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We theoretically study charge conductance in anomalous Rashba metal (ARM)/superconductor junctions for
various types of pairing symmetries in a superconductor. The exotic state dubbed ARM, where one of the
spin-resolved Fermi surfaces is absent, is realized when the chemical potential is tuned both in the presence
of Rashba spin-orbit interaction (RSOI) and an exchange field. Although a fully polarized ferromagnet metal
(FPFM) is also a system in which the electron’s spin degrees of freedom are reduced by half, the electrons in an
ARM have features that are distinct from those in a FPFM. For the ARM/spin-singlet superconductor junctions,
the obtained tunneling conductance within the bulk energy gap is enhanced with the increase in magnitude of the
RSOI. In particular, in ARM/dxy-wave superconductor junctions, the zero-bias conductance peak is enhanced
due to the presence of the RSOI. For ARM/px-wave superconductor junctions, the condition of the existence
of the zero-bias conductance peak is significantly sensitive to the direction of the d vector of the px-wave
superconductor. Furthermore, the obtained conductance in ARM/chiral p-wave superconductor junctions shows
different behaviors as compared to those in ARM/helical p-wave superconductor junctions. This feature serves
as a guide to determine the spin structure of a Cooper pair in the spin-triplet superconductor Sr2RuO4.
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I. INTRODUCTION

Determination of the pairing symmetry of a Cooper pair
has been an important issue in the field of superconductivity.
In this regard, tunneling spectroscopy is known to be use-
ful. In unconventional superconductor junctions, a zero-bias
conductance peak (ZBCP) due to the surface Andreev bound
state (SABS) is observed [1–4], where the pair potential
changes its sign on the Fermi surface [4,5]. Actually, the
presence of a sharp ZBCP in the tunneling conductance in
N/S junctions supports d-wave symmetry in a cuprate [5,6]. In
addition, a broad ZBCP observed in Sr2RuO4 junctions [7] is
consistent with the SABS with linear dispersion, such as chiral
p-wave pairing [8–11]. Moreover, the tunneling spectroscopy
in ferromagnet/superconductor (FM/S) junctions has also been
studied up to now. For a spin-singlet superconductor, the
magnitude of the tunneling conductance with the inner gap
regime is suppressed [12]. In addition, in the case of a
fully polarized ferromagnet metal (FPFM), the inner gap
conductance is completely suppressed [13–17]. On the other
hand, for the spin-triplet p-wave case [17–19], the resulting
conductance depends on the direction of the d vector, which
is perpendicular to the direction of the spin of a spin-triplet
Cooper pair.

Recently, the role of spin-orbit interactions in tunneling
spectroscopy in a superconductor has attracted much attention,
potentially opening up a new direction for superconducting
spintronics. One of the properties of the Rashba spin-orbit
interaction (RSOI) is that it splits the Fermi surface depending
on the spin degrees of freedom, where the relative direction
of the spin and momentum are locked due to the RSOI
in each Fermi surface [20–22]. This unique property in a
metal or doped semiconductor has attracted much attention in
superconducting junctions as well as in the field of spintronics,
since the direction of spin can be manipulated by the control
of the RSOI [23–27]. For example, RSOI-dependent charge
transport has been studied in a two-dimensional electron gas
(2DEG) with RSOI/s-wave superconductor junctions [28–30].

In the 2DEG, introducing an exchange field or applying an
external magnetic field, a gap opens at the crossing point of two
split bands by the RSOI [31]. If we set the chemical potential in
between the induced energy gap by manipulating the exchange
field, the inner Fermi surface disappears. Thus, we can imagine
novel quantum phenomena in the present system since only
one of the Kramers doublets exists. In the following, we call
this state an anomalous Rashba metal (ARM). The aim of
this paper is to study the tunneling spectroscopy in ARM/S
junctions. A unique feature of the tunneling conductance is
expected in ARM/S junctions due to the reduction in spin
degrees of freedom and the unique spin configuration of the
ARM. Furthermore, it would be interesting to compare the
ARM with the FPFM, both of which host half of the spin
degrees of freedom; however, as shown in Figs. 1(a) and 1(b),
the spin textures in the band basis behave differently from
each other. This difference gives a distinctive signature to each
superconductor junction.

Furthermore, it is known that the surface state of topological
insulators (TIs) [32] also has half of the spin degrees of
freedom and a unique spin texture [33], which is the so-called
helical metal. However, whereas TIs preserve time-reversal
symmetry, ARMs break it. Thus, ARMs are fundamentally
different from TIs. For superconductor junctions via a helical
metal, there have been several studies on the surface of TIs,
and the unique feature of charge transport in the systems has
been reported [34–38]. While the properties of charge transport
in ARM/S junctions are naturally expected to be anomalous,
similar to helical metal, they have not been revealed yet.

In this paper, we theoretically study the tunneling conduc-
tance in the ARM/S junctions by solving the Bogoliubov–de
Gennes (BdG) equation within the quasiclassical approx-
imation for several pairing symmetries: s-wave, p-wave,
d-wave, chiral p-wave, helical p-wave, and chiral d-wave
pairings. Among them, we reveal a qualitative difference
between the N, the FPFM, and the ARM in superconducting
junctions. For ARM/s-wave superconductor junctions, the
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FIG. 1. (Color online) Schematic illustration of the energy dis-
persion and the spin configuration on the Fermi surface in (a) an
FPFM and (b) ARM. We assume that the exchange field is along the
z axis. In addition, the RSOI λ(σ × k) · z is considered in the ARM.
In the FPFM, the spin directions on the Fermi surface point to the z

direction, whereas, in the ARM, they rotate along the Fermi surface
and tilt to the z axis.

magnitude of the inner gap conductance is enhanced as the
RSOI increases; this behavior is clearly different from that of
FPFM/s-wave superconductor junctions. In a similar manner,
for ARM/dxy-wave superconductor junctions, the RSOI retains
the ZBCP. This contrasts sharply with the suppression of the
ZBCP in FPFM/dxy-wave superconductor junctions [13–15].
In addition, we find that, for ARM/px-wave superconductor
junctions, the magnitude of the ZBCP depends significantly on
the direction of the d vector in the px-wave superconductor.
In our setup, the obtained ZBCP remains only when the
y component of the d vector is nonzero. This d-vector
dependence comes from the RSOI; thus, this feature is peculiar
to ARM/px-wave superconductor junctions. We also show that
the presence or absence of the ZBCP is related to a topological
number in a px-wave superconductor. When the symmetry of S
is a chiral p-wave, helical p-wave, and chiral d-wave pairing,
the pairing symmetries show qualitatively different line shapes
of the tunneling conductance.

The organization of this paper is as follows. In Sec. II, we
explain our model and give a formulation of the tunneling
conductance. In Sec. III A, the tunneling conductance of
the ARM/s-wave superconductor junction is calculated. In
Sec. III B, the tunneling conductance of the ARM/dxy-wave
superconductor junction is shown. We discuss the relevance to
the tunneling spectroscopy of the LSMO/YBCO junction. The
calculation for the ARM/px-wave superconductor junction is
shown in Sec. III C. We interpret the obtained results using
a chiral operator based on the topology of the Hamiltonian.
In Sec. IV, we show the tunneling conductance for an
ARM/chiral p-wave superconductor, an ARM/chiral d-wave
superconductor, and ARM/helical p-wave superconductor
junctions. In Sec. V, we present our conclusions.

II. FORMULATION FOR THE TUNNELING
CONDUCTANCE

Let us consider a two-dimensional ARM/insulator/
superconductor junction in the ballistic limit. We assume that
the ARM/S interface is located at x = 0 (along the y axis). The
interface has an infinitely narrow insulating barrier described

kx

E

E−E+

FIG. 2. (Color online) The energy spectrum of the ARM. The
eigenvalues are given by E± = ξk ±

√
H 2 + (λk)2.

by the δ function. In this section, a formulation of tunneling
conductance in two-dimensional ARM/S junctions is shown.

We start from the BdG Hamiltonian including both the
exchange field and the RSOI as shown below,

H̄ =
[

Ĥ (k) �̂(k)θ (x)

�̂(k)
†
θ (x) −Ĥ (−k)

∗

]
, (1)

Ĥ (k) =
[
ξk+Hθ (−x) + V0δ(x) iλk−θ (−x)

−iλk+θ (−x) ξk−Hθ (−x) + V0δ(x)

]
,

(2)

�̂(k) = iσ̂y[d0(k)σ̂0 + d(k)σ̂ ], (3)

with k± = kx ± iky , ξk = k2

2m
− μNθ (−x) − μSθ (x), and � =

1. �̂(k), μN (μS), λ(>0), H (>0), and θ (x) are the pair poten-
tial, the chemical potential in the metal (superconductor), the
amplitude of RSOI, the exchange field, and the step function,
respectively. In Eq. (3), d0(k) denotes the pair potential in the
spin-singlet superconductor, and d(k) [=(dx(k),dy(k),dz(k))]
is the d vector of spin-triplet superconductor. When the
spin-singlet (spin-triplet) superconductor is considered in
x > 0, we choose d = 0 (d0 = 0). Here, we assume that
the exchange field is parallel to the z axis. In addition, the
z component of the RSOI λ(σ̂ × k) · z is considered, where
σi (i = 0,x,y,z) are the identity matrix and the Pauli matrix in
spin space. The energy spectrum of the ARM is given by E± =
ξk ±

√
H 2 + (λk)2 (see Fig. 2). It should be made clear that

our Hamiltonian is distinct from an ARM/spin-singlet s-wave
superconductor hybrid system in which the pair potential is
induced in the ARM. In that case, the ARM hosts a chiral
Majorana mode as an edge state [39–45]. To calculate the
tunneling conductance of the ARM/S junctions, we choose
|μ| < H in the following calculation. The Fermi momentum
for the outer (inner) Fermi surface k1(2) in the ARM is given
as follows:

k1(2) =
√

2m(μN + mλ2 + (−)
√

(mλ2)2 + 2mλ2μN + H 2).

(4)

Here, k2 is a purely imaginary number and represents an
evanescent wave because of the absence of the inner Fermi
surface (FS). To specify this, we define a real number κ2

(iκ2 = k2),

κ2 =
√

2m(
√

(mλ2)2 + 2mλ2μN + H 2 − μN − mλ2). (5)
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FIG. 3. (Color online) Schematic illustration of the scattering
process. θN is an incident angle of k1 with respect to the interface
normal. θS denotes the direction of motions of quasiparticles in S
measured from the interface normal.

From Eq. (5), the x component of κ2 is given by

κ2x =
√

(κ2)2 + (ky)2. (6)

FIG. 4. (Color online) Schematic illustration of an ARM/p-wave
superconductor junction. The exchange field is parallel to z axis.

In the superconductor (x > 0), the Fermi momentum kS can be
denoted by kS ≈ √

2mμS in the quasiclassical approximation.
In addition, the y component of all momenta satisfies

ky = k1 sin θN = kS sin θS, (7)

because a momentum parallel to the interface is conserved
when we assume a flat interface.

First, we introduce a wave function in the ARM. As shown
in Fig. 3, the wave function ψ(x,y) in the ARM is represented
by using eigenfunctions of the Hamiltonian,

ψ(x > 0,y) = eikyy

⎛
⎜⎝eik1 cos θN x

⎡
⎢⎣

s

1
0
0

⎤
⎥⎦ + r1e

−ik1 cos θN x

⎡
⎢⎣

s∗
1
0
0

⎤
⎥⎦ + a1e

ik1 cos θNx

⎡
⎢⎣

0
0

−s∗
1

⎤
⎥⎦ + r2e

κ2xx

⎡
⎢⎣

te
1
0
0

⎤
⎥⎦ + a2e

κ2xx

⎡
⎢⎣

0
0
th
1

⎤
⎥⎦
⎞
⎟⎠, (8)

s = − iλk1e
−iθN

ξk1 + H
, (9)

te = −λ(κ2x + ky)

ξiκ2 + H
, (10)

th = λ(−κ2x + ky)

ξiκ2 + H
, (11)

where r1 and r2 (a1 and a2) are normal (Andreev) reflection coefficients and θN is an injection angle of k1 measured from the normal
to the interface (see Fig. 3). In addition, we assume μS ± �0 ≈ μS in the quasiclassical approximation. An injected electron cannot
transmit into the superconductor for θN > arcsin( kS

k1
) (≡θC). Next, we calculate a wave function in the superconductors. With the

magnitude of the pair potential �0, the pair potential matrices for spin-singlet and spin-triplet superconductors are given by

�̂(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0 d0(k)

−d0(k) 0

]
(spin-singlet pair),

[−dx(k) + idy(k) dz(k)
dz(k) dx(k) + idy(k)

]
(spin-triplet pair).

(12)

In Eq. (12), d0(k) is defined as d0(k) ≡ �0fθS
, where fθS

denotes the momentum dependence of the pair potential on the Fermi
surface in spin-singlet superconductor. The direction of the d vector is denoted by the polar angle θd and the azimuthal angle
φd in Fig. 4. The d vector for the px-wave, py-wave, or chiral p-wave superconductor is given by

d = (dx,dy,dz) = �0gθS
(sin θd cos φd, sin θd sin φd, cos θd ). (13)

In addition, we assume that the d vector for the helical p-wave superconductor is given by

d = �0
(
w1θS

,w2θS
,0
)
. (14)

Similar to fθS
, gθS

and wiθS
(i = 1,2) represent the momentum dependence of the pair potential on the Fermi surface in

spin-triplet superconductors. The explicit forms of fθS
, gθS

, and wiθS
(i = 1,2) are given in Secs. III and IV. The wave functions

in the spin-singlet and spin-triplet superconductors are given as follows:

144514-3



FUKUMOTO, TAGUCHI, KOBAYASHI, AND TANAKA PHYSICAL REVIEW B 92, 144514 (2015)

(i) Spin-singlet superconductor,

ψ(x,y) = eikyy

⎛
⎜⎝s1e

ikFS cos θSx

⎡
⎢⎣

1
0
0

�+

⎤
⎥⎦ + s2e

ikFS cos θSx

⎡
⎢⎣

0
1

−�+
0

⎤
⎥⎦ + s3e

−ikFS cos θSx

⎡
⎢⎣

0
−�̃−

1
0

⎤
⎥⎦ + s4e

−ikFS cos θSx

⎡
⎢⎣

�̃−
0
0
1

⎤
⎥⎦
⎞
⎟⎠, (15)

�+ = �0f
∗
θS

E +
√

E2 − �2
0

∣∣fθS

∣∣2 , (16)

�̃− = �0fπ−θS

E +
√

E2 − �2
0

∣∣fπ−θS

∣∣2 . (17)

(ii) px-wave, py-wave, and chiral p-wave superconductors,

ψ(x,y) = eikyy

⎛
⎜⎝s1e

ikFS cos θSx

⎡
⎢⎣

−B

cos θd

�+
0

⎤
⎥⎦ + s2e

ikFS cos θSx

⎡
⎢⎣

cos θd

B∗
0

�+

⎤
⎥⎦ + s3e

−ikFS cos θSx

⎡
⎢⎣

�̃−
0

−B∗
cos θd

⎤
⎥⎦ + s4e

−ikFS cos θSx

⎡
⎢⎣

0
�̃−

cos θd

B

⎤
⎥⎦
⎞
⎟⎠, (18)

B = sin θd cos φd + i sin θd sin φd, (19)

�+ = �0g
∗
θS

E +
√

E2 − �2
0

∣∣gθS

∣∣2 , (20)

�̃− = �0gπ−θS

E +
√

E2 − �2
0|gπ−θS

|2
. (21)

(iii) Helical p-wave superconductor,

ψ(x,y) = eikyy

⎛
⎜⎝s1e

ikFS cos θSx

⎡
⎢⎣

1
0

−�1+ + i�2+
0

⎤
⎥⎦ + s2e

ikFS cos θSx

⎡
⎢⎣

0
−1
0

�1+ + i�2+

⎤
⎥⎦ + s3e

−ikFS cos θSx

⎡
⎢⎣

−(�̃1− + i�̃2−)
0
1
0

⎤
⎥⎦

+ s4e
−ikFS cos θSx

⎡
⎢⎣

0
�̃1− + i�̃2−

0
1

⎤
⎥⎦
⎞
⎟⎠, (22)

�j+ = �0w
∗
jθS

E +
√

E2 − �2
0

∣∣wjθS

∣∣2 , (23)

�̃j− = �0wjπ−θS

E +
√

E2 − �2
0

∣∣wjπ−θS

∣∣2 . (24)

In the above, sl (l = 1,2,3,4) denotes the transmission coefficients and j = 1,2. θS is the angle of the momentum kS with respect
to the interface normal (see Fig. 3). Since we assume that the wave function in the junction is continuous at the interface, the
boundary conditions are given as follows:

ψ(+0,y) − ψ(−0,y) = 0, (25)

v̄x[ψ(+0,y) − ψ(−0,y)] = 1

mi
2mV0σ̂0τ̂zψ(0,y), (26)

where σ̂i (τ̂i) (i = 0,x,y,z) are the identity matrix and the Pauli matrices in spin (Nambu) space. In Eq. (26), the velocity operator
in the x direction v̄x is defined by [22]

v̄x = ∂H̄

∂kx

=

⎡
⎢⎢⎣

1
mi

∂
∂x

iλθ (−x) 0 0
−iλθ (−x) 1

mi
∂
∂x

0 0
0 0 − 1

mi
∂
∂x

−iλθ (−x)
0 0 iλθ (−x) − 1

mi
∂
∂x

⎤
⎥⎥⎦. (27)
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By solving Eq. (26), we determine a1 and b1 and obtain the normalized tunneling conductance [22],

σ (eV ) =
∫ θC

−θC
σS(eV,θS)dθS∫ θC

−θC
σN (eV,θS)dθS

, (28)

σS(eV,θS) = 4e(1 + |a1|2 − |r1|2)

(
k1 cos θN

m
(|s|2 + 1) − iλ(s − s∗)

)
. (29)

σS (σN ) represents the tunneling conductance in the ARM/S
junction [the ARM/normal metal (�0 = 0) junction]. In
Sec. III, we also show the tunneling conductance of the
one-dimensional limit by choosing ky = 0.

III. RESULTS AND DISCUSSIONS

In this and the next sections, we show and discuss the
obtained tunneling conductance of ARM/S junctions for
various types of pairing symmetry, where dimensionless
parameters α = mλ2

μS
, γ = μN

μS
, h = H

μS
, and Z = V0kS

μS
are used.

For simplicity, in the following sections we use abbrevia-
tions for superconducting junctions, e.g., ARM/s-waves and
ARM/spin-singlets.

A. ARM/s-wave superconductor junction

In this subsection, we discuss two-dimensional
ARM/s-wave superconductor junctions with

fθS
= 1. (30)

We calculate the normalized tunneling conductance σ (eV )
in Eq. (28) using the formulation in Sec. II. First, we show
the obtained conductance without an insulating barrier, i.e.,
Z = 0, as a function of bias voltage. Figure 5 shows the σ (eV )
of an N/s-wave (a), FM/s-waves (b), and ARM/s-waves (c)

0 0.5 1 1.5
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0 0.5 1 1.5
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2
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FIG. 5. (Color online) Normalized tunneling conductance σ (eV )
of two-dimensional (a) N/S, (b) FM/S, and (c) ARM/S junctions
without an insulating barrier (Z = 0), where S is chosen as the s-wave
superconductor. We use γ = 1.0 in all cases.

for γ = 1. In Fig. 5(a), we find σ (|eV | < �0) = 2 by the
perfect Andreev reflection at the interface [46,47]. As shown in
Fig. 5(b), in FM/S junctions, the σ (eV ) are shown for various
magnitudes of the exchange field, namely h. The magnitude of
the inner gap conductance σ (|eV | < �0) is suppressed with
the increase in h. In particular, the σ (|eV | < �0) becomes
zero for h > 1, where the ferromagnet is fully polarized [see
Fig. 5(b)(iii)]. As shown in Fig. 5(c), the σ (eV ) for h > 1
is enhanced with the increase in the magnitude of the RSOI
α. The qualitative features of the σ (eV ) in Fig. 5(c) can be
interpreted by the spin configuration of the ARM.

To see this, we calculate the spin configuration in the
ARM. Using the eigenfunction of the ARM, ψ(k1) =
(

sk1√
|sk1 |2+1

, 1√
|sk1 |2+1

)
T

, the spin direction of electron and

hole states is defined by 〈Se(k1)〉 ≡ 〈ψ(k1)|σ̂ |ψ(k1)〉
and 〈Sh(k1)〉 ≡ 〈ψ(−k1)∗|σ̂ ∗|ψ(−k1)∗〉, respectively. In the
above, sk1 is given by sk1 = − λ(ik1x+k1y )

ξk1 +H
, where k1x(y) is an

x (y) component of k1. The explicit forms of 〈Se(k1)〉 and
〈Sh(k1)〉 become

〈Se(k1)〉 = (〈Sxe(k1)〉,〈Sye(k1)〉,〈Sze(k1)〉)

=
( −2λk1yεk1

(λk1)2 + ε2
k1

,
2λk1xεk1

(λk1)2 + ε2
k1

,
(λk1)2 − ε2

k1

(λk1)2 + ε2
k1

)
,

(31)

〈Sh(k1)〉 = (〈Sxh(k1)〉,〈Syh(k1)〉,〈Szh(k1)〉)

=
(

2λk1yε−k1

(λk1)2 + ε2
−k1

,
−2λk1xε−k1

(λk1)2 + ε2
−k1

,
(λk1)2 − ε2

−k1

(λk1)2 + ε2
−k1

)
,

(32)

with

εk1 = ξk1 + H. (33)

If we choose λ = 0, we can reproduce the FPFM case. From
Eqs. (4), (31), and (32), while the signs of the in-plane
components of each spin expectation value are opposite, the z

component is the same:

〈Sze(k1)〉 = 〈Szh(k1)〉
= − 1

1 + 2α
h

+ 2α(1−h)
h(h+α+√

α2+2α+h2)

. (34)

For Eq. (34), we can find that, if α � h, 〈Sze(k1)〉 and
〈Szh(k1)〉 approach zero [see Fig. 6(a)]. On the other hand, the
magnitudes of 〈Sx(y)e(k1)〉 and 〈Sx(y)h(k1)〉 become larger as
the magnitude of the RSOI increases. These indicate that the
spin in the ARM is not fully polarized along the z axis and its
direction has an xy-plane component unlike the FPFM. We
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FIG. 6. (Color online) Schematic illustration of the spin configu-
ration in the ARM. (a) The α/h dependence of the spin configuration
and (b) the spin configuration of an electron and hole is shown.

show later that the x and y components of the spin polarization
induced by the RSOI do not suppress the magnitude of the
σ (|eV | < �0) in the ARM/spin-singlet. As a preparation for
showing it, we explain why the tunneling conductance in
FPFM/spin-singlets is reduced by the exchange field. Figure 7
shows the scattering process in which an electron with
down-spin is injected from the left side. In this case, the spin
of an incident electron is flipped through the Andreev reflection
because we assume the spin-singlet superconductor for x > 0.
However, the Andreev reflection for |eV | < �0 does not occur
in the FPFM/spin-singlets since there is no corresponding
Fermi surface for the hole state with up-spin. Equations
(31) and (32) confirm this since 〈Sze(k1)〉 = 〈Szh(k1)〉 = −1
is satisfied in the FPFM. This is because the Andreev
reflection is suppressed in FPFM/spin-singlets. In addition,
the suppression of the Andreev reflection reduces the inner
gap conductance, as we can see from

σ (eV ) ∝ 1 − |r|2 + |a|2, (35)

where r (a) is a normal (Andreev) reflection coefficient. There-
fore, the tunneling conductance decreases because of the ex-
change field in FPFM/spin-singlets. On the other hand, for λ 
=
0, 〈Sx(y)e(k1)〉 and 〈Sx(y)h(k1)〉 become nonzero and satisfy

〈Sxe(k1)〉 = −〈Sxh(k1)〉, (36)
〈Sye(k1)〉 = −〈Syh(k1)〉 (37)

FIG. 7. (Color online) Schematic illustration of the scattering
process at the interface of FPFM/spin-singlet superconductor
junctions.
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FIG. 8. (Color online) Normalized tunneling conductance σ (eV )
of two-dimensional ARM/S junctions without an insulating barrier
(Z = 0), where S is chosen as the s-wave superconductor. We use
γ = 0.1 in all cases.

in the ARM, as shown in Fig. 6(b). This means that the
coefficient of the Andreev reflection recovers due to the
RSOI in the ARM/spin-singlets by comparison with the
FPFM/spin-singlets. Accordingly, the presence of the RSOI
enhances the magnitude of the inner gap conductance in
ARM/spin-singlets. The above explanation is consistent with
the results in Fig. 5(c).

Also, we calculate the σ (eV ) of ARM/s-waves with γ =
0.1 because γ < 1 should be satisfied in realistic cases. The
results are shown in Fig. 8. Since the σ (|eV | < �0) in Fig. 8 is
enhanced with the increase in α, it is found that the change of
γ does not qualitatively influence the feature of the σ (eV )
in ARM/s-waves. In addition, even for junctions with an
anisotropic superconductor, the qualitative features of σ (eV )
are insensitive to the change of γ . Therefore, we mainly focus
on γ = 1 below.

Next, tunneling conductance in the one-dimensional limit,
which corresponds to angle-resolved conductance with per-
pendicular injection (ky = 0), is studied. Figure 9 shows σ (eV )
of the one-dimensional system for Z = 0. The indices of
Figs. 9(a)–9(c) correspond with those of Fig. 5. As we can see
from Figs. 9(a) and 9(b), for an N/s-wave and FM/s-waves,
the qualitative behaviors of σ (eV ) in the one-dimensional limit
are similar to those in two-dimensional cases [46,47]. Figure
9(c) also indicates that the σ (|eV | < �0) increases due to
the RSOI [see Fig. 9(b)(iii)]. However, note that zero-bias
conductance (ZBC), i.e., σ (eV = 0), is zero regardless of the
change of α. This is because, in the one-dimensional cases,
|a1|2 = 0 and |r1|2 = 1 are satisfied for eV = 0 in Eq. (29).
This profile of σ (eV = 0) does not correspond with that in
the corresponding two-dimensional cases, but the result is
consistent with previous studies [48–50]. According to one
of the previous studies [49], in which the conductance was
calculated using the scattering matrix theory, the ZBC should
be quantized to be 0 or 2 if half of the spin degrees of freedom
and the one-channel system are realized in the normal metallic
region. Moreover, if the superconductor in the junction is
topologically trivial, ZBC should be zero [49]. In our model,
the one-dimensional ARM is just a one-channel system, and
we consider the topologically trivial s-wave superconductor in
x > 0. Hence, the ZBC should be zero in the one-dimensional
ARM/s-waves.
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FIG. 9. (Color online) Normalized σ (eV ) of (a) N/S, (b) FM/S,
and (c) ARM/S junctions without an insulating barrier (Z = 0)
in the one-dimensional limit, where S is chosen as the s-wave
superconductor. We use γ = 1.0 in all cases.

Then, we show tunneling conductance with a high-barrier
case (Z = 10) for two-dimensional junctions. σ (eV ) of an
N/s-wave, FM/s-waves, and ARM/s-waves are plotted in
Figs. 10(a)–10(c), respectively. In these cases, all of the
line shapes of σ (eV ) show conventional U-shaped structures
regardless of the change of α and h (see Fig. 10) since the
σ (|eV | < �0) is strongly reduced by the insulating barrier due
to the absence of the SABS. In other words, the coexistence of
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FIG. 10. (Color online) Normalized σ (eV ) of two-dimensional
(a) N/S, (b) FM/S, and (c) ARM/S junctions with a high tunneling
barrier (Z = 10), where S is chosen as an s-wave superconductor. We
use γ = 1.0 in all cases.

the exchange field and the RSOI does not qualitatively affect
σ (eV ) for the high-barrier case.

B. ARM/d-wave superconductor junction

To understand the effect of an SABS [3,5] on the charge
transport of ARM/S junctions, we calculate the tunneling
conductance in two-dimensional ARM/d-wave superconduc-
tor junctions in this subsection. As a typical example of a
d-wave superconductor, we choose dx2−y2 -wave and dxy-wave
pair potentials. In these cases, fθS

is given by

fθS
=

{
cos(2θS) (dx2−y2 -wave),
sin(2θS) (dxy-wave). (38)

First, using fθS
, tunneling conductance for Z = 0 is studied.

It is known that, in FM/d-waves, the inner gap conductance
is suppressed by the exchange field, and the ZBC becomes
zero when the ferromagnet is fully polarized. As we have
discussed in Sec. III A, in ARM/spin-singlets, the inner gap
conductance is recovered upon increasing the magnitude of
the RSOI. ARM/d-waves also show an enhancement of the
inner gap conductance due to the RSOI. In addition, the
qualitative features of the tunneling conductance do not depend
on whether the paring symmetry is dx2−y2 -wave or dxy-wave.

Next, we focus on the tunneling conductance for the
high-barrier case (Z = 10). The line shape of σ (eV ) becomes
the conventional V-shaped structure for dx2−y2 -wave supercon-
ductor junctions regardless of the change of α and h. This is
because the σ (eV ) is strongly reduced by the insulating barrier.

In contrast, σ (eV ) shows a drastic feature due to the
presence of an SABS in ARM/dxy-waves. It is known that
the σ (eV ) in N/dxy-waves have a ZBCP, which is enhanced
upon increasing Z [see Fig. 11(a)] [5]. On the other hand,
when we consider FM/dxy-waves, the height of the ZBCP
becomes lowered with an increase in h, as shown in Fig. 11(b)
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FIG. 11. (Color online) Normalized σ (eV ) of two-dimensional
(a) N/S, (b) FM/S, and (c) ARM/S junctions with a high tunneling
barrier (Z = 10), where S is chosen as the dxy-wave superconductor.
We use γ = 1.0 in all cases.
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[13,14,16]. In particular, when the ferromagnet is fully
polarized, the ZBCP completely disappears [13,14,16,17] [see
Fig. 11(b)(iii)]. We find that, in ARM/dxy-waves, the ZBCP
appears again due to the presence of α [see Fig. 11(c)].
Moreover, the height of the ZBCP becomes larger as α

increases. This α dependence of σ (eV = 0) can be understood
by the spin configuration of the ARM, which is discussed in
the s-wave superconductor junction (see Sec. III A). As the
magnitude of the RSOI increases, the z component of spin
polarization by the exchange field decreases. Additionally, the
spin polarization by the RSOI does not suppress the tunneling
conductance of ARM/spin-singlets, as mentioned in Sec. III A.
This implies that the ZBCP can remain in ARM/dxy-waves by
the RSOI as compared to FPFM/dxy-waves [see Figs. 11(b)
and 11(c)].

Based on the results in Fig. 11(c), we discuss the physical
origin of the presence of ZBCP in an FM/dxy-wave with
the insulating barrier from the aspect of an experiment on
La0.67Sr0.33MnO3 (LSMO)/YBa2Cu3O7−δ (YBCO) with a
(110) oriented thin-film junction [51]. In the experiment, the
dependence of σ (eV ) on the magnitude of the magnetic field
applied along the in-plane direction has been shown. Surpris-
ingly, the ZBCP remains despite the strongly applied magnetic
field, where LSMO is known as a half-metallic material where
spin is fully polarized. Specifically, the experimental setup [51]
does not exactly correspond with our model. In the experiment,
the exchange field points toward the xy-plane direction, while
it is parallel to the z axis in our model. However, also in the
junction of the experiment, RSOI λ(σ̂ × k) · i can exist near
the interface due to the breakdown of inversion symmetry.
Here, i is a unit vector perpendicular to the interface, i.e.,
i ||x. Since this RSOI λ(σ̂ × k) · x induces the z component of
the spin polarization and decreases the xy-plane component
of the spin polarization induced by the magnetic field and
the magnetization, LSMO near the interface can behave like
the ARM. Accordingly, in light of our theory, the ZBCP in
the FPFM/dxy-wave is allowed in the presence of the RSOI.
Therefore, the conductance of Kashiwaya’s experiment [51]
may be interpreted from the viewpoint of ARM/dxy-waves. To
compare the experiment and theoretical predictions in detail, it
is necessary to take into account the surface roughness effect.

C. ARM/spin-triplet p-wave superconductor junctions

In this subsection, we study ARM/spin-triplet p-wave
superconductor junctions. We focus mainly on the tunneling
conductance for ARM/px-waves and ARM/py-waves for
several directions of the d vector. To understand the influence
of the RSOI on the tunneling conductance, we compare the
results of ARM/px-waves with ARM/py-waves. gθS

in Eq. (13)
is given as follows: for the px-wave and py-wave symmetries,

gθS
=

{
cos(θS) (px-wave),
sin(θS) (py-wave). (39)

First, Fig. 12 shows the tunneling conductance of two-
dimensional junctions with a px-wave superconductor for
Z = 0. Figures 12(A), 12(B), and 12(C) correspond to the
cases with d||x, d|| y, and d||z, respectively. The indices
(a), (b), and (c) denote N/px-waves, FM/px-waves, and
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FIG. 12. (Color online) Normalized σ (eV ) of two-dimensional
(a) N/S, (b) FM/S, and (c) ARM/S junctions without insulating
barrier (Z = 0), where S is chosen as the px-wave superconductor for
(A) d ‖ x, (B) d ‖ y, and (C) d ‖ z. We use γ = 1 in all cases.

ARM/px-waves, respectively. For the N/px-waves, we have
σ (eV = 0) = 2 independent of the direction of the d vector
due to the perfect Andreev reflection in Z = 0 [47] [see
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Figs. 12(A)(a), 12(B)(a), and 12(C)(a)]. On the other hand,
the ZBC changes from σ (eV = 0) = 2 in FM/px-waves. The
change of the σ (eV = 0) depends on the direction of the
d vector as well as the magnitude of the exchange field
h. When the d vector is perpendicular to the exchange
field, the σ (eV = 0) changes slightly [see Figs. 12(A)(b)
and 12(B)(b)]. However, when the d vector is parallel to the
exchange field, the σ (eV = 0) is significantly reduced with
the magnitude of h [see Fig. 12(C)(b)]. Now, let us show
σ (eV ) in ARM/px-waves. We find that σ (eV = 0) is zero for
d||x and d||z, but σ (eV = 0) is nonzero only for d|| y. As
we can see from Figs. 12(A)(c) and 12(C)(c), the inner gap
conductance for d||z is insensitive to the magnitude of the
RSOI, while that for d||x changes with the magnitude of the
RSOI. In addition, the σ (eV = 0) does not depend strongly on
the magnitude of the RSOI, and σ (eV = 0) ∼ 2 is satisfied for
d|| y [see Fig. 12(B)(c)]. As we will show later, the dependence
of σ (eV ) of ARM/px-waves on the direction of the d vector
can be explained by a winding number, which is a topological
invariant ensuring the presence of a zero-energy SABS.

To explain the above anomalous property of σ (eV ) in
ARM/px-waves, we show the tunneling conductance in two-
dimensional ARM/py-waves for Z = 0. Comparing the results
in ARM/py-waves with those in ARM/px-waves is important
because the SABS is absent in junctions with a py-wave
superconductor, unlike those with a px-wave superconductor
[52]. Figure 13 shows σ (eV ) of the junctions with a py-wave
superconductor. The indices of Figs. 13(A), 13(B), and 13(C)
[(a), (b), and (c)] are the same as those of Fig. 12, respectively.
As we can see from Figs. 13(A)(a), 13(A)(b), 13(B)(a),
13(B)(b), 13(C)(a), and 13(C)(b) [9,19], the behaviors of
the inner gap conductance σ (|eV | < �0) in N/py-waves and
FM/py-waves are qualitatively similar to those in the junctions
with a px-wave superconductor. However, the behaviors of
σ (eV = 0) of the ARM/py-waves are qualitatively different
from those of the ARM/px-waves. In the ARM/py-waves,
regardless of the direction of the d vector, the σ (eV = 0) is
not zero despite finite α. To be specific, the σ (eV = 0) recovers
as α increases for d||z [see Fig. 13(C)(c)], while that for d||x
and d|| y is slightly reduced [see Figs. 13(A)(c) and 13(B)(c)].
As we describe below, these behaviors of the σ (eV = 0) of
ARM/py-waves can be understood by the spin configuration
of the ARM. In spin-triplet superconductor junctions for d||z,
when an electron with up-spin injects, the Andreev-reflected
hole has down-spin similar to the spin-singlet superconductor
junction cases. This indicates that the σ (|eV | < �0) for d||z is
suppressed by the exchange field and is enhanced by the RSOI,
as shown in Figs. 13(C)(b) and 13(C)(c). On the other hand,
when an electron with up-spin injects, the Andreev reflection
must occur with an up-spin hole for d||x and d|| y. Hence, the
σ (eV ) is not reduced in the junctions with the FPFM for d||x
and d|| y [see Figs. 13(A)(b)(iii) and 13(B)(b)(iii)]. However,
in the ARM, the RSOI reduces the z component of the spin
polarization, as we discussed in Sec. III A. Accordingly, the
σ (|eV | < �0) decreases in the ARM/py-waves with d||x and
d|| y, contrary to those with d||z. Therefore, the discussion
about the spin configuration supports our calculations.

Now, we discuss the results of ARM/px-waves. In
ARM/px-waves, the dependence of σ (eV = 0) on the di-
rection of the d vector is qualitatively different from that in
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FIG. 13. (Color online) Normalized σ (eV ) of two-dimensional
(a) N/S, (b) FM/S, and (c) ARM/S junctions without an insulating
barrier (Z = 0), where SC is chosen as the py-wave superconductor
for (A) d ‖ x, (B) d ‖ y, and (C) d ‖ z. We use γ = 1 in all cases.

ARM/py-waves. In addition, as we mentioned above, one of
the important differences between the superconducting tunnel
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junctions with the px-wave superconductor and those with the
py-wave superconductor is whether the SABS can exist or not.
To understand the behavior of σ (eV = 0) in ARM/px-waves,
we introduce a winding number W for the one-dimensional
limit (ky = 0). Here, W takes an integer and is defined by a
chiral operator �̄ [52,53] and a BdG Hamiltonian H̄ ,

W ≡ −1

4πi

∫
dkx[�̄H̄−1(k)∂kx

H̄ (k)], (40)

where the chiral operator anticommutes with the BdG Hamil-
tonian, and the line integral in Eq. (40) should be performed
in the first Brillouin zone. When the winding number W is
nonzero, the SABS exists at the surface of the superconductor.
For a spin-triplet superconductor, a chiral operator generally
depends on the direction of the d vector (see Appendix A). In
particular, for the px-wave superconductor, the chiral operator
leading to a nontrivial W is given by

�̄ =
{

σ̂zτ̂y (d||x),
σ̂0τ̂x (d|| y),
−σ̂x τ̂y (d||z),

(41)

and the resulting W satisfies W = 2. In the ARM/px-waves,
the SABS is influenced by the RSOI and the exchange field
through electrons and holes in the ARM. From Eq. (41), we
find that the chiral operator anticommutes with the terms of
the RSOI λkxσ̂y τ̂z and the exchange field Hσ̂zτ̂z only for d|| y.
This indicates that the chiral symmetry protecting the SABS
survives under the RSOI and the exchange field only when
d|| y. Therefore, we can understand the RSOI dependence
of the tunneling conductance in the ARM/px-waves from a
topological point of view. The discussion about W and the
symmetries are given in Appendix A.

Below, using the numerical results, we check the validity
of the above discussion on W . As written in Appendix A,
the RSOI breaks the symmetry protecting the SABS for d||x
and d||z. This means that the resulting W is nonzero only for
d|| y even if the exchange field does not exist. Accordingly,
the property of the tunneling conductance in ARM/px-waves
can be realized in the junctions with a nonmagnetic metal
where the RSOI exists, which we call a Rashba metal (RM).
To check whether the property of the tunneling conductance
of the ARM/px-waves and that of the RM/px-waves are
similar to each other, we calculate the tunneling conductance
of the RM/px-waves. In Fig. 14, the normalized tunneling
conductance σ1(eV ), where an electron of the outer Fermi
surface of RM injects [28], is shown for several directions
of the d vector. The details of the formulation are written
in Appendix B. It is found that σ1(eV ) is suppressed as the
inner Fermi surface becomes smaller for d||x and d||z [see
Figs. 14(a) and 14(c)]. In particular, for d||x and d||z, the
σ1(eV = 0) is completely reduced for μN → 0, where the
inner Fermi surface of the RM disappears like that of the ARM.
In contrast, σ1(eV = 0) is insensitive to γ for d|| y. From
these results, it is found that the RSOI dominantly contributes
to the anomalous property of the tunneling conductance in the
ARM/px-waves while the exchange field does not contribute as
much. This is consistent with the discussion with the winding
number. Next, we also calculate how the direction of the d
vector influences σ (eV = 0) in ARM/px-waves, as shown in
Fig. 15. A sharp peak appears for d|| y in the one-dimensional
limit, although a broad peak appears in the two-dimensional
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FIG. 14. (Color online) Normalized tunneling conductance
σ1(eV ) of two-dimensional RM/px-wave superconductor junctions
for Z = 0 for various chemical potentials μN . σ1(eV ) is shown for
(a) d||x, (b) d|| y, and (c) d||z. We use α = 1 and h = 0.

system. The sharp peak in the one-dimensional limit is
consistent with our discussion based on the winding number.

Finally, σ (eV ) in ARM/px-waves for the high barrier case
(Z = 10) is studied. Figure 16 shows the obtained σ (eV ) of
N/px-waves (a), FM/px-waves (b), and ARM/px-waves (c) for
d|| y. In the N/px-waves, a ZBCP appears [see Fig. 16(a)] due
to the existence of the SABS regardless of the direction of
the d vector [4,5,54,55]. As we have mentioned already, the
inner gap conductance does not decrease in FM/spin-triplets
when the d vector is perpendicular to the exchange field
[18,19]. For this reason, the ZBCP exists for d||x and d|| y
[see Fig. 16(b)] while the height of the ZBCP is reduced by
the exchange field for d||z. In ARM/px-waves, the σ (eV = 0)
is zero for d||x and d||z similarly to the cases for Z = 0,
and the ZBCP appears only when d|| y [see Fig. 16(c)]. In
contrast, the ZBCP does not appear regardless of the change of
α and h in superconducting tunnel junctions with a py-wave
superconductor. This is natural because the SABS does not
exist at the surface of a py-wave superconductor [4,9].

FIG. 15. (Color online) Normalized zero-bias tunneling conduc-
tance σ (eV = 0) of ARM/px-wave superconductor junctions for
Z = 0 as functions of the polar angle θd and the azimuthal angle
φd of the d vector (see Fig. 4). We use γ = 1.0, α = 1.0, and h = 1.1
in both (a) the one-dimensional limit and (b) two-dimensional cases.
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FIG. 16. (Color online) Normalized σ (eV ) of two-dimensional
(a) N/S, (b) FM/S, and (c) ARM/S junctions without an insulating
barrier (Z = 10), where S is chosen as the px-wave superconductor
for d|| y. We use γ = 1.0 in all cases.

IV. RELEVANCE TO THE PAIRING
SYMMETRY IN Sr2RuO4

In this section, we study the tunneling conductance σ (eV )
in ARM/S junctions where a chiral p-wave, a helical p-wave,
and a chiral d-wave are chosen as the pairing symmetry in S,
respectively. Based on the obtained results, we suggest a new
direction to decide the pairing of Sr2RuO4. To calculate σ (eV )
in the systems corresponding to experiments of the tunneling
spectroscopy, we focus on the low transparent junctions with
Z = 5.

It is noted that chiral p-wave pairing is one of the promising
candidates of the pairing symmetry in Sr2RuO4 [58], where
the d vector is along the z axis. gθS

is given by

gθS
= exp(iθS), (42)

with d||z. First, for an N/chiral p-wave, the resulting conduc-
tance has a broad ZBCP reflecting on the linear dispersion of
the SABS parallel to the interface, as shown in Fig. 17(A)(a)
[7,8,10]. Then, in FM/chiral p-waves, the inner gap conduc-
tance σ (|eV | < �0) decreases with the increase in h since
we consider the cases for d||z [18,19] [see Fig. 17(A)(b)].
As a limiting case, the inner gap conductance is completely
suppressed in an FPFM/chiral p-wave [see Fig. 17(A)(b)(iii)]
[17,19]. A comparison with σ (|eV | < �0) in the FPFM/chiral
p-wave shows that σ (|eV | < �0) in ARM/chiral p-waves
slightly recover in the presence of the RSOI [see Fig. 17(A)(c)].

Next, we look at the helical p-wave case [11], where the
pair potential is given by

w1θS
= cos(θS), w2θS

= sin(θS). (43)

Time-reversal symmetry is not broken in this state. There
has been a theoretical proposal that helical p-wave pairing
may be possible by tuning the direction of the d vector of
Sr2RuO4 [59,60]. Then, two branches of SABS are generated
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FIG. 17. (Color online) Normalized σ (eV ) of (a) N/S, (b) FM/S,
and (c) ARM/S junctions where S is chosen as the (A) chiral p-wave,
(B) helical p-wave, and (C) chiral d-wave superconductors. We use
Z = 5 and γ = 1.0 in all cases.

as a Kramers pair. Also in an N/helical p-wave, σ (eV ) has
a broad ZBCP reflecting the linear dispersions of SABS
crossing zero energy at ky = 0 similar to that in chiral p-wave
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TABLE I. Summary of the behavior of the tunneling conductance σ (eV ) for the transparent limit and the high barrier case. The first column
shows the symmetry of the pair potential in the superconductor. In the first row, X/S and X/I/S indicate the junction for the transparent limit
and the high barrier case, respectively. Here, X denotes an N, FM, or ARM.

s(dx2−y2 )-wave dxy-wave px-wave (d||x) px-wave (d|| y) px-wave (d||z)

N/S σ (0) = 2 [46,47] σ (0) = 2 [4,5] σ (0) = 2 [54] σ (0) = 2 [54] σ (0) = 2 [8,54,55]

N/I/S U (V) shape [56] ZBCP [4,5] ZBCP [54] ZBCP [54] ZBCP [9,54,55]

FM/S σ (0) → 0 for h → 1 [12,57] σ (0) → 0 for h → 1 [13–16] σ (0) � 2 [18,19] σ (0) � 2 [18,19] σ (0) → 0 for h → 1 [18,19]

FM/I/S U (V) shape [12,17,57] No ZBCP for h � 1 [13–17] ZBCP [18,19] ZBCP [18,19] No ZBCP for h � 1 [18,19]

ARM/S σ (0) > 0 for α > 0 σ (0) > 0 for α > 0 σ (0) = 0 for α > 0 σ (0) � 2 σ (0) = 0

ARM/I/S U (V) shape ZBCP for α > 0 No ZBCP ZBCP No ZBCP

superconductor junctions [8] [see Fig. 17(B)(a)]. However,
for FM/helical p-waves, the broad ZBCP remains even for
h > 1.0 since, in those cases, the direction of the d vector
is in the xy plane [18,19] [see Fig. 17(B)(b)]. On the other
hand, for ARM/helical p-waves, σ (|eV | < �0) is not seriously
suppressed and has a small dip around zero-bias voltage [61],
as shown in Fig. 17(B)(c). In addition, the dip gets bigger as
the magnitude of the RSOI increases. This feature is different
from that in the ARM/chiral p-wave superconductor junction.

Finally, we calculate σ (eV ) for chiral d-wave junctions
where the time-reversal symmetry is broken, similar to the
case of chiral p-wave pairing. fθS

is given by

fθS
= exp(2iθS). (44)

For N/chiral d-waves, σ (eV ) has an almost flat line shape as
a function of bias voltage [62]. Although two branches of the
SABS exist, they do not cross E = 0 at ky = 0, in contrast to
the chiral p-wave and helical p-wave pairing cases. Then, the
contribution from E = 0 is not large and the resulting σ (eV )
does not have a ZBCP [see Fig. 17(C)(a)] [62]. When we
consider FM/chiral d-waves, σ (|eV | < �0) is reduced with
the increase in the magnitude of the exchange field since
chiral d-wave symmetry belongs to a spin-singlet pairing.
In particular, σ (eV = 0) = 0 is satisfied in the junction with
the FPFM [see Fig. 17(C)(b)(iii)]. Similar to σ (|eV | < �0)
in the ARM/spin-singlets shown in the previous section, that
in ARM/chiral d-waves is enhanced with the increase of the
magnitude of the RSOI [see Fig. 17(C)(c)].

As a summary of the results, if we consider only the N/S
junctions, it is difficult to distinguish between chiral p-wave
and helical p-wave pairings [7,8,62]. For the FM/S junctions
with a sufficiently large magnitude of spin polarization, it
is also difficult to distinguish the chiral d-wave from the
chiral p-wave [18,19,62]. However, for the ARM/S junctions,
the qualitative line shapes of σ (eV ) have a different feature
for each pairing. Therefore, the ARM is useful to classify
three pairings that have the SABS with linear dispersions.
The behavior of the tunneling conductance is summarized in
Table I.

V. CONCLUSION

In this paper, we have theoretically studied tunneling
conductance between ARM/S junctions for various types of the
pairing symmetry in S. For the ARM/spin-singlet supercon-
ductor junction, the magnitude of the inner gap conductance is

enhanced as compared to that in the FPFM junction. It is noted
that the ZBCP recovers in the ARM/dxy-wave superconductor
junction by the RSOI while it is completely suppressed in
the FPFM/dxy-wave superconductor junction. In a previous
work [51], the anomalous behavior of the conductance in
LSMO/YBCO junctions was not reported, and its origin has
not been discovered. Our obtained results can explain the
ZBCP in LSMO/YBCO junctions in the presence of the
large magnitude of the exchange field. Due to the absence
of inversion symmetry, RSOI is induced near the interface of
LSMO. Therefore, it is natural to speculate that LSMO can
behave like the ARM near the interface. Based on this, the
robust ZBCP reported in LSMO/YBCO junctions seems to be
reasonable [51].

We have also studied tunneling conductance in
ARM/px-wave superconductor junctions. It has been revealed
that whether the ZBCP remains or not depends critically on
the direction of the d-vector in ARM/px-wave superconductor
junctions, and this can be understood by using the winding
number W . In addition, we have calculated the tunneling
conductance in the ARM/S junction, where the symmetry of
S is the chiral p-wave, helical p-wave, and chiral d-wave
pairings. We have shown that these three types of pairings show
qualitatively different line shapes of tunneling conductance.
Our obtained results are useful to determine the pairing
symmetry of the superconductor Sr2RuO4.

In this paper, we have focused on the quasiparticle tunneling
in ARM/S junctions. It is a challenging problem to study
Josephson current in S/ARM/S junctions since an SABS [4,63]
seriously influences the magnitude of Josephson current at low
temperatures. Although a theoretical study on N/S or S/N/S
junctions in the presence of RSOI in N was performed in some
recent work [64,65], the Josephson current in an S/ARM/S
junction has not been revealed specifically for unconventional
superconductors as of yet. We are planning to study this issue
in the near future.
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APPENDIX A: WINDING NUMBER IN px-WAVE
SUPERCONDUCTORS

We discuss here the winding number of px-wave super-
conductors of the one-dimensional limit, which guarantees
the existence of a Majorana edge state and complements our
numerical results. We start from the BdG Hamiltonian of a
one-dimensional px-wave superconductor,

H̄BdG(kx) = [2t cos(kx) − μ]σ̂0τ̂z + �̄(kx), (A1)

with

�̄(kx) =
⎧⎨
⎩

−�0 sin kxσ̂zτ̂x (d ‖ x),
�0 sin kxσ̂0τ̂y (d ‖ y),
�0 sin kxσ̂x τ̂x (d ‖ z),

(A2)

where μ is the chemical potential and �0 is the amplitude
of the gap function. σ̂i (τ̂i) (i = 0,x,y,z) are the identity
matrix and the Pauli matrices in the spin (Nambu) space. This
system satisfies the time-reversal symmetry T̄ H̄BdG(kx)T̄ −1 =
H̄BdG(−kx) and the particle-hole symmetry C̄H̄BdG(kx)C̄−1 =
−H̄BdG(−kx) by T̄ = iσ̂y τ̂0K and C̄ = σ̂0τ̂xK , where K is the
complex conjugation.

If the BdG Hamiltonian has a chiral operator �̄, i.e.,
{�̄,H̄BdG(kx)} = 0, then the winding number is defined by
[52,66–68]

W ≡ −1

4πi

∫ π

−π

dkx Tr
[
�̄H̄BdG(kx)−1∂kx

H̄BdG(kx)
]
, (A3)

which takes an integer. In time-reversal invariant supercon-
ductors, the combination of time-reversal operator T̄ and
particle-hole operator C̄ becomes the chiral operator �̄0 =
−iC̄T̄ . Due to inversion symmetry, we notice that whereas
Eq. (A3) with �̄0 yields a nontrivial winding number in
spin-singlet superconductors, it leads to W = 0 in spin-triplet
superconductors [53,69]. Thus, in order to pursue a nontrivial
winding number in a spin-triplet pairing, we require the help
of material-dependent symmetries in addition to T̄ and C̄.

Equation (A1) possesses spin-rotational symmetries:
Ūx = iσ̂x τ̂z, Ūy = −iσ̂y τ̂0, and Ūz = iσ̂zτ̂z, which satisfy
[Ūi,H̄BdG(kx)] = 0 when the d vector is parallel to the i

direction. Taking into account this additional symmetry, we
can define a spin-dependent chiral operator �̄i ≡ C̄T̄ Ūi , and
Eq. (A3) with �̄i leads, for each direction of the d vector, to

W =
{

2, 0 < μ < 2t,

0 otherwise, (A4)

where W = 2 indicates the presence of a Majorana Kramer’s
pair at both ends.

On the other hand, in our numerical result, we found that
the zero-bias conductance peak is suppressed when d ‖ x
and d ‖ z. To explain this suppression from Eq. (A4), we
consider how the Rashba spin-orbit interaction (RSOI) and the
exchange field affect the Majorana Kramer’s pair by adding the
terms

H̄ ′ = λ sin kxσ̂y τ̂z + Hσ̂zτ̂z (A5)

into the BdG Hamiltonian, where the parameters λ and H

indicate the amplitude of RSOI and the exchange field,
respectively. We readily find that the first term breaks the
spin-rotational symmetries Ūx and Ūz, i.e., the winding number

kx

E

EF

EF

EF

A

B

C

FIG. 18. (Color online) Energy spectrum of the Rashba metal
with exchange field. There are three regions A, B, and C, depending
on μ.

survives only when d ‖ y. In addition, although a Majorana
Kramer’s pair is fragile against the exchange effect, we have
the effective time-reversal symmetry T̄ ′ = T̄ Ūy for the y

direction, which keeps the Majorana Kramer’s pair intact even
when the Zeeman effect is present [70,71]. As a result, the
topological argument is consistent with our calculation of the
tunneling conductance.

APPENDIX B: FORMULATION FOR THE TUNNELING
CONDUCTANCE IN RASHBA METAL WITH EXCHANGE

FIELD/SUPERCONDUCTOR JUNCTIONS

We show here formulations for the tunneling conductance
of Rashba metal (RM)/insulator/superconductor junctions in
the presence of the exchange field in the RM where the number
of Fermi surfaces is two. The BdG Hamiltonian of this system
is already given by Eqs. (1)–(3). In this Appendix, we shift
attention from the ARM (|μ| < H ) to the RM (|μ| > H )
and derive the wave functions for x < 0 and the tunneling
conductance. Therefore, the wave functions for x < 0 and the
tunneling conductance are mainly introduced in this appendix.
If we choose H = 0, the resulting tunneling conductance
corresponds with that shown in Sec. III C (see Fig. 14).

The dispersion in the RM with the exchange field is shown
in Fig. 18. From Fig. 18, it is found that we can define three
regions (A, B, and C) depending on the parameters: H , λ, and

SuperconductorRM

electron−like
quasiparticle

Normal Reflection

Andreev

hole−like
quasiparticle

Reflection Incident
electron

θ1Ν

θ2Ν

θ
S

FIG. 19. (Color online) Schematic illustration of the scattering
process. θ1 (2)N is an incident angle of an electron with momentum
k1 (2) with respect to the interface normal. θS denotes the direction of
motions of quasiparticles in S measured from the interface normal.
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μN . The ARM is realized in region A with |μ| < H . On the other hand, the RM is realized in region B (C) with μ > H

(− (mλ)2+H 2

2(mλ)2 < μ < −H ). In regions B and C we have two Fermi surfaces, unlike in region A. Thus, we need to take into account
the inner Fermi surface in addition to the outer Fermi surface. Interestingly, the inner and outer Fermi surfaces have different
helicity from each other in region B while they have the same spin helicity in region C. The scattering process for regions B and
C is shown in Fig. 19. θ1N (θ2N ) is an incident angle of momentum for the outer (inner) Fermi surface k1 (k2). The momenta
correspond to what we have shown in Sec. II:

k1 =
√

2m(μN + mλ2 +
√

(mλ2)2 + 2mλ2μN + H 2), k2 =
√

2m(μN + mλ2 −
√

(mλ2)2 + 2mλ2μN + H 2),

and the y component of all momenta is given by

ky = k1 sin θ1N = k2 sin θ2N = kS sin θS. (B1)

In what follows, we discuss the formulations in regions B (i) and C (ii).
(i) In this paragraph, we show the formulation for the tunneling conductance of a two-dimensional RM with the exchange

field (region B)/insulator/superconductor junction. The wave functions are represented by using the eigenfunctions of the BdG
Hamiltonian for μ > H . First, we introduce the wave function in the case in which an electron of the outer Fermi surface injects,

ψ(x < 0,y) = 1√
2
eikyy

⎛
⎜⎝eik1 cos θ1Nx

⎡
⎢⎣

s

1
0
0

⎤
⎥⎦ + r1(2)e

−ik1 cos θ1Nx

⎡
⎢⎣

s∗
1
0
0

⎤
⎥⎦ + a1(2)e

ik1 cos θ1Nx

⎡
⎢⎣

0
0

−s∗
1

⎤
⎥⎦

+ r2(1)e
−iKeBxx

⎡
⎢⎣

tB1e

1
0
0

⎤
⎥⎦ + a2(1)e

iKhBxx

⎡
⎢⎣

0
0

−tB1h

1

⎤
⎥⎦
⎞
⎟⎠,

s = − iλk1e
−iθ1N

ξk1 + H
, (B2)

tB1e(h) = −λ(−iKe(h)Bx + ky)

ξk2 + H
,

Ke(h)Bx =
{
k2 cos θ2N (k1 sin θ1N < k2),
+(−)i

√
(k1)2sin2θ1N − (k2)2 (k1 sin θ1N > k2).

For k1 sin θ1N > k2, the normal and Andreev reflections from the inner Fermi surface become evanescent waves. Next, we
introduce the wave function in the case in which an electron of the inner Fermi surface injects,

ψ(x < 0,y) = 1√
2
eikyy

⎛
⎜⎝eik2 cos θ2N x

⎡
⎢⎣

tB2

1
0
0

⎤
⎥⎦ + r1e

−ik1 cos θ1Nx

⎡
⎢⎣

s∗
1
0
0

⎤
⎥⎦ + a1e

ik1 cos θ1Nx

⎡
⎢⎣

0
0

−s∗
1

⎤
⎥⎦

+ r2e
−ik2 cos θ2Nx

⎡
⎢⎣

t∗B2
1
0
0

⎤
⎥⎦ + a2e

ik2 cos θ2Nx

⎡
⎢⎣

0
0

−t∗B2
1

⎤
⎥⎦
⎞
⎟⎠,

(B3)

s = − iλk1e
−iθ1N

ξk1 + H
,

tB2 = − iλk2e
−iθ2N

ξk2 + H
.

We assume that the wave function in the junction satisfies the boundary condition given by Eq. (26). The obtained tunneling
conductance is given as follows:

σ (E) = 1

2
σ1(E) + 1

2
σ2(E), (B4)

σ1(E) =
∫

σ1S(E,θS)dθS∫
σ1N (E,θS)dθS

, (B5)

σ2(E) =
∫

σ2S(E,θS)dθS∫
σ2N (E,θS)dθS

. (B6)
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Here, σ1 (2)(E) means normalized tunneling conductance when an electron from the outer (inner) Fermi surface injects. In
addition, σiS (σiN ) represents tunneling conductance between the ARM/S [the ARM/normal metal (�0 = 0)] junction, where
i = 1,2. In Eqs. (B5) and (B6), σ1S(E,θS) and σ2S(E,θS) are given by

σ1S(E,θS) =
⎧⎨
⎩

4e
(
(1 + |a1|2 − |r1|2)

(
k1 cos θ1N

m
(|s|2 + 1) − iλ(s − s∗)

)
+(|a2|2 − |r2|2)

(
k2 cos θ2N

m
(|tB1e|2 + 1) + iλ(tB1e − t∗B1e)

))
(k1 sin θ1N < k2),

4e(1 + |a1|2 − |r1|2)
(

k1 cos θ1N

m
(|s|2 + 1) − iλ(s − s∗)

)
(k1 sin θ1N > k2),

(B7)

σ2S(E,θS) = 4e

[
(1 + |a2|2 − |r2|2)

(
k2 cos θ2N

m
(|tB2|2 + 1) − iλ(tB2 − t∗B2)

)

+ (|a1|2 − |r1|2)

(
k1 cos θ1N

m
(|s|2 + 1) − iλ(s − s∗)

)]
. (B8)

(ii) Next, we show the formulation for the tunneling conductance of a two-dimensional RM with the exchange field (region
C)/insulator/superconductor junction. Wave functions are represented by using the eigenfunctions of the BdG Hamiltonian for
− (mλ)2+H 2

2(mλ)2 < μ < −H . First, we introduce the wave function in the case in which an electron of the outer Fermi surface injects,

ψ(x,y) = 1√
2
eikyy

⎛
⎜⎝eik1 cos θ1Nx

⎡
⎢⎣

s

1
0
0

⎤
⎥⎦ + r1e

−ik1 cos θ1Nx

⎡
⎢⎣

s∗
1
0
0

⎤
⎥⎦ + a1e

ik1 cos θ1Nx

⎡
⎢⎣

0
0

−s∗
1

⎤
⎥⎦ + r2e

−iK2exx

⎡
⎢⎣

tC1e

1
0
0

⎤
⎥⎦ + a2e

iK2hxx

⎡
⎢⎣

0
0

−tC1h

1

⎤
⎥⎦
⎞
⎟⎠,

s = − iλk1e
−iθ1N

ξk1 + H
,

(B9)

tC1e(h) = −λ(iKe(h)Cx + ky)

ξk2 + H
,

K2e(h)x =
{

k2 cos θ2N (k1 sin θ1N < k2),

+(−)i
√

(k1)2sin2θ1N − k2
2 (k1 sin θ1N > k2).

For k1 sin θ1N > k2, the normal and Andreev reflections from the inner Fermi surface become evanescent waves. Next, we
introduce the wave function in the case in which an electron of the inner Fermi surface injects,

ψ(x,y) = 1√
2
eikyy

⎛
⎜⎝eik2 cos θ2Nx

⎡
⎢⎣

t∗C2
1
0
0

⎤
⎥⎦ + r1e

−ik1 cos θ1Nx

⎡
⎢⎣

s∗
1
0
0

⎤
⎥⎦ + a1e

ik1 cos θ1Nx

⎡
⎢⎣

0
0

−s∗
1

⎤
⎥⎦

+ r2e
−ik2 cos θ2Nx

⎡
⎢⎣

tC2

1
0
0

⎤
⎥⎦ + a2e

ik2 cos θ2Nx

⎡
⎢⎣

0
0

−tC2

1

⎤
⎥⎦
⎞
⎟⎠,

(B10)

s = − iλk1e
−iθ1N

ξk1 + H
,

tC2 = − iλk2e
−iθ2N

ξk2 + H
.

We assume that the wave function satisfies the boundary condition given by Eq. (26). The obtained tunneling conductance is
given as follows:

σ (E) = 1

2
σ1(E) + 1

2
σ2(E), (B11)

σ1(E) =
∫

σ1S(E,θS)dθS∫
σ1N (E,θS)dθS

, (B12)

σ2(E) =
∫

σ2S(E,θS)dθS∫
σ2N (E,θS)dθS

. (B13)

Here, σ1 (2)(E) means normalized tunneling conductance when an electron from the outer (inner) Fermi surface injects. In
addition, σiS (σiN ) represents tunneling conductance between the ARM/S [the ARM/normal metal (�0 = 0)] junction, where
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i = 1,2. In Eqs. (B12) and (B13), σ1S(E,θS) and σ2S(E,θS) are given by

σ1S(E,θS) =
⎧⎨
⎩

4e
(
(1 + |a1|2 − |r1|2)

(
k1 cos θ1N

m
(|s|2 + 1) − iλ(s − s∗)

)
+(|a2|2 − |r2|2)

(
k2 cos θ2N

m
(|tC1e|2 + 1) − iλ(tC1e − t∗C1e)

))
(k1 sin θ1N < k2),

4e(1 + |a1|2 − |r1|2)
(

k1 cos θ1N

m
(|s|2 + 1) − iλ(s − s∗)

)
(k1 sin θ1N > k2),

(B14)

σ2S(E,θS) = 4e

[
(1 + |a2|2 − |r2|2)

(
k2 cos θ2N

m
(|tC2|2 + 1) − iλ(tC2 − t∗C2)

)

+ (|a1|2 − |r1|2)

(
k1 cos θ1N

m
(|s|2 + 1) − iλ(s − s∗)

)]
. (B15)
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