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Magnetic response of energy levels of superconducting nanoparticles with spin-orbit scattering
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Discrete energy levels of ultrasmall metallic grains are extracted in single-electron tunneling spectroscopy
experiments. We study the response of these energy levels to an external magnetic field in the presence of both
spin-orbit scattering and pairing correlations. In particular, we investigate g factors and level curvatures that
parametrize, respectively, the linear and quadratic terms in the magnetic-field dependence of the many-particle
energy levels of the grain. Both of these quantities exhibit level-to-level fluctuations in the presence of spin-orbit
scattering. We show that the distribution of g factors is not affected by the pairing interaction and that the
distribution of level curvatures is sensitive to pairing correlations even in the smallest grains in which the pairing
gap is smaller than the mean single-particle level spacing. We propose the level curvature in a magnetic field as
a tool to probe pairing correlations in tunneling spectroscopy experiments.
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I. INTRODUCTION

Discrete electronic energy levels in individual nanoscale
metallic grains (nanoparticles) can be measured by single-
electron tunneling spectroscopy [1]. Since the pioneering
experiments on aluminum grains [2–4], spectra of nanopar-
ticles made of a variety of materials have been measured.
In particular, the magnetic-field response of energy levels of
grains with spin-orbit scattering has been studied in a number
of experiments [5–9].

Spin-orbit scattering breaks spin symmetry. However,
time-reversal symmetry, leading to Kramers degeneracy of
the single-electron levels in the absence of a magnetic field,
remains a good symmetry. Since atomic-scale irregularities
of a typical grain destroy all possible orbital symmetries,
there are generally no additional degeneracies, and the
single-electron levels form doublets. An external magnetic
field breaks time-reversal symmetry and leads to splitting of
the doublets. The energies of the upward-moving (εk+) and
downward-moving (εk−) levels of a doublet εk in a weak
magnetic field B are parametrized by the g factor gk and level
curvature κk (at zero field) as

εk±(B) = εk(0) ± 1
2gkμBB + 1

2κkB
2 + O(B3), (1)

where μB is the Bohr magneton.
When spin-orbit coupling is negligible, the spin is a good

quantum number, orbital magnetism does not contribute to the
g factors [10,11], and gk = 2 for all levels. However, in the
presence of spin-orbit coupling, the g factor exhibits level-
to-level fluctuations [11–13] and depends on the magnetic-
field direction [12,13]. In addition, the spin contribution is
suppressed and may become comparable to the contribution
from orbital magnetism [11,13,14], which is finite when
spin symmetry is broken. The statistics of single-particle g

factors has been studied using random-matrix theory (RMT)
[11–13], and is generally in good agreement with spectroscopy
experiments on noble-metal nanoparticles [7–9]. However,
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understanding of the average value of the g factor is still
lacking.

Another signature of spin-orbit scattering is the nonlinear
second-order correction (in the magnetic field) to energies,
which results in avoided crossing of energy levels [5,13].
Although this correction is not identically zero in the absence
of spin-orbit scattering because of orbital magnetism, it
becomes appreciable only when spin-orbit scattering breaks
spin-rotation symmetry, leading to finite matrix elements
of the spin operator between states of different doublets.
The distribution of level curvatures was measured in gold
nanoparticles [9] and found to be in agreement with RMT
predictions [15–17].

The above single-particle level results are valid for grains
that are well described by the constant-interaction (CI) model,
in which the electron-electron interaction is taken to be the
classical charging energy e2N2/2C, where N is the electron
number and C is the capacitance of the grain. In the CI
model, the energies extracted in a tunneling spectroscopy
experiment reduce to the single-electron energies, as is the
case of noble-metal nanoparticles [7–9]. However, when the
interaction effects beyond the CI model are important (e.g.,
in superconducting or ferromagnetic materials), the extracted
energies in the tunneling spectroscopy experiments do not
reduce to single-particle quantities.

Interaction effects in a chaotic or weakly disordered grain
are described by the universal Hamiltonian [18,19] in the
limit of large dimensionless Thouless conductance gTh =
ETh/δ � 1. Here, ETh is the Thouless energy, determined by
the time it takes for an electron to cross the grain, and δ is
the mean spacing between single-particle Kramers doublets.
The one-body part of the universal Hamiltonian follows RMT
statistics [20], while the interaction consists of universal terms
that are consistent with the symmetries of the one-body
Hamiltonian [18,19,21]. In the absence of spin-orbit scattering
and orbital magnetic field, these terms are the charging energy
(as in the CI model), pairing interaction, and ferromagnetic
spin-exchange interaction. The mesoscopic transport proper-
ties of a grain described by this universal Hamiltonian were
studied in Ref. [22], and its thermodynamic observables were
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calculated in Ref. [23] using a Hubbard-Stratononvich [24,25]
decomposition for the pairing interaction and a spin-projection
method [26] for the exchange interaction. In the absence
of pairing correlations (i.e., when only charging energy and
spin-exchange correlations are present), various observables
can be calculated in closed form by using the Hubbard-
Stratonovich transformation employed in Refs. [27,28] or by
the spin-projection method.

In the presence of strong spin-orbit scattering, spin-rotation
symmetry is completely broken, and the exchange term is
absent from the universal Hamiltonian. The effect of the
exchange interaction on the g-factor statistics in the crossover
between weak and strong spin-orbit scattering was studied
in Refs. [29,30]. Large g factors were recently observed in
ferromagnetic cobalt nanoparticles [31].

Spin-orbit scattering preserves time-reversal symmetry and
therefore does not suppress pairing correlations. In this work,
we explore the effect of an attractive pairing interaction on
the magnetic-field response of many-particle energy levels of
a grain in the presence of strong spin-orbit scattering, where
the exchange interaction is negligible.

We assume the one-bottleneck geometry [1,29,30] of the
tunneling spectroscopy experiments, for which the rate of
tunneling onto the grain is much smaller than the rate of
tunneling off the grain. In this limit, the current is determined
by processes of tunneling onto the grain in its ground state.
When the tunneling occurs onto a grain with an even particle
number Ne, the difference �E�,0 = E

Ne+1
� − E

Ne

0 between the
energies of a twofold-degenerate level � for the odd electron
number Ne + 1 and the nondegenerate even ground state E

Ne

0 is
measured. This energy difference splits in an external magnetic
field B. We define the many-body g factor and level curvature
κ by generalizing the single-particle expression of Eq. (1)

�E�,0(B) = �E�,0(0) ± 1

2
gμBB + κ

2
B2 + O(B3). (2)

In the absence of pairing correlations, the Ne-particle
ground state consists of doubly occupied orbitals up to the
Fermi level, while the Ne + 1-particle level has one extra
singly occupied orbital k0 above the Fermi energy as is
illustrated in panels (a) and (c) of Fig. 1. In this limit, the
g factor and level curvature defined in Eq. (2) reduce to the
single-particle values gk0 and κk0 of the singly occupied orbital
k0. In the presence of pairing correlations, the single-particle
occupation numbers are no longer good quantum numbers.
The even ground state becomes a superposition of Slater
determinants describing fully paired noninteracting states as
shown schematically in Fig. 1(b). A final odd-particle-number
state is a superposition of states of good occupation numbers
with one singly occupied “blocked” orbital k0, which is the
same in all the Slater determinants of the superposition [32] as
shown in Fig. 1(d).

Here, we will show that the g factor as defined in Eq. (2)
is identical to the single-particle g factor gk0 of the blocked
orbital k0. On the other hand, the level curvature differs from
its single-particle value, and its statistics is highly sensitive to
pairing correlations. The main origin of this sensitivity is the
change of the density of states induced by pairing correlations.

Another motivation of our studies is to identify signatures
of pairing correlations in ultrasmall superconducting grains

FIG. 1. Top panels: schematic description of the ground state of
the Hamiltonian (3) for an even number of particles in (a) the absence
of pairing (G = 0) and (b) the presence of pairing (G �= 0). Bottom
panels: a possible odd-particle-number state after the tunneling of an
additional electron onto the even ground state in (c) the absence and
(d) the presence of pairing. The solid lines describe doubly degenerate
single-particle levels and the solid circles denote particles occupying
these levels.

whose single-particle mean level spacing δ is comparable
to or larger than the bulk pairing gap � of the grain.
Anderson’s criterion [33] states that superconductivity is no
longer possible once �/δ < 1, and the tunneling spectroscopy
experiments showed no traces of an excitation gap in the
smallest aluminum grains that satisfy this condition [3]. This
criterion signifies the breakdown of the Bardeen-Cooper-
Schrieffer (BCS) mean-field theory [34] in the fluctuation-
dominated regime �/δ � 1. A better probe to detect pairing
correlations in this regime are thermodynamic observables
such as the heat capacity and spin susceptibility [23,35,36], but
they are difficult to measure experimentally. Here we propose
the level curvature as a sensitive observable to probe pairing
correlations in grains with spin-orbit scattering. Its advantage
is that it can be measured directly in the tunneling spectroscopy
experiments.

The outline of the paper is as follows. In Sec. II, we
introduce our model and discuss the many-body eigenstates
of its corresponding Hamiltonian. In Sec. III, we prove
the robustness of g-factor statistics with respect to pairing
correlations. In Sec. IV, we calculate the level curvature and
discuss its statistics. We conclude in Sec. V.

II. MODEL

A. Hamiltonian

The universal Hamiltonian in the presence of strong spin-
orbit scattering has the following form for fixed particle
number:

Ĥ =
∑

k

εk(c†k1ck1 + c
†
k2ck2) − GP̂ †P̂ , (3)

where

P̂ † =
∑

k

c
†
k1c

†
k2 and P̂ =

∑
k

ck2ck1 (4)
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are pair creation and annihilation operators. The single-particle
states appear in degenerate time-reversed pairs |k1〉1 and |k2〉1

with single-particle energy εk . When the spin symmetry is
broken, they are no longer eigenstates of the spin-projection
operator. We adopt the phase convention

T̂ |k1〉1 = |k2〉1 and T̂ |k2〉1 = −|k1〉1, (5)

where T̂ is the time-reversal operator. The interaction term
in Eq. (3) describes the scattering of electron pairs between
such Kramers-degenerate orbitals and leads to BCS supercon-
ductivity in the bulk limit �/δ � 1. The exchange interaction
is suppressed for strong spin-orbit scattering and is absent in
Eq. (3).

The coupling of electrons in the grain to an external
magnetic field along the z axis is described by the Zeeman
term

V̂ (B) = −M̂zB, (6)

where M̂z is the z component of the magnetic-moment operator
of those electrons. In general, the response of levels in the grain
to an external magnetic field depends on its direction [12,13],
but we do not study this effect here.

In a chaotic or a weakly disordered grain, the single-particle
levels follow RMT statistics. In the absence of an external
magnetic field, time-reversal symmetry is preserved, and the
single-particle spectrum is described by an ensemble that in-
terpolates between the Gaussian orthogonal ensemble (GOE)
and the Gaussian symplectic ensemble (GSE) [12,13,37]. In
the absence of spin-orbit scattering, spin-rotation symmetry
is preserved and the corresponding ensemble is the GOE. In
the presence of strong spin-orbit scattering, spin-rotation sym-
metry is completely broken and the corresponding ensemble
is the GSE. We note, however, that most of our qualitative
conclusions are independent of the particular statistics of the
single-particle eigenstates and eigenenergies.

In our quantitative calculations of level curvatures in
Sec. IV, we make the following additional assumptions: (i)
spin-orbit scattering is strong, i.e., the single-particle Hamil-
tonian follows the GSE statistics, (ii) the orbital contribution
to the magnetic moment is negligible, i.e., M̂z = 2μBŜz,
where Ŝz is the z-component of the spin operator, and (iii)
in a finite-size model space with Nsp Kramers-degenerate
orbitals, the pairing coupling constant is determined from the
relation [38,39]

G

δ
= 1

arcsinh
(Nsp/2

�/δ

) . (7)

B. Many-body eigenstates

In the absence of pairing correlations, each many-particle
eigenstate of the Hamiltonian (3) is a state with well-defined
occupation numbers of single-particle orbitals. We will denote
such noninteracting state by | �m,k1α1 . . . ktαt 〉N , where �m =
{m1, . . . ,mr} is a set of r doubly occupied orbitals, k1, . . . ,kt

are t singly occupied orbitals (ki /∈ �m) with corresponding la-
bels α1, . . . ,αt (αi = 1,2) distinguishing Kramers-degenerate
single-particle states, and N = 2r + t is the total number of
particles.

In the presence of pairing correlations, each eigenstate
is a superposition of these noninteracting states. Since pair
scattering cannot affect the singly occupied orbitals, the
orbitals k1,α1, . . . ,kt ,αt are good quantum numbers and are
the same in all the noninteracting states comprising the
superposition of any given eigenstate of the Hamiltonian (3).
This is a manifestation of the blocking effect of the pairing
interaction [32]. An N -particle eigenstate can thus be written
as

|�,k1α1 . . . ktαt 〉N =
∑

�m:ki /∈ �m
C�

�m | �m,k1α1 . . . ktαt 〉N . (8)

The sum in Eq. (8) runs over all sets �m of (N − t)/2 doubly
occupied orbitals that do not contain any of the singly occupied
orbitals ki . The coefficients C�

�m can be chosen to be real. The
energy of the state (8) and the corresponding coefficients C�

�m
are independent of αi . Since each αi can assume two values,
the corresponding many-particle level is 2t -fold degenerate.

The ground state |0〉Ne
of the Hamiltonian (3) for an even

number of particles Ne is described by a superposition of fully
paired noninteracting states with no singly occupied orbitals

|0〉Ne
=

∑
�m

C0
�m| �m〉Ne

, (9)

and is schematically shown in Fig. 1(b). A possible odd state
|�〉Ne+1 after tunneling onto the grain in |0〉Ne

must have

nonzero overlap with c
†
kα|0〉Ne

for at least one single-particle
orbital |kα〉1. This, in combination with the blocking effect,
dictates that such an eigenstate has exactly one blocked (i.e.,
singly occupied) orbital as illustrated in Fig. 1(d). These states
form doublets and can be expressed as

|�,k0α0〉Ne+1 =
∑

�m:k0 /∈ �m
C�

�m | �m,k0α0〉Ne+1. (10)

III. g FACTOR

The many-particle g factor defined in Eq. (2) depends,
in general, on the linear corrections to both the odd- and
even-particle energies. However, since the even state |0〉Ne

is invariant under time reversal and M̂z is odd,

〈0|M̂z|0〉Ne
= 0 (11)

and the linear correction to the even ground-state energy
E

Ne

0 vanishes. The g factor that corresponds to the |0〉Ne
→

|�〉Ne+1 = |�,k0α〉Ne+1 transition is then determined by the
2×2 matrix of M̂z written for the doublet |�,k0α〉Ne+1. From
Eq. (10), we find

〈�,k0α|M̂z|�,k0α
′〉Ne+1

=
∑

�m, �m′:k0 /∈ �m, �m′
C�

�m C�
�m′ 〈 �m,k0α|M̂z| �m′,k0α

′〉Ne+1. (12)

Using

M̂z =
∑

kρ,k′ρ ′
Mz

kρ,k′ρ ′c
†
kρck′ρ ′ , (13)
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where Mz
kρ,k′ρ ′ are the single-particle matrix elements of M̂z,

we have

〈 �m,k0α|M̂z| �m′,k0α
′〉Ne+1

= δ �m �m′

[
Mz

k0α,k0α′ + δαα′
∑
m∈ �m

(
Mz

m1,m1 + Mz
m2,m2

)]
. (14)

Since the single-particle states |m1〉 and |m2〉 are mapped onto
each other under time reversal [see Eq. (5)] and M̂z is odd under
time reversal,

Mz
m1,m1 + Mz

m2,m2 = 0. (15)

We conclude

〈�,k0α|M̂z|�,k0α
′〉Ne+1 = Mz

k0α,k0α′ , (16)

where we have used the normalization condition∑
�m:k0 /∈ �m (C�

�m )
2 = 1.

According to Eq. (16), the matrix elements of the magnetic-
moment operator between any two many-particle eigenstates
that belong to the same Kramers doublet reduce to the single-
particle matrix elements of the blocked orbital. Therefore the
g factor for the |0〉Ne

→ |�,k0α〉Ne+1 transition is exactly the
single-particle g factor of the blocked orbital k0.

The above result is quite general. It is independent of the
statistics of the single-particle levels, strength of spin-orbit
scattering, or relative weights of the spin and orbital parts
in the magnetic moment. It follows from the blocking effect
of the pairing interaction and from time-reversal symmetry.
The blocking effect makes one orbital k0 special in the odd
state and separates the magnetic moment of that state into
the contributions from a single electron on the orbital k0

and from the remaining fully paired electrons. Time-reversal
symmetry makes the contributions from the paired electrons
to the magnetic moments of the odd and even states zero.

Our result can be verified in a tunneling spectroscopy ex-
periment by measuring g factors at different particle numbers
(achieved by varying the gate voltage). Since the g factor is
completely determined by the blocked orbital k0 of the final
state of a tunneling process |0〉Ne

→ |�,k0α〉Ne+1, it remains
the same for any other allowed process |0〉Ñe

→ |�̃,k0α〉Ñe+1

with Ñe �= Ne as long as the blocked orbital of the final state
is the same.

Another consequence of our result is that the measured
distribution of the g factor reduces to the distribution of
the single-particle g factor. For sufficiently strong spin-orbit
scattering, the latter distribution has a universal form [11,12]
that should not be affected by pairing correlations. We note
that the RMT predicts the distribution of g factors measured
in units of their average values 〈g〉, but not the average values
themselves.

A more general pairing interaction with orbital-dependent
coupling constants of the form

∑
k,k′ Gkk′c

†
k1c

†
k2ck′2ck′1 leads

to blocking effects as well and does not modify the g factor.
Therefore the g factor can be used to probe electron-electron
correlations beyond any such generalized pairing model.

In the absence of spin-orbit scattering, the exchange

interaction −Js Ŝ
2

(where Ŝ is the total spin of the univer-
sal Hamiltonian) is consistent with the symmetries of the
single-particle Hamiltonian and does not destroy the blocking

effect. Finite spin-orbit scattering makes the structure of this
term complex when written in the basis diagonalizing the
single-particle Hamiltonian [i.e., the |kα〉1 basis in Eq. (3)]
and destroys the blocking effect. The many-body eigenstates
become superpositions of noninteracting states with different
singly occupied orbitals, so the magnetic moment of such a
state can no longer be reduced to a single-particle magnetic
moment. The g factors and their distribution are affected by the
exchange interaction, as was studied in detail in Refs. [29,30].

IV. LEVEL CURVATURE

Using second-order perturbation theory, the level curvature
for the transition |0〉Ne

→ |�〉Ne+1 is given by

κ = κ
Ne+1
� − κ

Ne

0 , (17)

where

κ
Ne+1
� = 2

∑′

�′

|〈�|M̂z|�′〉Ne+1|2
E

Ne+1
� − E

Ne+1
�′

(18)

and

κ
Ne

0 = 2
∑′


′

|〈0|M̂z|
′〉Ne
|2

E
Ne

0 − E
Ne


′
. (19)

Here the sums run over the many-electron eigenstates with
energies different from E

Ne+1
� or E

Ne

0 . The expressions (18)
and (19) can be thought of as the curvatures of the odd and
even states, respectively.

In the G → 0 limit, the curvature (17) reduces to the single-
particle curvature

κk0 = 2
∑
k �=k0

∣∣Mz
k01,k1

∣∣2 + ∣∣Mz
k01,k2

∣∣2

εk0 − εk

, (20)

where k0 is the blocked orbital in the final state |�〉Ne+1. The
corresponding distribution P (κk0 ) is symmetric around zero
and was calculated analytically in the GSE limit [15,16]. The
right (left) tail of P (κk0 ) is determined by the probability that
the energy of the orbital below (above) k0 is very close to εk0 ,
which in the GSE limit results in P (κk0 ) ∼ 1/κ6

k0
in the tails of

the distribution [16].
In the presence of pairing, P (κ) changes and depends on

the final level |�〉Ne+1. When this level is the odd ground
state |0〉Ne+1, both contributions (18) and (19) are negative.
Therefore κ for the transition |0〉Ne

→ |0〉Ne+1 is positive
when |κNe

0 | > |κNe+1
0 | and vice versa. Since pairing induces

a gap in the even excitation spectrum only, |κNe

0 | is suppressed
by pairing, while |κNe+1

0 | is not, making the distribution
asymmetric with a negative median value. We verify this
qualitative reasoning by calculating level curvatures exactly
and in a generalized BCS approach for transitions to both the
ground and excited states.

A. Formalism

Below we demonstrate the many-body formalism for the
simple noninteracting case G = 0, and then discuss the
interacting case of finite G.
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FIG. 2. Pairs of many-electron states contributing to the second-
order perturbative expressions (18) and (19) of the level curvature
in the G = 0 limit. For an even grain, the two states in a pair must
differ by a particle-hole excitation that reduces by one the number
of doubly occupied levels [panel (a)]. For an odd grain, these states
may relate to each other as in (a) [see panel (b)] or they can have the
same number of doubly occupied levels but different blocked orbitals
[panels (c) and (d)].

1. Noninteracting limit

Let kF be the lowest empty orbital in the noninteracting even
ground state. Then, the states |
′〉Ne

contributing to Eq. (19)
are particle-hole excitations |
′〉Ne

= c
†
k′α′ckα|0〉Ne

with k′ �
kF and k < kF . A possible pair of states |0〉Ne

and |
′〉Ne

is shown schematically in Fig. 2(a). The corresponding ma-
trix element between these states is 〈
′|M̂z|0〉Ne

= Mz
k′α′,kα ,

and their energy difference is E
Ne

0 − E
Ne


′ = εk − εk′ . From
time-reversal symmetry |Mz

k′1,k2| = |Mz
k′2,k1| and |Mz

k′2,k2| =
|Mz

k′1,k1| so the curvature of the even state is

κ
Ne

0

∣∣∣∣
G=0

= 4
∑

k<kF �k′

Mkk′

εk − εk′
, (21)

where

Mkk′ = ∣∣Mz
k1,k′1

∣∣2 + ∣∣Mz
k1,k′2

∣∣2
. (22)

There is a similar contribution to the curvature (18) of
an odd state |�〉Ne+1 with a blocked orbital k0 � kF [see
Fig. 2(b)]:

κ
(1)
�

∣∣∣∣
G=0

= 4
∑

k<kF �k′,k′ �=k0

Mkk′

εk − εk′
. (23)

There is also a second contribution arising from pairs of states
that have different blocked orbitals but the same number of
doubly occupied levels [shown in Figs. 2(c) and 2(d)]:

κ
(2)
�

∣∣∣∣
G=0

= 2
∑

k�kF ,k �=k0

Mk0k

εk0 − εk

+ 2
∑
k<kF

Mk0k

εk − εk0

. (24)

Taking the difference between the odd and even curvatures [see
Eq. (17)], many of the terms cancel and we obtain Eq. (20).

2. Exact formalism

Assuming the many-electron spectrum of the pairing
model (3) is known, the matrix elements of M̂z are evaluated in
Appendix A. The states contributing to the even curvature (19)
are all the states |�̃,kαk′α′〉Ne

with two blocked orbitals.
The sum in the odd curvature (18) is over all the states
|� ′,k0α0kαk′α′〉Ne+1 with three blocked orbitals, one of which
is k0 (the blocked orbital in |�〉Ne+1 = |�,k0α0〉Ne+1), and over
all the states |� ′′,kα〉Ne+1 with a single blocked orbital k �= k0.
The even curvature is then given by

κ
Ne

0 = 4
∑
k<k′

∑
�̃

Mkk′ |Bkk′[0,�̃]|2
E

Ne

0 − E
Ne

�̃kk′
, (25)

and the expressions (23) and (24) for the odd curvature change
to

κ
(1)
� = 4

∑
k<k′:k,k′ �=k0

∑
� ′

Mkk′ |Bkk′[�,� ′]|2
E

Ne+1
� − E

Ne+1
� ′k0kk′

(26)

and

κ
(2)
� = 2

∑
k �=k0

∑
� ′′

Mkk0 |Dkk0 [�,� ′′]|2
E

Ne+1
� − E

Ne+1
� ′′k

. (27)

Here, the denominators contain the differences between the
corresponding many-body eigenenergies. The many-particle
contributions to the matrix element Bkk′[0,�̃] and Dkk0 [�,� ′′]
are given, respectively, in Eqs. (A5) and (A10) of Appendix A.
When G = 0, they are identically zero for most of the terms,
and are equal to 1 for the terms shown in Fig. 2.

In the noninteracting limit, the number of many-electron
states |�′〉Ne+1 and |
′〉Ne

contributing to Eqs. (18) and (19)
scales as a power of Nsp, the number of single-particle
orbitals in the model space. In the presence of pairing,
however, the number of such states scales combinatorially with
Nsp; any state with an allowed configuration of the blocked
orbitals has generally a nonzero contribution. Furthermore, the
computational effort required to evaluate each separate many-
electron matrix element of M̂z has a combinatorial dependence
on Nsp as well. We have performed exact calculations for model
spaces with Nsp � 13.

3. BCS formalism

To calculate the level curvature in larger model spaces
(up to Nsp ∼ 200), we employ a generalized BCS ap-
proach [32,40,41], in which the blocking effect in the odd
states is partly accounted for. The computational time required
to solve each BCS equation and the number of relevant
many-electron states in the sums (18) and (19) scale as
powers of Nsp, enabling calculations in much larger model
spaces. Below we summarize this method, and more details
are presented in Appendix B.

The BCS ground state for even particle number Ne is given
by

|BCSe〉 =
∏
k

(uk + vkc
†
k1c

†
k2)|vac〉, (28)
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where |vac〉 is the vacuum state. Here,

u2
k = 1

2

(
1 + ξk

Ek

)
, v2

k = 1

2

(
1 − ξk

Ek

)
, (29)

where

ξk = εk − μe − Gv2
k , (30)

and Ek are the quasiparticle energies

Ek =
√

ξ 2
k + �2

e . (31)

The pairing gap �e and the chemical potential μe are
determined from the self-consistent BCS equations

�e = G
∑

k

ukvk and Ne = 2
∑

k

v2
k . (32)

The excited states |
′〉Ne
contributing to Eq. (19) are the

two-quasiparticles excitations with the excitation energies
E

Ne


′ − E
Ne

0 given by the sums of the quasiparticle ener-
gies (31). The curvature of the even ground state becomes
(see Appendix B)

κ
Ne

0

∣∣∣∣
BCS

= −4
∑
k<k′

Mkk′(ukvk′ − uk′vk)2

Ek + Ek′
, (33)

where Mkk′ is defined in Eq. (22). Here, the many-electron
contribution (ukvk′ − uk′vk)2 results in the suppression of the
terms with εk far above or εk′ far below the Fermi level,
similarly to the noninteracting restriction k < kF � k′. This
restriction is now lifted within the pair-scattering energy
window of ∼2�e around the Fermi level. When there is no
gapped solution to the BCS equation (i.e., when �e = 0),
Eq. (33) reduces to the noninteracting result (21).

The result (33) is very similar to Belyaev formula [42] for
the nuclear moment of inertia and to the expression for the
zero-temperature spin susceptibility of a superconductor with
spin-orbit scattering derived by Anderson [43]. These formulas
describe the suppression of the respective quantities caused by
pairing correlations.

For odd particle number, we perform blocked BCS calcula-
tions to account for the reduction of pairing correlations in the
odd-particle number states. We consider only those final states
|�〉Ne+1 that have the lowest energy for a given blocked orbital
k0; the peak heights in a tunneling spectroscopy experiment
that correspond to transitions to other states are suppressed in
the BCS limit �/δ � 1 (see Appendix C).

The variational lowest-energy state with a blocked orbital
k0 is given by

|BCS,k0α0〉 = c
†
k0α0

∏
k �=k0

(
uk0k + vk0kc

†
k1c

†
k2

)|vac〉. (34)

The corresponding pairing gap �k0 and the chemical potential
μk0 are now determined from

�k0 = G
∑
k �=k0

uk0kvk0k and Ne = 2
∑
k �=k0

v2
k0k

. (35)

The parameters uk0k , vk0k , ξk0k , and Ek0k are defined similarly
to the even case for k �= k0 [Eqs. (29), (30), and (31) above].
We approximate any other relevant state by a quasiparticle
excitation on top of one of the states (34).

Similarly to Eq. (33), the contribution (26) to the odd
curvature from pairs of states with different numbers of
blocked orbitals becomes

κ
(1)
�

∣∣∣∣
BCS

= −4
∑

k<k′,�=k0

Mkk′
(
uk0kvk0k′ − uk0k′vk0k

)2

Ek0k + Ek0k′
. (36)

The second contribution (27) reduces to (see Appendix B)

κ
(2)
�

∣∣∣∣
BCS

= −2
∑
k �=k0

Mk0k

[(
uk0kukk0 + vk0kvkk0

)2

EBCS
k − EBCS

k0

+
(
uk0kvkk0 − ukk0vk0k

)2

EBCS
k + 2Ekk0 − EBCS

k0

]
, (37)

where

EBCS
k0

=
∑
k �=k0

(
ξk0k − Ek0k + Gv4

k0k

) + �2
k0

G
+ μk0Ne + εk0

(38)

is the BCS energy of the state (34). For each blocked
orbital k �= k0, two odd-particle-number doublets contribute
to Eq. (37). One of them is the lowest-energy level with the
blocked orbital k, and the other is a two-qusiparticles excitation
on top of |BCS,kα〉 in which the two quasiparticles occupy
the same orbital k0, so the number of blocked orbitals does not
change. If the blocking effect in the BCS calculations were
ignored, the denominators of these two contributions would
be Ek − Ek0 and Ek + Ek0 , and the entire expression would
resemble the odd-particle-number nuclear moment of inertia
at zero temperature derived in Ref. [44].

B. Numerical simulations

We carried out both exact and BCS calculations of the level
curvature. For each calculation, we generate an ensemble of
1000 2Nrmt×2Nrmt GSE random matrices with Nrmt = 201
degenerate eigenvalues each. The matrices are diagonalized
by symplectic transformations using the phase convention (5)
for the eigenvectors. For each matrix, we form the model space
of Nsp < Nrmt single-particle Kramers doublets by taking Nsp

levels in the middle of the spectrum and unfolding [45]
the eigenvalues. We use Nsp = 13 in the exact numerical
calculations and Nsp = 121 in the BCS calculations. Assuming
the orbital contribution to the magnetization is negligible, we
use the eigenvectors to calculate the single-particle matrix
elements of M̂z = 2μBŜz in the basis of 2Nsp states forming
the chosen doublets. We perform the many-body calculations
for half-filling (i.e., Ne = Nsp − 1 for odd Nsp). In the exact
calculations, we use the Lanczos algorithm [46] to calculate
the relevant many-electron eigenfunctions and eigenenergies.

We select the odd eigenstates |�〉Ne+1 based on the heights
of the differential-conductance peaks, which are calculated as
discussed in Appendix C. We select only those states whose
peak heights are at least 10% of the average peak height for an
allowed transition in the noninteracting limit. In that limit, a
final state |�〉Ne+1 has the lowest energy among all the states
with the same single blocked orbital k0 (k0 � kF ). Similarly,
in the BCS limit �/δ � 1, the peak heights are nonzero only
for the lowest-energy states for a given k0, although now k0
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may also lie below kF (the peak height is suppressed when
εkF

− εk0 � �). In the BCS calculations, we consider only
such lowest-energy states, while in the exact calculations we
consider general states with a single blocked orbital.

We sort all resolvable odd-particle-number doublets ac-
cording to their energies. We refer to the curvature for the
transition |0〉Ne

→ |�〉Ne+1 to a state in the nth doublet as to
the curvature of the nth differential-conductance peak. In this
convention, the first peak usually corresponds to the tunneling
into the odd ground state.

We characterize each curvature distribution by its median
value κmed and midspread (i.e., the width of the middle part
of the distribution with 50% of the total area) dκ , which are
robust measures for a distribution with possibly long tails.

To eliminate the nonphysical dependence on the random-
matrix size, we express our results in units of d0, the midspread
of the single-particle level-curvature distribution. In the GSE
limit, this d0 is related to the g-factor statistics by1

d0 ≈ 0.68
μ2

B

δ
〈g2〉. (39)

This relation also holds when there is an orbital contribution
to the magnetization.

When the single-particle levels follow RMT statistics, the
average matrix elements of the spin operator do not decay with
the energy separation between two single-particle levels, and
the contribution from single-particle levels far from kF may be
important. Using BCS calculations in the presence of pairing
correlations, we found that the median values converge slowly
with increasing values of Nsp, and we were unable to determine
whether convergence is reached even at Nsp ∼ 200. In contrast,
the convergence of the midspreads is clearly reached at Nsp ∼
100, and the results at Nsp ∼ 10 are already quite close to their
asymptotic values. We, therefore, consider the median values
only as qualitatively correct in both the exact and the BCS
calculations, while the results for the midspreads are expected
to be reliable even in the relatively small single-particle model
space used in the exact calculations.

C. Results and discussion

In the following we present results for the level-curvature
statistics.

1The relation between the single-particle level midspread d0 and
variance 〈|κ2|〉 can be found from the known distribution of the single-
particle level curvature [15,16] resulting in d0 ≈ 1.13

√
〈|κ2|〉. The

curvature variance for a single-particle level k0 can be related to 〈g2〉
using the formalism of Ref. [17]. We note, however, that in Ref. [17],
the RMT average 〈∑k �=k0

∑
k′ �=k0,k 1/[(εk0 − εk)(εk0 − εk′ )]〉 was

taken to be zero [leading to Eq. (15) of that reference] since
the average over the level k0 was taken over the entire spectrum
of the matrix. We find numerically that this RMT average is
−(3/4)〈∑k �=k0

1/[(εk0 − εk)2]〉 when the level k0 is taken in the
middle of the spectrum of a large matrix. As a result, the right-hand
side of Eq. (20) of Ref. [17] is reduced by a factor of 2 (also note that
we use a different definition of the parameter δ).

0

0.2

0.4

0.6

Δ/δ = 0.0
Δ/δ = 0.4
Δ/δ = 1.0
Δ/δ = 3.0

-10 -5 0
κ/d0

0

0.2

0.4

0.6

P(
κ/

d 0)

exact

BCS

FIG. 3. (Color online) The level-curvature distribution P (κ/d0)
of the first differential-conductance peak for �/δ = 0 (dotted lines),
�/δ = 0.4 (solid lines), �/δ = 1 (dashed lines), and �/δ = 3 (dash-
dotted lines). The curvature is expressed in units of the single-particle
midspread d0 (the width of the middle 50% of the distribution). The
top panel describes the results of the exact diagonalization method
and the bottom panel describes the BCS results.

1. First differential-conductance peak

The level-curvature distribution for the first differential-
conductance peak is shown in Fig. 3 for four values of
�/δ using exact diagonalization (top panel) and the BCS
approximation (bottom panel). The median and midspread are
shown by the open circles in Fig. 4 as a function of �/δ.

We observe the following qualitative features in both exact
and BCS results. (i) The level-curvature distribution, which is
symmetric around zero at �/δ = 0, shifts to negative values in
the presence of pairing correlations and becomes asymmetric
with an extended tail at negative values. (ii) The modulus
of the median and the dispersion of the distribution increase
monotonically with �/δ.

These observations are explained by the BCS approxi-
mation for the transition |0〉Ne

→ |0〉Ne+1 as follows. The
excitations that contribute to the curvature of the even
ground state (33) are two-quasiparticle excitations, whose
energies are at least 2�e. When pairing is sufficiently strong,
this suppresses the positive (−κ

Ne

0 > 0) contribution to the
observed curvature κ

Ne+1
0 − κ

Ne

0 and, in particular, reduces
the right tail of the distribution. For odd particle number,
there are excitations that involve the change of the blocked
orbital without changing the number of Cooper pairs [see
Eq. (37) and Figs. 2(c) and 2(d)]. In the limit �/δ � 1,
the lowest excitation energy for the odd grain can then be
estimated as the difference between two quasiparticle energies
EkF +1 − EkF

≈ √
δ2 + �2 − � ≈ δ2/(2�), which is much

smaller than the noninteracting value δ. Therefore the negative
contribution to the level curvature (κNe+1

0 < 0) is enhanced by
pairing correlations. When mesoscopic fluctuations are taken
into account, the lowest excitation energy fluctuates and can
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FIG. 4. (Color online) The median κmed (top) and midspread dκ

(bottom) of the level-curvature distribution versus �/δ. The results
are shown in units of d0 for the first (circles), second (squares),
and third (diamonds) differential-conductance peaks, using the exact
(left column) and BCS (right column) formalisms. The statistical
errors [47] are shown by vertical bars. The results at different values of
�/δ are uncorrelated, i.e., they are obtained using different ensembles
of random matrices.

assume even smaller values, thus extending the left tail of the
distribution.

In the fluctuation-dominated regime �/δ � 1, pairing
correlations are noticeably weaker in an odd grain than in
an even grain because of the blocking effect. This can be
observed in the exact results, which are more reliable than the
BCS results in this regime. For �/δ = 0.4, pairing correlations
are sufficiently strong in the even states |0〉Ne

so as to suppress
the right tail of the distribution. However, in the odd states
|0〉Ne+1 they are not sufficiently strong to extend the left tail of
the distribution or to increase the total dispersion (see the top
panel of Fig. 3).

It is remarkable that the asymmetry effect is strong even
in the fluctuation-dominated regime �/δ < 1, where the
probability to observe a positive level curvature is small (see
the exact results for �/δ = 0.4 in Fig. 3). We conclude that
the level curvature of the first peak is a sensitive probe to detect
pairing correlations in the fluctuation-dominated regime. This
probe is practical even when only a few data points are
available.

For a single grain, level-curvature statistics can be collected
by changing the gate voltage and thus varying the number

of electrons in the grain. An alternative way to observe the
effect is to fix some orbital k0 and study the curvature for the
transition |0〉Ne

→ |�,k0α0〉Ne+1 as a function of Ne, where
|�,k0α0〉Ne+1 is the lowest-energy state for given k0 and Ne.
When the Fermi level is tuned between a value far below k0

and k0 so |�,k0α0〉Ne+1 becomes the odd ground state, the total
change in the curvature should be negative. For each value of
Ne, the differential-conductance peak with the blocked orbital
k0 can be identified by its g factor gk0 , which is independent
of the position of the Fermi level (see Sec. III).

2. Higher differential-conductance peaks

We next discuss the level-curvature statistics for the second
and third differential-conductance peaks. The median values
and midspreads are shown in Fig. 4 as a function of �/δ by
squares (second peak) and diamonds (third peak).

We observe that the level-curvature dispersions for the
second and third peaks behave alike as a function of �/δ

and are larger than the level-curvature dispersions for the first
peak. However, the median values for the second and third
peaks behave very differently from each other. To understand
these results, we consider the odd excited states |2〉Ne+1 and
|3〉Ne+1 that correspond to the second and third peaks with
energies E

Ne+1
(2) and E

Ne+1
(3) , respectively, and denote by k0

the ground-state blocked orbital. When pairing correlations
are weak, the blocked orbitals in the states |2〉Ne+1 and
|3〉Ne+1 are usually k0 + 1 and k0 + 2, while the state with
the blocked orbital k0 − 1 is unresolved. However, when
pairing is sufficiently strong, the blocked orbitals in the
states |2〉Ne+1 and |3〉Ne+1 tend to be k0 − 1 and k0 + 1. In
the limit �/δ � 1 and for an equally spaced single-particle
spectrum, the energies E

Ne+1
(2) and E

Ne+1
(3) are equal since the

quasiparticle energies Ek0−1 and Ek0+1 are both
√

δ2 + �2. In
a realistic RMT-like spectrum and for finite but sufficiently
large �/δ, these energies are not equal, but tend to be closer
to each other than to other eigenenergies. Therefore the term
in Eq. (18) that contains the difference between E

Ne+1
(2) and

E
Ne+1
(3) in the denominator is often the dominant term. Since

such terms in the perturbation theory expressions have equal
amplitudes but opposite signs for the second and third peaks,
the dispersions of the resulting distributions behave similarly,
while typical values of the corresponding curvatures are very
different.

Similar effect can be observed in higher differential-
conductance peaks. In Fig. 5, we show the medians and
midspreads of the level-curvature distributions as a function
of the peak number for the first nine resolved peaks for
�/δ = 2 (left panel) and �/δ = 5 (right panel). We observe
similar values for the level-curvature dispersions of the
2n-th and (2n + 1)-th peaks. However, the level-curvature
median has a negative contribution for the 2n-th peak and
a positive contribution for the (2n + 1)-th peaks. This latter
effect is enhanced at larger values of �/δ, leading to odd-
even staggering in κmed versus conductance-peak number.
As the peak number increases, both the midspreads and
medians converge to their noninteracting (single-particle)
values.
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FIG. 5. The median level curvature κmed (top panels) and mid-
spread dκ (bottom panels) in units of d0 as a function of the
differential-conductance-peak number. The results are obtained using
the BCS formalism for �/δ = 2 (left column) and �/δ = 5 (right
column).

V. CONCLUSION

We have studied the effect of pairing correlations on the
magnetic-field response of discrete energy levels in a metallic
nanoparticle with spin-orbit scattering. In particular, we inves-
tigated the g-factor and zero-field level-curvature statistics,
which parametrize, respectively, the first- and second-order
corrections (in the magnetic field) to the energies measured in
single-electron tunneling spectroscopy experiments.

We have shown that g factors are not affected by pairing
correlations and reduce to the g factors of the single-particle
orbitals. This conclusion follows from the blocking effect of
pairing correlations and from considerations of time-reversal
symmetry. It is independent of the strength of spin-orbit
scattering and of the relative effects of orbital and spin
magnetisms. Thus we can use g-factor measurements to
probe the importance of electron-electron correlations beyond
pairing interactions.

In contrast, level curvatures are highly sensitive to pairing
correlations. This can be understood qualitatively by the
dependence of the level curvature on the density of states,
which in turn is modified by pairing correlations. In partic-
ular, the level-curvature distribution for the first differential-
conductance peak, which in the absence of pairing correlations
is symmetric around zero, shifts almost entirely to negative
values even in the fluctuation-dominated regime �/δ < 1.
In this regime, the pairing-induced excitation gap cannot be
resolved in a conventional spectroscopy experiment, while
the change in the level curvature can still be observed and
can therefore be used to probe pairing correlations. We have
demonstrated these results by using both exact diagonalization
and a BCS approximation. The latter approach can be applied
in a much larger single-particle model space.

The exact and BCS formalisms discussed here can be
applied in the more general case of arbitrary spin-orbit
scattering and in the presence of orbital magnetism. Another
possible application of the techniques developed here is in

the calculation of the low-temperature spin susceptibility of a
superconducting nanoparticle with spin-orbit scattering. The
nondivergent contributions to the spin susceptibility in the limit
kBT  δ (kB is the Boltzmann constant and T is temperature)
resemble the perturbative expressions for the level curvature
[Eqs. (18) and (19)]. For an odd particle number, there is
also a divergent Curie-like contribution ∼〈Ŝ2

z 〉/T , which is
suppressed for strong spin-orbit scattering. The odd-even
effect in the spin susceptibility of normal-metal particles with
spin-orbit scattering was studied in Ref. [48], where it was
shown that both the even and odd susceptibilities reduce
to the high-temperature Pauli susceptibility in the limit of
strong spin-orbit scattering. This corresponds here to the zero
average curvature κ

Ne+1
0 − κ

Ne

0 in the noninteracting limit. The
spin susceptibility of superconducting particles with spin-orbit
scattering was studied in Ref. [49], but without considering the
odd-even effect.
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APPENDIX A: MANY-PARTICLE MATRIX ELEMENTS
OF M̂z IN THE EXACT FORMALISM

Here we derive the expressions for the many-particle matrix
elements of M̂z between exact many-particle eigenstates of the
even and odd grain.

1. Even particle number

We denote by α the time-reversed state of α (e.g., 1 = 2)
and by �m′ ∪ {k} the set of orbitals containing the set �m′ and one
extra orbital k that is not in �m′. Using Eqs. (9), (13), and (15),
and the relation

Mz
kα,k′α′ = (−1)α+α′+1

(
Mz

kα,k′α′
)∗

, (A1)

which is valid for the phase convention (5), we find

M̂z|0〉Ne
=

∑
k<k′

∑
αα′

(−1)α
′−1Mz

kα,k′α′

×
∑

�m′:k,k′ /∈ �m′

(
C0

�m′∪{k′} − C0
�m′∪{k}

)| �m′,kαk′α′〉Ne
.

(A2)

This sum over Slater-determinant states is over the positions
of two blocked orbitals and configurations of the remaining
Ne/2 − 1 electron pairs. Therefore a state |
′〉Ne

with nonzero
matrix element 〈
′|M̂z|0〉Ne

must have two unpaired electrons.
The matrix element between |0〉Ne

and another fully paired
state is identically zero because of the time-reversal symmetry.
The matrix element of M̂z between the ground state and any
state with two blocked orbitals

|�̃,kαk′α′〉Ne
=

∑
�m′:k,k′ /∈ �m′

C�̃
�m′ | �m′,kαk′α′〉Ne

(A3)
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is thus given by

〈�̃,kαk′α′|M̂z|0〉Ne
= (−1)α

′
Mz

kα,k′α′Bkk′[0,�̃], (A4)

where

Bkk′[0,�̃] =
∑

�m′:k,k′ /∈ �m′

C�̃
�m′
(
C0

�m′∪{k′} − C0
�m′∪{k}

)∗
(A5)

describes the interaction contribution to the matrix element.

2. Odd particle number

For a given blocked orbital k0 in an odd-grain state (10),
we divide the sum in Eq. (13) into three contributions:

M̂z = M̂ (1)
z + M̂ (2)

z + M̂ (3)
z . (A6)

Here, M̂ (1)
z consists of terms that do not contain k0, M̂ (2)

z

consists of terms that produce the linear correction (i.e.,
with c

†
k0α

ck0α′), and M̂ (3)
z consists of the remaining terms. By

analogy with the even case, the first contribution results in
nonzero matrix elements between |�,k0α0〉Ne+1 and the states
with three blocked orbitals (with the number of Cooper pairs
reduced by one):

〈� ′,kαk′α′k0α0|M̂z|�,k0α0〉Ne+1

= (−1)...Mz

kα,k′α′Bkk′[�,� ′]. (A7)

Here Bkk′[�,� ′] is defined as in Eq. (A5) but with C0’s
substituted by C�’s of Eq. (10). The phase of the matrix
element depends on the relative positions of the three blocked
orbitals and is not important. The second group of terms in
Eq. (A6) does not contribute to the level curvature, while the
third contribution is

M̂ (3)
z |�,k0α0〉Ne+1

=
∑

kα,k �=k0

Mz
kα,k0α0

⎛⎝ ∑
�m:k,k0 /∈ �m

C�
�m | �m,kα〉Ne+1

+
∑

�m:k∈ �m,k0 /∈ �m
C�

�m | �m\{k} ∪ {k0},kα〉Ne+1

⎞⎠. (A8)

Here the set �m\{k} ∪ {k0} is obtained from �m by replacing k

with k0. Therefore the matrix element between two states with
single but different blocked orbitals is given by

〈� ′′,kα|M̂z|�,k0α0〉Ne+1 = Mz
kα,k0α0

Dk0k[�,� ′′], (A9)

where

Dk0k[�,� ′′] =
∑

�m:k0 /∈ �m
C� ′′

�m′′ C
�
�m (A10)

and

�m′′ =
{ �m if k /∈ �m

�m\{k} ∪ {k0} if k ∈ �m.
(A11)

APPENDIX B: DETAILS OF THE BCS FORMALISM

1. Even curvature

The state |BCSe〉 defined in Eq. (28) is the vacuum with
respect to the quasiparticle operators

βk1 = ukck1 − vkc
†
k2,

βk2 = ukck2 + vkc
†
k1. (B1)

Using the inverse transformation, the identity βkα|BCSe〉 = 0,
and Eq. (A1), we find

M̂z|BCSe〉 =
∑
k<k′

(ukvk′ − uk′vk)

× [
Mz

k1,k′1β
†
k1β

†
k′2 + (

Mz
k1,k′1

)∗
β
†
k2β

†
k′1

−Mz
k1,k′2β

†
k1β

†
k′1 + (

Mz
k1,k′2

)∗
β
†
k2β

†
k′2

]|BCSe〉,
(B2)

which leads to Eq. (33).

2. Odd curvature

For the odd state |BCS,k0α0〉 defined in Eq. (34), we split
M̂z into three components according to Eq. (A6). The effect
of M̂ (1)

z is similar to the effect of M̂z for even particle number,
resulting in the contribution (36). The second part—M̂ (2)

z —
does not contribute to the level curvature. For the remaining
part, we find [using Eqs. (A1) and (34)]

M̂ (3)
z |BCS,k01〉 =

∑
kα,k �=k0

Mz
kα,k01c

†
kα

(
uk0k + vk0kc

†
k01c

†
k02

)
×

∏
k′ �=k,k0

(
uk0k′ + vk0k′c

†
k01c

†
k02

)|vac〉. (B3)

Therefore M̂ (3)
z has nonzero matrix elements between the states

with different blocked orbitals. To reduce the computational
effort, we keep only those contributions that would be nonzero
if the blocking effect were ignored, i.e., if all uk0k’s and vk0k’s
were equal to uk’s and vk’s. For a given blocked orbital k �= k0,
there are two states with such matrix elements. The first is the
lowest-energy doublet |BCS,kα〉 with the variational energy
EBCS

k defined in Eq. (38). The corresponding matrix element
is

〈BCS,kα|M̂z|BCS,k01〉
= Mz

kα,k01

(
uk0kukk0 + vk0kvkk0

) ∏
k′ �=k,k0

(
uk0k′ukk′ + vk0k′vkk′

)
.

(B4)

The second state is the two-quasiparticle excitation on top of
|BCS,kα〉 with both quasiparticles on the same orbital k0 (so
k0 is not a blocked orbital):

|B̃CS,kα〉 = c
†
kα

(−vkk0 + ukk0c
†
k01c

†
k02

)
×

∏
k′ �=k,k0

(ukk′ + vkk′c
†
k′1c

†
k′2)|vac〉. (B5)
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The energy of such a state is given by EBCS
k + 2Ekk0 , and the

corresponding matrix element is

〈B̃CS,kα|M̂z|BCS,k01〉
= Mz

kα,k01

(
uk0kvkk0 − ukk0vk0k

) ∏
k′ �=k,k0

(
uk0k′ukk′ + vk0k′vkk′

)
.

(B6)

Assuming that∏
k′ �=k,k0

(
uk0k′ukk′ + vk0k′vkk′

) ≈ 1, (B7)

which would be an identity if the blocking effect were ignored,
we obtain the second contribution (37) to the curvature of the
odd state.

APPENDIX C: DIFFERENTIAL-CONDUCTANCE
PEAK HEIGHTS

Assuming a point contact between the grain and the
electrode, the height of the differential-conductance peak for
the transition |0〉Ne

→ |�〉Ne+1 in a tunneling spectroscopy
experiment is proportional to [1]

w|0〉→|�〉 = |〈�|ψ†
↑(r)|0〉Ne

|2 + |〈�|ψ†
↓(r)|0〉Ne

|2, (C1)

where r is the position of the contact. The field operators
are given by a symplectic transformation [using the phase
convention (5)]

ψ
†
↑(r) =

∑
k

[p∗
k (r)c†k1 + q∗

k (r)c†k2], (C2)

ψ
†
↓(r) =

∑
k

[−qk(r)c†k1 + pk(r)c†k2]. (C3)

Here, [pk(r) − q∗
k (r)]T and [qk(r) p∗

k (r)]T are the single-
particle spinor eigenfunctions written in a good-spin basis.

Using Eqs. (9) and (10), we find

w|0〉→|�〉 = wk0 (r)

⎛⎝ ∑
�m:k0 /∈ �m

C�
�m C0

�m

⎞⎠2

, (C4)

where

wk0 (r) = |pk0 (r)|2 + |qk0 (r)|2. (C5)

The peak height is now conveniently expressed as the product
of a single-particle and many-body contributions. The single-
particle contribution wk0 (r) is simply the probability density
for an electron in the orbital k0. The many-body contribution
is generally nonzero for any eigenstate with a single blocked
orbital. In the noninteracting limit, it is nonzero only for states
|�〉Ne+1 shown in Fig. 1(c), for which it is equal to 1 and the
total peak height reduces to wk0 (r).

In the BCS formalism, the even ground state is given by
Eq. (28), and any odd state with a single blocked orbital k0

(i.e., not only the lowest-energy state) can be written as

|�〉Ne+1 = c
†
k0α0

∏
k �=k0

(ũk + ṽkc
†
k1c

†
k2)|vac〉. (C6)

For these states, we obtain

w|0〉→|�〉 = wk0 (r) u2
k0

∏
k �=k0

(ukũk + vkṽk)2. (C7)

In the limit �/δ � 1, the blocking effect is negligible and
all the odd states are the quasiparticle excitations built on top
of |BCSe〉. For the one-quasiparticle excitation β

†
k0α0

|BCSe〉,
ũk = uk and ṽk = vk , and the peak height reduces to

w|0〉→|�〉 = wk0 (r) u2
k0

. (C8)

Any other odd state (C6) with the same k0 can be written as
β
†
k0α0

β
†
k′1β

†
k′2 . . . |BCSe〉 for some k′ �= k0. The product β†

k′1β
†
k′2

results in ũk′ = −vk′ and ṽk′ = uk′ , which yields w|0〉→|�〉 = 0.
We conclude that, in the limit �/δ � 1, a final state must

have the lowest energy among the states with the same blocked
orbital. The interaction contribution to the peak height (C8) is
given by u2

k0
; therefore, the peak height for such a state is

suppressed when the blocked orbital is far below the Fermi
level and reduces to the noninteracting value when it is far
above the Fermi level.

In the RMT framework, the single-particle contribu-
tion (C5) is derived from a component of the spinor eigenvector
representing the state |k0α0〉1. It is not important which
component is chosen. In any of the Gaussian ensembles, the
probability for wk0 (r) to be small is exponentially suppressed.
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