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In the hole-doped cuprate superconductors, the superconducting transition temperature Tc exhibits a domelike
feature against the doping rate. By contrast, recent experiments reveal that Tc in the electron-doped systems
monotonically increases as the doping is reduced, at least up to a very small doping rate. Here we show that
this asymmetry is reproduced by performing a two-particle self-consistent analysis for the three-band model
of the CuO2 plane. This is explained as a combined effect of the intrinsic electron-hole asymmetry in systems
comprising Cu3d and O2p orbitals and the band-filling-dependent vertex correction.
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Despite the long history, there still remain various unsolved
problems in the study of the high-Tc cuprate superconductors.
The striking difference in the doping dependence of the
superconducting transition temperature Tc between the hole-
and the electron-doped materials is among those unresolved
issues. It is well known that in the hole-doped case, Tc

exhibits a domelike feature against the doping rate, namely,
Tc first increases upon doping (underdoped), then yields a
maximum value (optimal), and finally decreases with further
doping (overdoped). On the other hand, it was known for
the electron-doped cases that Tc abruptly appears as soon as
the antiferromagnetism is lost with doping and monotonically
decreases as the doping rate increases. Recent experiments
show that the antiferromagnetism can be suppressed down to
very small doping rate or even in the mother compound when
the apical oxygens are ideally removed in the T′-type crystal
structure of the electron-doped cuprates. Then, it has been
revealed that Tc monotonically increases with decreasing the
electron doping at least up to a very small doping rate (less
than 5%) and is suggested to be superconducting even in the
nondoped mother compound [1–4].

There have been some theoretical studies of the doping
dependence of Tc. The fluctuation exchange (FLEX) ap-
proximation [5] for the single-band Hubbard model gives a
monotonic doping dependence of Tc [6] and therefore has
difficulties in understanding the doping dependence of Tc in
the hole-doped cuprates. Some studies considered supercon-
ducting fluctuation in FLEX to circumvent this problem [7,8].
There have also been some studies that adopt methods capable
of dealing with the strong correlation effects [9–15]. In some
of those studies, Tc exhibits a domelike doping dependence,
but in those cases there would be difficulties in understanding
the recent experimental results for the electron-doped case.
The electron-hole asymmetry of Tc was studied in a two-
band model that explicitly considers the O2p orbital, but
there, the antiferromagnetic phase was obtained in a wide
electron-doping range [16], in contradiction to the experiments
mentioned above [1–4].

It has been suggested that the difference in the character
of the mother compound (Mott insulator or not) between the
hole-doped and the electron-doped systems can be attributed
to the difference in the electronic structure originating from
the crystal structure [4,12,17,18]. Namely, whereas the crystal

structure of the single-layer hole-doped cuprates is composed
of Cu-O octahedra (T type), that of the electron-doped cuprates
is composed of Cu-O squares (T′ type) and (ideally) has no
apical oxygens. Due to this difference, the copper 3d-oxygen
2p level offset in the T′-type structure tends to be smaller
than that in the T structure. Since the d-p level offset is small
in the electron-doped system, the on-site effective U , when
mapped to the single-band Hubbard model, is also small. One
might expect that this difference in the crystal structure and
hence the difference in the effective on-site U can provide
an explanation for the electron-hole doping asymmetry of
Tc. However, the inner layers of multilayered hole-doped
cuprates also do not have apical oxygens and therefore
have the same lattice structure as that of the electron-doped
cuprates. Still, it is known that Tc exhibits a domelike doping
dependence even within the inner layers [19]. Therefore, it
seems difficult to attribute the electron-hole asymmetry of the
doping dependence of Tc to the absence/presence of the apical
oxygens. The aim of the present study is to understand the
origin of this electron-hole asymmetry. Here, we stress that
in the present study we focus only on the (non-)monotonicity
of the doping dependence of Tc and leave the issue of the
metallicity or Mottness of the mother compound to future
studies.

We start by demonstrating that this electron-hole doping
asymmetry of Tc is difficult to understand within the single-
band Hubbard model even when realistic band structures
are considered. We perform first-principles band calculation
of HgBa2CuO4 (a hole-doped system) and Nd2CuO4 (an
electron-doped system) and obtain tight-binding models con-
structing a maximally localized Wannier basis [20–24]. Instead
of the typical T-type hole-doped system La2CuO4, we adopt
HgBa2CuO4 because: (i) it is known that the hybridization
of the dz2 orbital cannot be neglected in La2CuO4 [25], and
(ii) the band structures of HgBa2CuO4 and Nd2CuO4 are very
similar so that we can concentrate purely on the electron-hole
asymmetry. To take into account the electron correlation
effect beyond those taken into account in the local density
approximation/generalized gradient approximation level, the
on-site interaction has to be treated by some many-body
technique as has been performed in previous studies [25–27].
In the present study, we adopt the two-particle self-consistent
(TPSC) method proposed by Vilk and Tremblay [28]. In this
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TABLE I. Nearest- (t1-), second- (t2-), and third- (t3-) neighbor
hopping integrals for the single-band models.

t1 (eV) t2 (eV) t3 (eV)

Nd2CuO4 −0.457 0.0866 −0.0865
HgBa2CuO4 −0.464 0.0907 −0.0842

method, the interaction vertices in the charge and spin channel
are approximated as different constants, and these constants are
determined so that the correlation functions satisfy their sum
rules that originate from the Pauli principle. It has been shown
in Ref. [14] that TPSC gives a domelike doping dependence of
Tc for the single-band Hubbard model with nearest-neighbor
hopping only.

The obtained hopping integrals for the single-band models
are given in Table I, and the corresponding band structures
are shown in Fig. 1 (upper panels). The eigenvalue λ of the
linearized Eliashberg equation for d-wave pairing, which is a
measure of Tc (see below), is shown against the band filling in
Fig. 2. For both models of HgBa2CuO4 and Nd2CuO4, we set
the on-site repulsion as U/t = 8 and the temperature as T/t =
0.08, and we take 128 × 128 meshes and 4096 Matsubara
frequencies. As shown in Fig. 2, λ varies monotonically
in both the hole- and the electron-doped cases, namely,
the domelike Tc variance against doping obtained for the
nearest-neighbor-hopping-only case (inset of Fig. 2 shows the
doping dependence of λ for the t1-only model) is lost when a
realistic band structure is adopted.

Considering the previous studies mentioned earlier, it may
be questionable whether we can reproduce the experimentally
observed electron-hole asymmetry within the single-band
model even if we take into account the electron correlation
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FIG. 1. (Color online) Band structure of the single- (upper
panels) and three-band models (lower) for Nd2CuO4 (left) and
HgBa2CuO4 (right).
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FIG. 2. (Color online) Band-filling dependence of the eigenvalue
λ of the linearized Eliashberg equation for the single-band models.
For comparison, the inset shows the doping dependence of λ for the
single-band model with nearest-neighbor hopping only.

effects beyond TPSC. Namely, the doping dependence of
Tc would be either domelike shaped or monotonic on both
electron- and hole-doped cases when the same values of U

are taken. Hence, we now proceed to the three-band model
that explicitly considers the in-plane oxygen 2px,y orbitals in
addition to the copper 3dx2−y2 orbital [29]. We first constructed
the five-band model composed of the copper 3dx2−y2 orbital
and four in-plane oxygen 2px,y orbitals by using the maximally
localized Wannier basis. Subsequently, we obtained the three-
band model by removing two pπ orbitals which are oriented
in the direction perpendicular to the Cu-O bond. The obtained
model parameters and the band structure are shown in Table II
and Fig. 1, respectively. For comparison, the model parameters
for La2CuO4 are also shown. The parameter values of Hg and
Nd systems can be considered as quite similar, and especially
the similarity of �dp can be noticed if we compare the values to
that of the La system, which has smaller apical oxygen height
compared to the Hg system. The similarity of �dp between
the electron-doped and the hole-doped materials is expected
to become even more prominent if we consider multilayer
hole-doped cuprates where one or both of the apical oxygens
are missing depending on the layer. This means similar values
of the on-site U when mapped to single-band Hubbard models
as mentioned earlier.

To analyze the three-band model, the TPSC approach
should be generalized for multiband systems. We follow
the generalization of TPSC presented in Refs. [30,31]. Let
us briefly review TPSC for the multiband Hubbard model.

TABLE II. Hopping integrals and copper 3d-oxygen 2p level
offset in the three-band models.

tdp (eV) tpxpy
(eV) tpxpx

(eV) �dp (eV)

Nd2CuO4 1.18 −0.621 0.137 1.83
HgBa2CuO4 1.26 −0.632 0.133 2.06
La2CuO4 1.38 −0.616 0.0899 2.73
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Hereafter we make use of the matrix form in the same way as
Refs. [32,33].

The Hamiltonian of the three-band model is given as

H =
∑

r,r ′,σ

∑

μ,ν

t
μν

r r ′ c
†
μσ (r)cνσ (r ′) + �dp

∑

r,σ

ndσ (r)

+
∑

r

∑

μ

Uμnμ↑(r)nμ↓(r), (1)

where c†μσ (r) is a creation operator of an electron with spin
σ and orbital μ = d,px,py at site r, nμσ (r) = c†μσ (r)cμσ (r)
is a number operator, �dp is the d-p level difference, and
Uμ is the on-site Coulomb interaction. The band filling n is
defined as the average number of electrons per unit cell so
that n = 5 corresponds to the nondoped case. In the analysis
for this model, we set the on-site interaction Ud = 10 and
Up = 5 eV and the temperature at T = 0.01 eV. We employ
64 × 64 k-point meshes and 4096 Matsubara frequencies.

In this three-band model, similar to the single-orbital case,
the spin and charge susceptibilities are evaluated as

χ sp(q) = [1 − χ0(q)U sp]−1χ0(q), (2a)

χ ch(q) = [1 + χ0(q)U ch]−1χ0(q), (2b)

where χ0(k) is the irreducible susceptibility and U sp(ch) is the
effective interaction matrix for the spin (charge) channel. The
irreducible susceptibility is given by

χ0
λμνξ (q) = − T

N

∑

k

G0
νλ(k)G0

μξ (k + q), (3)

using the bare Green’s function G0
μν(k) = {[iεn + μ −

H(k)]−1}μν , where μ is the chemical potential and H(k) is
the matrix elements of the hopping term of the Hamiltonian in
the momentum representation. Here we abbreviate the wave
numbers and the Matsubara frequencies as k (for the fermionic
case) or q (bosonic).

Since we consider only Uμ as the interaction, introducing
the ansatz,

U sp
μμμμ = 〈nμ↑nμ↓〉

〈nμ↑〉〈nμ↓〉Uμ, (4)

susceptibilities can be determined from the following sum
rules derived from the Pauli principle:

− 2T

N

∑

q

χ sp
μμμμ(q) = nμ − 2〈nμ↑nμ↓〉, (5a)

−2T

N

∑

q

χ ch
μμμμ(q) = nμ + 2〈nμ↑nμ↓〉 − n2

μ, (5b)

where nμ is the particle number per site of orbital μ, obtained
from − T

N

∑
k G0

μμ(k) = nμ. However the ansatz introduced
here violates the electron-hole symmetry. Therefore if nμ > 1,
considering the electron-hole transformation, the ansatz should

be modified as

U sp
μμμμ =

〈
nh

μ↑nh
μ↓

〉
〈
nh

μ↑
〉〈
nh

μ↓
〉Uμ, (6)

where nh
μσ = 1 − nμσ . Since nμ > 1 is satisfied for any band

filling used in this study, we make use of the transformed
ansatz.

Using the obtained susceptibilities as described above,
the dressed Green’s function G(k) is determined by Dyson
equation,

G(k)−1 = G(0)(k)−1 − �(k), (7)

and the self-energy �(k) is given by


ll′(k) = 1

2

kBT

N

∑

q

[U spχ sp(q)U + U chχ ch(q)U]lml′m′

×G
(0)
mm′ (k − q). (8)

Solving the linearized Eliashberg equation,

λ�ll′(k) =
∑

k′mi

�s
lm1m4l′(k,k′)Gm1m2 (k′)

×�m2m3 (k′)Gm4m3 (−k′), (9)

the eigenvalue λ and the anomalous self-energy �(k) are
obtained. Here the singlet-pairing interaction �s(q) is given
by

�s(q) = −U − 3
2 U spχ sp(q)U + 1

2 Uchχ ch(q)U, (10)

where U is the interaction matrix for the bare vertex. The
superconducting transition temperature Tc is the temperature
where λ reaches unity. In the present study, we calculate λ at
a fixed temperature and use it as a measure for Tc.

Let us move on to the calculation results of the effective
three-band model for HgBa2CuO4 and Nd2CuO4. The spin
susceptibility

∑
μ χ

sp
μμμμ(k,ω = 0) and the absolute value of

the dressed Green’s function |Gdd (k,iεn=0)| are shown in
Figs. 3 and 4, respectively. As the number of electrons decrease
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FIG. 3. (Color online) Spin susceptibility of the three-band mod-
els

∑
μ χ sp

μμμμ(k,ω = 0). (a) Hg system, band filling n = 4.85, (b)
Hg system, band filling n = 5.0, (c) Nd system, band filling n = 5.0,
and (d) Nd system, band filling n = 5.15.
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FIG. 4. (Color online) Absolute value of the dressed Green’s
function of the three-band models |Gdd (k,iεn=0)|. (a) Hg system,
band filling n = 4.80, (b) Hg system, band filling n = 4.85, (c) Hg
system, band filling n = 5.0, (d) Nd system, band filling n = 5.0, and
(e) Nd system, band filling n = 5.15.

from the electron-doped region (n > 5) to the hole-doped
region (n < 5), peaks of the spin susceptibility around (π,π )
and the � point are enhanced, and the absolute value of the
dressed Green’s function is suppressed. It can be seen in
Figs. 3(a) and 3(b) that the Green’s function is particularly
suppressed around (π,0)(0,π ), namely, the hot spots (see the
figures in the Supplemental Material [34] in which the hot
spots are more clearly visible).

These behaviors can be explained as a combined effect
of the following two factors. First, since the dx2−y2 orbital
is not half-filled due to the d-p hybridization, the dx2−y2

orbital approaches the half-filling by decreasing the number
of electrons. Because of this, to satisfy the sum rule for the
spin susceptibility χ

sp
dddd (q) within the d orbital, the vertex

U
sp
dddd necessarily increases. Therefore the spin susceptibility

increases with decreasing the number of electrons. Second,
since the Fermi level approaches the van Hove singularity point
of the band structure as the number of electrons is reduced,
the spin susceptibility around the � point is enhanced. The
enhancement of the spin fluctuation results in the increase in
the self-energy, which in turn suppresses the Green’s function.

We show the band-filling dependence of the d-wave pairing
eigenvalue λ of the linearized Eliashberg equation (measure
of Tc) in Fig. 5. This result is consistent with the doping
dependence of Tc in both the electron- and the hole-doped
regions (except near the nondoped regime, which we will
discuss later). As shown in the inset of Fig. 5, this feature
remains at the temperature where the d-wave eigenvalue λ is
above unity near the optimal doping rate (T = 0.003 eV, 80 ×
80 k-point meshes, and 8192 Matsubara frequencies). This
result can be interpreted as follows. The monotonic increase
in Tc in the electron-doped region as the number of electrons
is reduced arises from the enhancement of χ

sp
dddd (q) around

(π,π ), which works in favor of the d-wave pair scattering.
As the band filling enters the hole-doped region, χ

sp
dddd (q)

is further enhanced around (π,π ) so that λ also increases.
However, both the suppression of the Green’s function and
the enhancement of χ

sp
dddd (q) around the � point work against

d-wave superconductivity, and therefore λ turns to decrease
with further hole doping beyond δh = 0.15, where δh = 5 − n
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FIG. 5. (Color online) The doping dependence of the d-wave
eigenvalue of the linearized Eliashberg equation λ in the three-band
model. The inset shows the doping dependence of λ at a lower
temperature of T = 0.003 eV.

is the hole-doping rate. Thus, the doping dependence of the
superconducting transition temperature is naturally understood
in both the electron- and the hole-doped cases.

Since the Mott transition is not described within the formal-
ism used in the present study, in Fig. 5 we show the result near
n = 5 by dashed lines (the calculations have been performed
also at n = 5 nonetheless). The absence of the insulating
state in the nondoped case is attributed to the insufficiency
of the evaluation of the local electron correlation effects. The
inclusion of further electron correlation effects is left for future
studies. Nonetheless, we can expect that the inclusion of such
effects will probably make the domelike feature in the hole-
doped region more prominent, whereas it should somewhat
reduce the enhancement of λ in the underdoped regime of
the electron-doped case, which seems rather strong in the
present calculation compared to experimental observations
[2,3]. Hence, the inclusion of a further local correction is
likely to make the doping dependence of Tc even closer to
those observed experimentally. Another related issue is the
pseudogap problem in the underdoped regime. This has been
addressed by TPSC in Ref. [28] for the single-band model,
but the situation can be different in the case of the three-band
model with a realistic band structure. This also serves as an
interesting future problem.

To summarize, we have studied the doping dependence
of superconductivity for the three-band model of Nd2CuO4

and HgBa2CuO4 using the TPSC method. The eigenvalue of
the Eliashberg equation λ exhibits an optimal doping around
n = 4.85 (hole concentration δh = 0.15) in the hole-doped
region and varies monotonically in the electron-doped region,
consistent with the experiment. It is found to be understood
naturally in terms of the electron-hole asymmetry due to
the d-p hybridization and the band-filling-dependent vertex
correction.

Part of the numerical calculations were performed at the
facilities of the Supercomputer Center, Institute for Solid State
Physics, University of Tokyo. This study has been supported
by Grants-in-Aid for Scientific Research Grant No. 26247057
from the Japan Society for the Promotion of Science.
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