plane.
For convenience we take 〈�l〉 ‖ ŷ, with an order parameter of
the form

Aαi = d̂α[�z(r,φ)ẑi + i �r (r,φ)r̂i + i �φ(r,φ)φ̂i]. (24)

The residual symmetry group is then H = SO(2)Sd × Zspin
2 ×

DL,T
2h , where DL,T

2h ≡ {e, tc2, πzx, tπzy} × {e, eiπ tπxy}. The AC2

phase has a pair of disgyrations on the boundary along an
axis perpendicular to ẑ and 〈�l〉, as can be seen for the case of
minimal pairbreaking in Fig. 6. The AC2 phase is energetically
favorable relative to the ASO(2) phase for strong pairbreaking on
the boundary. In this case the boundary effectively “censors”
the energy cost of the AC2 disgyrations. The suppression of
the disgyrations is evident in Fig. 6.

The AC2 phase is the only phase we find with broken axial
symmetry, and thus explicit φ dependence. It is convenient to
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FIG. 7. (Color online) Dominant order parameter amplitudes for
the AC2 phase at p = 26 bar and T = 0.5 Tc. The left figure depicts
maximal pairbreaking while the right shows minimal pairbreaking.
Values are scaled by the bulk A phase amplitude �2

A = |α(T )|/4β245.
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FIG. 8. (Color online) Phase diagrams for b′
T = 0 (maximal pair-

breaking) and b′
T = 0.1. The ASO(2) phase does not appear at all for

maximal pairbreaking; as pairbreaking at the boundary is relaxed it
is stabilized at high pressure and displaces the BSO(2) and AC2 phases.

expand its amplitudes in terms of sines and cosines that respect
symmetry,

Aαi = d̂α

∞∑
j=0

{i �r,j (r) cos[(2j + 1)φ] r̂i

− i �φ,j (r) sin[(2j + 1)φ] φ̂i +�z,j (r) cos(2jφ) ẑi}.
(25)

The radial dependence of the leading amplitudes in the
expansion is shown in Fig. 7. Numerical solutions to the GL
equations converge rapidly as a function of the number of
azimuthal harmonics, which greatly simplifies the numerical
minimization compared to allowing for an arbitrary φ depen-
dence.

IV. PHASE DIAGRAM

The phase diagram for superfluid 3He confined within a
pore is strongly dependent upon the boundary conditions.
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FIG. 9. (Color online) Phase diagrams for b′
T = 0.54 and b′

T =
∞ (minimal pairbreaking). As pairbreaking decreases, the AC2 phase
is suppressed completely and the stable range of the BSO(2) phase is
decreased significantly. For minimal pairbreaking the ASO(2) phase
onsets at T = Tc with the Pz phase absent.

We first fix R = 100 nm and consider the phase diagram
for four different values of b′

T , ranging from minimal to
maximal pairbreaking as shown in Figs. 8 and 9. For strong
pairbreaking (Fig. 8) the phase diagram is dominated by
the BSO(2), AC2 , and Pz phases. In this regime, our phase
diagram differs from previous calculations [11,13] due to the
appearance of the AC2 phase, which for strong pairbreaking
has a lower free energy than that of the ASO(2) phase. As
pairbreaking decreases on the boundary, the ASO(2) phase
appears at high pressure, with a tricritical point separating
the BSO(2), ASO(2), and AC2 phases. The ASO(2) phase occupies
most of the superfluid phase diagram for minimal pairbreaking
boundaries. It must be noted, however, that any deviation from
the perfect specular condition b′

T = ∞ will suppress Aαφ at
the boundary near Tc, and thus the Pz phase should always
be expected to be the highest temperature superfluid phase
observed experimentally.
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FIG. 10. (Color online) Temperature-confinement phase dia-
gram for fixed b′

T = 0.1, p = 26 bar, and the β parameters of
Ref. [24].

We also consider the influence of the pore radius, R, on
stability of the various phases. Figure 10 shows the phase
diagram of stable phases in a cylindrical channel as a function
of the pore radius relative to the coherence length, R/ξ0. For
a range of sufficiently small R/ξ0 only the Pz phase is stable;
the BSO(2), AC2 , and ASO(2) phases enter the diagram with
increasing R. The ASO(2) phase is favored over the AC2 phase
for large radii; however, the relative stability of these two
chiral phases is sensitive to boundary scattering, i.e., b′

T , as
shown in Figs. 8 and 9. For larger radii of order the dipole
coherence length, R ≈ ξD ≈ 10 μm, the spin quantization
axis, d̂ , for the AC2 and ASO(2) phases is no longer constrained
to be spatially uniform, and for R � ξD these phases become
“dipole-locked” with d̂ ‖ l̂ [21].
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FIG. 11. (Color online) Phase diagram for b′
T = 0.1 using the β

parameters of Sauls and Serene [23]. The resulting phase boundaries
are largely left unchanged except for the shift upward in pressure of
the tricritical point, roughly corresponding to the difference of the
Choi et al. [24] polycritical point, pPCP ≈ 21 bar, and the Sauls and
Serene polycritical point, pPCP ≈ 28 bar.

We also tested the robustness of our predictions for the
phase diagram against a different set of strong-coupling β pa-
rameters, specifically the Sauls-Serene set of �βsc

i calculated
on the basis of leading order strong-coupling theory [22] based
on a quasiparticle scattering amplitude that accounts for the
normal-state effective mass, ferromagnetic enhancement of
the spin susceptibility, and transport coefficients [23]. These β

parameters account for the relative stability of the bulk A and B
phases, but have distinctly different predictions for the pressure
dependences of the strong-coupling corrections: �βsc

i . The key
result is that the structure of the phase diagram is unchanged
with a different set of strong-coupling β parameters; i.e., the
relative stability of the Pz, BSO(2), AC2 , and ASO(2) phases
is unchanged between the two sets of strong-coupling β

parameters. This is shown in Fig. 11.

V. NMR SIGNATURES

The superfluid phases obtained for the narrow pore neglect
the nuclear magnetic dipole energy. This is an excellent
approximation since the nuclear dipole-dipole interaction
energy for dipoles separated by the mean interatomic spacing
a is very small compared to the pairing energy scale,
1
a3 (γ �/2)2 ≈ 10−4 mK � Tc ≈ mK. Nevertheless, the dipole
energy gives rise to two important effects: (i) it partially
resolves relative spin-orbital degeneracy of the equilibrium
states, and (ii) it generates a dynamical torque from the Cooper
pairs acting on the total spin when the latter is driven out
of equilibrium. The dipolar torque leads to NMR frequency
shifts that are characteristic signatures of the broken symmetry
phases. In the following we report results for the nonlinear
NMR frequency shifts that are “fingerprints” of the Pz, ASO(2),
AC2 , and BSO(2) phases. Our analysis is based on a spatial and
temporal averaging of the Leggett equations for the nonlinear
spin dynamics of superfluid 3He.

The dipolar interaction breaks relative spin-orbit rotation
symmetry, thus reducing the maximal rotational symmetry
from SO(3)S × SO(3)L to SO(3)L+S. This is reflected by
additional terms in the GL free energy functional, ��D =∫
V

d3r fD[A], where

fD = gD(| Tr A|2 + Tr AA∗) (26)

is the mean pairing contribution to the nuclear dipolar
interaction energy, with gD ∼ [N (0)γ �/2]2 > 0. A convenient
expression for gD is gD = χ

2γ 2 �
2
A/�2

A, where the A-phase
susceptibility, χ = χN , is equal to the normal-state spin
susceptibility, �A is the bulk A-phase order parameter, and
�A is the corresponding longitudinal resonance frequency. The
dipole energy is a weak perturbation that resolves (partially)
the relative spin- and orbital degeneracy of the zero-field
phases of the cylindrical pore. In particular, for the ESP
states of the form Aαi = d̂α �i(�r) the dipolar energy is
given by fD = gD |d̂ · ��|2, which is minimized if d̂ locally
orients perpendicular to the two dominant orbital components.
However, spatial variations of the order parameter cost gradient
energy. In the case of the orbital components the spatial
profiles are already optimized by minimizing the GL functional
subject to the boundary conditions of the confining geometry.
For the inhomogeneous phases of superfluid 3He in a pore
of radius R = 100 nm, the spatial variations of the orbital
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components occur on a length scale that is short compared to
the dipole coherence length, ξD ≡ √

gD/K1 ≈ 10 μm. Thus,
spatial variations of d̂ on such short length scales of the pore
geometry cost much more than the dipole energy. As a result
d̂ “unlocks” from the local variations of the orbital order
parameter. This allows us to average the orbital components
over the cross section of the cylindrical pore and treat the spin
degrees of freedom as spatially uniform on the scale of R.
For the non-ESP BSO(2) phase the spin structure is described
by an orthogonal matrix, R[α,β,γ ], representing the relative
rotation of the spin and orbital coordinates.

The orientation of the spin coordinates of the Cooper pairs
is also influenced by the nuclear Zeeman energy,

��Z = gz

∫
V

d3r Hα(AαiA
∗
βi)Hβ , (27)

where

gz = N (0)γ 2
�

2(
1 + Fa

0

)2

7ζ (3)

48π2T 2
c

> 0 (28)

is the Zeeman coupling constant in the weak-coupling limit.
For ESP states the static NMR field prefers d̂ ⊥ �H .

A. Fast versus slow spin dynamics

The nuclear dipolar energy generates frequency shifts,
�ω = ω − ωL, of the NMR resonance line for superfluid
3He away from the Larmor frequency, ωL = γH , that are
sensitive to the spin and orbital structure of the ordered phase,
the strength and orientation of the static NMR field, and the
rf field (“tipping field”) used to excite the nuclear spins. In
the high field limit, ωL � �, where � ∼ �A is the dynamical
timescale set by the dipole energy, we use Fomin’s formulation
of the spin dynamics based on the separation of fast and slow
timescales for the dynamics of the magnetization (see also
Ref. [27]), or total spin, �S(t), and the order parameter, A(t).
The “fast” response is on the scale set by the Larmor frequency,
ω ∼ ωL, while the “slow” response is set by the dipolar
frequency of order �A [28]. Note that the static NMR field is
still assumed to be small in the sense that the Zeeman energy
is much smaller than the condensation and gradient energies
associated with the orbital components of the order parameter.
Thus, the dynamical contributions to the nuclear dipole and
Zeeman energies can be calculated on the basis of the solutions
for the orbital order parameter in zero field. However, for static
NMR fields greater than the Dipole field, H � HD ≈ 30 G,
the equilibrium orientation of the spin components of the order
parameter is determined primarily by the Zeeman energy, with
the dipole energy resolving any remaining degeneracy in the
equilibrium orientation of the d̂ vector, or the rotation matrix R
for the BSO(2) state. This provides us with the initial equilibrium
conditions for orientation of the spin components of the order
parameter.

The spin dynamics of the superfluid phases is parametrized
in terms of rotation matrices for the precession of the order
parameter, e.g., A(t) and total spin, �S(t), following an initial rf
excitation of the spin system. An rf impulse applied at t = 0
rotates (“tips”) the total spin, �S(t = 0+), by an angle β relative
to the equilibrium spin, �S0|| �H ≡ H ẑ′. The resulting dynamics

of the order parameter for timescales 0 < t � 2π/� is the
parametrized by [28]

A(t) = Rz′ (ωt)Ry′(β)Rz′ (−ωt + ϑ)A0 , (29)

where y′ ⊥ z′ is the direction of the rf tipping field, and the
rotation angles are defined by one “fast” angle, ωt , and two
“slow” dynamical angles, β and ϑ . Inserting this expression
into Eq. (26) for the dipole energy and averaging the result over
the fast time scale, 2π/ω, gives the fast-time and short-distance
scale averaged dipole energy density,

fD = ω

2π

∫ 2π/ω

0
dt

1

Vcell

∫
d3r fD[A(�r,t)]. (30)

This averaged dipolar energy functional determines the trans-
verse NMR frequency shift �ω as a function of tipping angle
β for various orientations of the NMR field, �H , relative to
the order parameter within the pore geometry. The variable
ϑ—the generalization of Leggett’s rotation angle for the bulk
B phase—is fixed by the stationary condition of fD . The
transverse NMR frequency shift as a function of tipping angle
is then given by [28]

ω�ω = γ 2

χ

1

sin β

d

dβ
fD , (31)

which provides the key NMR signatures for the confined
phases of 3He under strong confinement.

B. Pz and ASO(2) phases

The Pz and ASO(2) phases are both ESP phases parameter-
ized by a real d̂ vector with order parameters given by Eqs. (20)
and (22), respectively. Spatial averaging of the dipole energy
for these two phases leads to a dipole energy of the same form
for both phases,

fD = gD

(
2
〈
�2

z

〉 − 〈
�2

φ

〉)
(d̂ · ẑ)2, (32)

where ẑ is the axis of the cylindrical pore, and d̂ is homoge-
neous and oriented in equilibrium in the plane perpendicular to
the NMR field �H and along a direction that minimizes Eq. (32).

Parametrizing the direction of the NMR field in
the coordinate system of the cylindrical pore by ẑ′ =
{cos φ sin θ, sin φ sin θ, cos θ}, carrying out the transforma-
tion Eq. (29) yields fD in Eq. (30),

fD = 1
8gD

(〈
�2

φ

〉 − 2
〈
�2

z

〉)
[2(cos β + 1)2 cos2 ϑ sin2 θ

+ 4 cos2 β − (2 cos β + 7 cos2 β) sin2 θ ]. (33)

Since 〈�2
φ〉 − 2〈�2

z〉 < 0 in the pore, fD is minimized with
respect to ϑ with ϑ = 0. Finally, a general expression for the
transverse shifts as a function of tipping angle is obtained with
Eq. (31):

ω�ω = γ 2

χN

gD

(
2
〈
�2

z

〉 − 〈
�2

φ

〉)

×
[

cos(β) − sin2(θ )

(
5 cos(β) − 1

4

)]
. (34)

The dependences on the tipping angle, β, and the polar
orientation of the NMR field, θ , are identical for both the Pz and
ASO(2) phases; only the magnitude of the shift differs between
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FIG. 12. (Color online) Frequency shift of the ASO(2) phase at
p = 26 bar, T = 0.5 Tc, and b′

T = 0. The Pz phase has the same
functional form, but with larger amplitude.

the two phases. The frequency shift ω�ω for the ASO(2) phase
is shown in Fig. 12. Note in particular that the shift vanishes
precisely at β = π/2 for �H ||ẑ. The result for the ASO(2)

phase is equivalent to what is predicted for a two-dimensional
orbital glass phase of 3He-A [29]. Although the Pz and ASO(2)

phases differ only quantitatively in their transverse NMR
frequency shift, they can still be distinguished in sufficiently
clean pores by the change in temperature dependence near
the second-order phase transition between the two phases (see
Fig. 9), in particular the discontinuity in the derivative of the
frequency shift, d�ω/dT |Tc2

.

C. AC2 Phase

The AC2 phase, with order parameter given by Eq. (24),
breaks SO(2) orbital symmetry, and exhibits distinctly differ-
ent NMR signatures compared to those of the ASO(2) phase.
Here we consider the two cases �H ‖ ẑ and �H ⊥ ẑ. For �H ⊥ ẑ

the residual D2h symmetry leads to a dependence of the
transverse frequency shift on the azimuthal angle of �H . Due
to the φ dependence of the order parameter it is convenient to
work in Cartesian coordinates with the chiral axis fixed along
〈�l〉 ‖ ŷ. The resulting spatial averages of the order parameter
profiles entering the average dipole energy become〈

�2
x

〉 = 〈(�r cos φ − �φ sin φ)2〉〈
�2

y

〉 = 〈(�r sin φ + �φ cos φ)2〉
〈�x�y〉=〈(�r cos φ−�φ sin φ)(�r sin φ+�φ cos φ)〉 = 0,

(35)

For �H ‖ ẑ, the result for the transverse frequency shift for
the AC2 phase becomes

ω�ω(‖) = 1

2

γ 2

χN

gD

{〈
�2

y

〉−〈
�2

x

〉−(
3
〈
�2

x

〉+〈
�2

y

〉−4
〈
�2

z

〉)
cos β

+ 2
∣∣〈�2

y

〉 − 〈
�2

x

〉∣∣(1 + cos β)
}
. (36)

The results for ω�ω for several temperatures are shown in
Fig. 13. The shift is similar to that for the Pz and ASO(2) phases,
except for the asymmetry of the positive and negative shifts.
Note also that �ω vanishes at a temperature-dependent angle
β∗ > π/2.
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Ĥ ẑ

0.5 Tc

0.6 Tc

0.7 Tc

0.8 Tc

2
H

z
1
0

10
ω

Δ
ω

FIG. 13. (Color online) Transverse frequency shifts for the AC2

phase with �H ‖ ẑ at p = 26 bar, temperatures T = 0.5–0.8 Tc, and
maximal pairbreaking with b′

T = 0.

In contrast, for �H = H (cos ϕx̂ + sin ϕŷ) the shift, ω�ω,
depends on the azimuthal angle ϕ of the static field, in addition
to the tipping angle β. For an order parameter of the form in
Eq. (24) we have 〈�l〉 ‖ ŷ, and the resulting transverse frequency
shift as a function of ϕ and β becomes

ω�ω(⊥) = 1

4

γ 2

χN

gD

{(〈
�2

x

〉 + 〈
�2

y

〉 − 2
〈
�2

z

〉)
(cos β−1)

+(〈
�2

x

〉 − 〈
�2

y

〉)
(1 + 7 cos β) cos 2ϕ

}
. (37)

The results for several field orientations, ϕ = 0,π/4 ,π/2, are
shown in Fig. 14. The tipping angle dependences for �H ‖ 〈�l〉
and �H ⊥ 〈�l〉 are of the same functional form as the corre-
sponding cases for bulk 3He-A. There is a “magic” tipping
angle of βx = cos−1(−1/7) ≈ 0.545π at which �ω(ϕ = 0) =
�ω(ϕ = π/2) independent of temperature. The tipping angle
dependence for ϕ = π/4 is much weaker, and qualitatively
similar to that for the ASO(2) phase with �H ⊥ ẑ. Observation of
these results for several field orientations would provide a clear
identification of the AC2 phase and determine the direction of
the mean chiral axis.
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FIG. 14. (Color online) Transverse frequency shifts for the AC2

phase with �H ⊥ ẑ at p = 26 bar, temperatures T = 0.5–0.8 Tc, and
maximal pairbreaking with b′

T = 0. The left panel shows the shifts for
in-plane field orientation ϕ = 0 (blue), and ϕ = π/2 (red). The right
panel shows the shifts for ϕ = π/4, which has the same functional
form as that of the ASO(2) phase.

144515-9



J. J. WIMAN AND J. A. SAULS PHYSICAL REVIEW B 92, 144515 (2015)

0 0.5 1

β/π

−0.5

0.0

0.5

1.0

Ĥ ẑ
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FIG. 15. (Color online) Transverse frequency shifts for the BSO(2)

phase at p = 10 bar, temperatures T = 0.1 Tc, 0.2 Tc, 0.3 Tc, 0.36 Tc,
and maximal pairbreaking, b′

T = 0.

D. BSO(2) phase

The BSO(2) phase is a non-ESP phase with a reduced and
anisotropic spin susceptibility below Tc. The BSO(2) phase
also exhibits tipping angle dependence of the frequency shift
similar to that of 3He-B. In particular, for �H ⊥ ẑ the shift
is a polar-distorted Brinkman-Smith mode, and for �H ‖ ẑ we
find the “perpendicular” mode that is qualitatively similar,
but with important quantitative differences compared to
bulk 3He-B.

For �H ‖ ẑ, the Zeeman energy is minimized in equilibrium
by a spin-rotation Rn̂(π/2), where n̂ is in the x-y plane. This
rotation leads to a positive transverse frequency shift that is
maximal at small tipping angles, unlike the Brinkman-Smith
mode. The quantitative description of the frequency shift
depends on the spatial averages of the BSO(2) gap parameters,

P = 〈�r�z〉 + 〈�φ�z〉,
Q = 〈

�2
r

〉 + 2〈�r�φ〉 + 〈
�2

φ

〉
, (38)

R = 〈
�2

r

〉 + 〈
�2

φ

〉 + 4
〈
�2

z

〉
,

with the resulting transverse shift for �H ‖ ẑ given by

ω�ω(‖) = 1

8

γ 2

χB

gD{4R cos β + 4P (1 + 4 cos β) cos ϑ

−Q(1 + cos β) cos 2ϑ}, (39)

where the Leggett angle is

cos ϑ =

⎧⎪⎨
⎪⎩

+1, β � β ′
L ,

2P (2 cos β−1)
Q(1+cos β) , β ′

L < β < βL ,

−1, β � βL ,

(40)

with cos β ′
L = (2P + Q)/(4P − Q) and cos βL ≡ (2P −

Q)/(4P + Q).2 The left panel of Fig. 15 shows the tipping-
angle dependence of the frequency shift �ω(||) for temper-
atures starting just below the transition to BSO(2)-AC2 phase
boundary at p = 10 bar. At this pressure transition from the

2Note that χB entering both Eqs. (39) and (42) is given by
χB = χN/[1 + gz/χN (〈�2

r 〉 + 〈�2
φ〉)] < χN . This result is obtained

in both cases by minimizing the Zeeman energy for the specific field
orientation.

Pz phase to the BSO(2) phase is interrupted by a narrow sliver of
AC2 phase. Thus, near the BSO(2)-AC2 phase boundary, the Pz
order parameter is dominant and that is reflected in the tipping
angle dependence for T = 0.36 Tc. At lower temperatures the
transverse components of the BSO(2) become significant and
the transverse shift evolves towards a form characteristic of
the B phase with a sharp transition at βL. The polar distortion
is still manifest as the negative shift for β > βL.

For the static NMR field �H ⊥ ẑ the relevant averages of the
BSO(2) gap are

P = 〈
�2

r

〉 + 〈
�2

φ

〉 + 2〈�r�φ〉 + 2〈�r�z〉 + 2〈�φ�z〉,
Q = 3

〈
�2

r

〉 + 3
〈
�2

φ

〉 + 2〈�r�φ〉
+ 8〈�r�z〉 + 8〈�φ�z〉 + 8

〈
�2

z

〉
,

R = 11
〈
�2

r

〉 + 11
〈
�2

φ

〉 + 18〈�r�φ〉 + 8
〈
�2

z

〉
,

(41)

leading to a transverse shift

ω�ω(⊥) = − 1

16

γ 2

χB

gD{2R cos β + 4P (1 + 4 cos β) cos ϑ

+Q(1 + cos β) cos 2ϑ}, (42)

where

cos ϑ =
{−2P (2 cos β−1)

Q(1+cos β) , β < βL,

1, β � βL,
(43)

and cos βL = (2P − Q)/(4P + Q). Unlike bulk 3He-B, the
confinement induced anisotropy of the BSO(2) order parameter
results in a nonzero transverse frequency shift even at small
tipping angles, and a temperature dependent critical angle βL.
Once again the frequency shift shows the evolution from a
functional form close to the Pz phase for T = 0.36 Tc towards
the polar distorted B phase at low temperature.

VI. SUMMARY AND OUTLOOK

For 3He in a long cylindrical pore of radius R = 100 nm,
the relative stability of superfluid phases is strongly dependent
on pressure both through the combination of strong-coupling
corrections to the fourth-order GL free energy and changes
in the effective confinement ratio R/ξ0(p), and the degree of
pairbreaking by boundary scattering. We find four different
equilibrium phases over the full pressure range for boundary
conditions spanning the range from maximal pairbreaking
(retroreflective boundaries) to minimal pairbreaking (specular
reflective boundaries). The first instability is to the z-aligned
polar Pz phase, except for the idealized case of perfect specular
reflection for a perfectly circular pore. A polar distorted B-like
phase is stabilized at sufficiently low temperatures within
our theory for the strong-coupling effects based on the GL
functional. We find two symmetry inequivalent chiral A-like
phases: the axially symmetric ASO(2) phase with a radially
directed chiral field and a polar core favored in the limit
of weak pairbreaking, and the broken axial symmetry chiral
AC2 phase with chirality directed perpendicular to the axis of
the pore. The ASO(2) phase dominates the phase diagram for
specularly reflecting boundaries while the AC2 phase appears
at intermediate temperatures and higher pressures separating
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the Pz and BSO(2) phases. The four equilibrium phases can be
identified by their distinct NMR frequency shifts as functions
of tipping angle and NMR field orientation. NMR experiments
utilizing arrays of equivalent nanopores should be able to test
these predictions and uniquely identify the polar phase as well
as the new prediction of the broken symmetry chiral AC2 phase.

The interplay of complex symmetry breaking, spatial
confinement, surface disorder, and strong-interactions beyond
weak-coupling BCS leads to a remarkably rich phase di-
agram of broken symmetry states in what is perhaps the
simplest of confining geometries: the cylindrical pore. We
expect an even wider spectrum of broken symmetry phases
with unique physical properties in more complex confining
geometries [30], or when confinement is in competition with
external fields or the formation of topological defects [31,32].
Indeed theoretical reports of new phases of superfluid 3He
in thin films and cavities have simulated the development of
nanoscale cavities, microelectromechanical systems (MEMS),
and nanofluidic oscillators, and new nanoscale materials for
experimental search and discovery of new quantum ground
states. In the latter category the infusion of quantum fluids
into highly porous anisotropic aerogels has opened a new
window into the role of confinement on complex symmetry
breaking. New chiral and ESP phases of superfluid 3He
in uniaxially stretched and compressed silica aerogels have
been reported [3,33,34], and in a new class of nanoscale
confining media, called “nematic” aerogels, there is strong
evidence to support the observation of a polar Pz phase of
3He in this strongly anisotropic random medium [4,35]. From

the vantage point of our predictions for 3He confined in a
long cylindrical pore there are strong similarities between
the phase diagram for R = 100 nm cylindrical pores and
the experimental phase diagram of 3He in nematic aerogels,
including the normal-to-Pz transition and uniaxially deformed
B-like and chiral A-like phases. It is remarkable that the
subtle correlations giving rise to chirality of an AC2 or
ASO(2) phase survive the random potential of these disordered
porous solids. The observations pose challenges for theorists
to provide a quantitative understanding of how complex
symmetry breaking and long-range order remain so robust
in random anisotropic materials.
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APPENDIX: MATERIAL PARAMETERS

The following Tables I–IV summarize the pressure depen-
dent material parameters that determine the superfluid phases
in strong-coupling GL theory.

TABLE I. Material parameters for 3He vs pressure, with Tc from Ref. [36], vf calculated with m∗ from Ref. [36], and density n from
Ref. [37]. Coherence lengths are calculated as ξ0 = �vf /2π kBTc. Strong-coupling �βsc

i parameters at Tc in units of |βwc
1 | are from Ref. [24].

p (bar) Tc (mK) vf (m/s) ξ0 (nm) �βsc
1 �βsc

2 �βsc
3 �βsc

4 �βsc
5

0.0 0.929 59.03 77.21 0.03 −0.11 0.10 −0.15 0.16
2.0 1.181 55.41 57.04 0.03 −0.04 −0.14 −0.37 0.19
4.0 1.388 52.36 45.85 0.02 −0.01 −0.24 −0.48 0.19
6.0 1.560 49.77 38.77 0.02 −0.01 −0.28 −0.54 0.18
8.0 1.705 47.56 33.91 0.02 −0.02 −0.30 −0.58 0.17
10.0 1.828 45.66 30.37 0.01 −0.03 −0.31 −0.60 0.15
12.0 1.934 44.00 27.66 0.01 −0.04 −0.31 −0.61 0.13
14.0 2.026 42.51 25.51 0.00 −0.05 −0.30 −0.62 0.11
16.0 2.106 41.17 23.76 0.00 −0.05 −0.27 −0.66 0.10
18.0 2.177 39.92 22.29 0.00 −0.06 −0.27 −0.68 0.09
20.0 2.239 38.74 21.03 −0.01 −0.06 −0.26 −0.69 0.07
22.0 2.293 37.61 19.94 −0.01 −0.07 −0.26 −0.71 0.06
24.0 2.339 36.53 18.99 −0.01 −0.07 −0.26 −0.72 0.04
26.0 2.378 35.50 18.15 −0.02 −0.07 −0.27 −0.73 0.03
28.0 2.411 34.53 17.41 −0.02 −0.07 −0.27 −0.74 0.01
30.0 2.438 33.63 16.77 −0.02 −0.07 −0.28 −0.74 −0.01
32.0 2.463 32.85 16.22 −0.03 −0.07 −0.27 −0.75 −0.02
34.0 2.486 32.23 15.76 −0.03 −0.07 −0.27 −0.75 −0.03
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TABLE II. Coefficients of a polynomial fit to the strong-coupling β parameters from Ref. [24] of the form �βsc
i = ∑

n a(i)
n pn.

n �βsc
1 �βsc

2 �βsc
3 �βsc

4 �βsc
5

0 3.070 × 10−2 −1.074 × 10−1 1.038 × 10−1 −1.593 × 10−1 1.610 × 10−1

1 −2.081 × 10−3 5.412 × 10−2 −1.752 × 10−1 −1.350 × 10−1 2.263 × 10−2

2 2.133 × 10−5 −1.081 × 10−2 3.488 × 10−2 1.815 × 10−2 −4.921 × 10−3

3 −4.189 × 10−7 1.025 × 10−3 −4.243 × 10−3 −1.339 × 10−3 3.810 × 10−4

4 −5.526 × 10−5 3.316 × 10−4 5.316 × 10−5 −1.529 × 10−5

5 1.722 × 10−6 −1.623 × 10−5 −1.073 × 10−6 3.071 × 10−7

6 −2.876 × 10−8 4.755 × 10−7 8.636 × 10−9 −2.438 × 10−9

7 1.991 × 10−10 −7.587 × 10−9

8 5.063 × 10−11

TABLE III. Sauls-Serene �βsc
i parameters [23] for 3He vs pressure. The values at p = 0 bar were obtained by extrapolating the published

�βsc
i , which were calculated only down to 12 bar, to their weak-coupling values at limp→p0 Tc(p)/TF (p) = 0, which corresponds to a negative

pressure of p0 = −5 bar.

p (bar) �βsc
1 �βsc

2 �βsc
3 �βsc

4 �βsc
5

0 −0.008 −0.033 −0.043 −0.054 −0.055
12 −0.034 −0.080 −0.117 −0.199 −0.194
16 −0.041 −0.088 −0.129 −0.230 −0.236
20 −0.048 −0.095 −0.136 −0.254 −0.277
24 −0.055 −0.101 −0.140 −0.272 −0.320
26 −0.059 −0.103 −0.140 −0.280 −0.344
28 −0.062 −0.105 −0.139 −0.287 −0.370
30 −0.066 −0.106 −0.137 −0.292 −0.398
32 −0.070 −0.106 −0.132 −0.296 −0.429
34.4 −0.074 −0.103 −0.123 −0.298 −0.469

TABLE IV. Coefficients of a polynomial fit to the Sauls-Serene β parameters in Table III of the form �βsc
i = ∑

n a(i)
n pn.

n �βsc
1 �βsc

2 �βsc
3 �βsc

4 �βsc
5

0 −8.311 × 10−3 −3.334 × 10−2 −4.298 × 10−2 −5.416 × 10−2 −5.505 × 10−2

1 −2.404 × 10−3 −4.716 × 10−3 −7.988 × 10−3 −1.550 × 10−2 −1.427 × 10−2

2 2.813 × 10−5 8.032 × 10−5 1.637 × 10−4 3.174 × 10−4 2.942 × 10−4

3 −4.024 × 10−7 −9.400 × 10−8 −1.345 × 10−8 −2.138 × 10−6 −6.654 × 10−6
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