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We propose a mechanism for the protection against spin gapped states in doped antiferromagnets. It requires
the presence of a Chern-Simons term that can be generated by a coupling between spin and an insulator. We first
demonstrate that in the presence of this term the vortex loop excitations of the spin sector behave as anyons with
fractional statistics. To generate such a term, the fermions should have a massive Dirac spectrum coupled to the
emergent spin field of the spin sector. The Dirac spectrum can be realized by a planar spin configuration arising
as the lowest-energy configuration of a square lattice antiferromagnet Hamiltonian involving a Dzyaloshinskii-
Moriya interaction. The mass is provided by a combination of dimerization and staggered chemical potential. We
finally show that for realistic parameters, anyonic vortex loop condensation will likely never occur and thus the spin
gapped state is prevented. We also propose real magnetic materials for an experimental verification of our theory.
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I. INTRODUCTION

The discovery of high-7, superconductivity in cuprates
led to a flurry of new ideas such as the idea of spin liquid
state as one of the possible explanations for the emergence of
superconductivity from Mott insulating parent compounds [1]
and the importance of the physics of doped antiferromagnets
[2]. An exotic spin liquid state from Heisenberg types of
spin models involving breaking of discrete symmetries such
as parity or time-reversal symmetry, the so-called chiral spin
liquid, has been proposed [3]. The effective low-energy theory
of such chiral spin state normally involves a topological term
called Chern-Simons term [4]. It was originally studied in
particle physics [5] and mimics the fractional quantum Hall
effect (FQHE) [6] where such term appears as the low-energy
effective theory in the bulk [7].

The Chern-Simons term can be generated by a fermion-
gauge field coupling when the fermion is integrated out. One
obtains a fermion determinant which gives the Chern-Simons
term as the action for gauge field A [8],
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in Euclidean space-time upon perturbative expansion [9],
where Ny is the number of fermion flavors, e is the gauge
charge, m, is the Dirac fermion mass, and €*"* is a totally
antisymmetric tensor. The Chern-Simons action depends only
on the overall sign of the mass rather than its magnitude even
though the mass must be nonzero for the expansion to make
sense.

In quantum magnetism, the magnetization curve may show
the presence of plateaus. It is well understood that the plateau
state corresponds to a state with gapped magnetic excitations
while outside the plateau, the spin sector is gapless [10]. In
doped antiferromagnets [11], this leads to distinct natures of
interaction between the fermions [12]. A state with gapped
magnetic excitations is normally associated with preserved
continuous symmetry with no long-range magnetic order in
the direction transverse to the applied magnetic field [10]. In
this work, we show that in the presence of a Chern-Simons
term, one can have either one of two scenarios: (i) a spin
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gapped state occurs as an analog of the fractional quantum
Hall effect (FQHE) with its chiral edge states and (ii) the
system is protected against such a spin gapped state. In this
paper, we consider 2D antiferromagnets on square lattice, as
we did in our previous work [12].

In this paper, we also propose a way to realize a chiral
theory as an effective low-energy theory of spin systems
explicitly rather than spontaneously by considering doped
antiferromagnets on the square lattice. The fermions hop on
the lattice on top of a pre-existing magnetic background.
Because of a strong Hund coupling, the spin of the electron
must be parallel to that of the local spin within the adiabatic
approximation. The resulting dynamics is well-described by
an effective tight-binding Hamiltonian [13]:

H=—1) (QlQ)cle + He., 2)
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where the spin sector modifies the hopping integral via the
overlap of spin coherent states |€2,) between nearest-neighbor
sites, a mechanism well established from the studies of
anomalous Hall effect [14] and doped antiferromagnets [15].
This coherent state overlap has two effects: providing the
background flux for the fermions and the effective spin field
that couples to the fermions. The spin sector should take
an appropriate classical lowest-energy configuration which
produces a staggered m-flux state [16] with dimerization and
staggered chemical potential needed to get a massive Dirac
fermion spectrum.

II. FIELD THEORY

We use the semiclassical spin path integral approach [10]
and start with the Euclidean effective action of a 2D doped
antiferromagnet,
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taking the form of an XY model describing quantum fluctua-
tions around a classical lowest-energy configuration specified
by S = S(sin 6 cos ¢y, sin Gy sin ¢, cos 6y) plus a Berry phase
action whose form follows from the spin configuration we will
describe. The ¢ is the quantum fluctuating phase angle field
around ¢ [10] and is conjugate to the momentum operator [T,
[¢r, 1] = i6p, where IT can be defined in terms of 6 [11].
The K.,K, are stiffness coefficients of the spin sector. The
v and v are Dirac spinors representing electrons that couple
to the spin sector’s ¢ field via the pseudogauge field given
as A, = 0,¢,u = 1,x,y. Here, two comments are in order.
First, the definition of the vector field A, looks as if it were
a pure gauge. However, one has to keep in mind that the field
¢ may have vorticity, which turns out to be at the origin of a
nonzero flux for A,,. Second, the action is not gauge invariant
and as such the theory is not a genuine gauge theory. We
use nevertheless the terminology of pseudogauge field for A,
which we also refer to as spin field, because of the way it
couples to the charge degrees of freedom. When the fermions
are integrated out, we get the Chern-Simons term due to the
fermion-spin field coupling given in Eq. (1). A similar final
action but without a Berry phase has been studied in a different
context [17].

Integrating out the massive Dirac fermions in Eq. (4), we
obtain a Chern-Simons term in terms of the phase field ¢:

Los = im—e"3, 08,0, (5)
27

with k = e?/4 (N; = 1). We first investigate the effect of this
Chern-Simons term added to the action (3) by applying a dual-
ity transformation which introduces a Hubbard-Stratonovich
auxiliary vector field J,, [10] and re-expresses the full action
as

I,
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In this case, we have decomposed the phase field into
vortexful and regular parts ¢ = ¢y + ¢x and defined the
vortex loop current J)} = (1/(2m))e**v3,0,¢y. Following
the boson-vortex duality transformation [10] and working
in Euclidean space-time, we obtain the following effective
Lagrangian for JJ;:

1 k. k,
LIJy] = /kJ{;(k)PK(SW - Z—2> - memk“]J;(—k)
+i271/5,1(x)J{j(x), (7)

where b, = $(3)er,,x,. As in Ref. [10], the above result was
obtained under the assumption that only configurations with
closed vortex loops do contribute to the low-energy physics.
The effective magnetic field through a vortex loop is given by

.S
"™ 3,b; = =8+ Kk J);. ®)

We note that we get an extra term « Jy; to the effective magnetic
field coming from the Chern-Simons term. The important
consequence of this is that the resulting effective Berry phase
for a vortex loop now has a total contribution coming from an
ordinary Berry phase term and a Chern-Simons term and is
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where A is the area of a vortex loop is an integer multiple of a?,
q is the vorticity of the vortex loop, and ®gthervortex oop 15 the
flux of other vortex loops, which is nonzero only if that other
vortex loop is knotted across the first vortex loop. Comparing
Egs. (8) and (9) suggests that the Chern-Simons contribution
is nonzero only if the two vortex loops are linked.

We verify the above proposition as follows. For two
nonintersecting curves y; and y,, which act as mapping from
manifold S; (circle) to 3D Cartesian space R? (the 3D
Euclidean space in our problem), the linking number is given
by

(10)
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Taking the inverse Fourier transform, with the vortex current
given by J) = gdr and endowing the above expression with
an overall coefficient «, the above expression corresponds to
vortex current-vortex current interaction,

L 1 ay gV
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in Fourier space. This is precisely equal to the topological part
of Eq. (7). This implies that the Chern-Simons term leads to the
linking between vortex loops, resulting in a nonzero linking
number, precisely as implied by Egs. (8) and (9).

III. ANYON PHYSICS

We now show how the field theory and the results in the
previous section lead to the anyonic fractional statistics of
the vortex-loop excitations of the 2D XY model (3). Without
the Chern-Simons term, the XY model (3) has topological
excitations in the form of vortex loops which, in the absence of
destructive interference due to the Berry phase, can proliferate.
The vortex loops can be considered as world lines of Bose
particles and the proliferation of vortex loops corresponds to a
condensation of the bosons. This vortex proliferation implies
disordering of the dual (¢) field, which gives rise to gapped
magnetic excitations. In the presence of the Chern-Simons
term, vortex loops become anyons and a number of vortex
loops must collect together in order to form a boson, and
then be able to condense. One then can have either one
of the two scenarios: (i) the anyonic vortex loops are able
to form bosons and condense, giving rise to a state with
gapped magnetic excitations as the analog of FQHE state and
(i) the anyons fail to condense, for which a state with gapped
magnetic excitations will not occur.

To show this technically in a simple picture, consider
a system of two vortex loops with vorticities g; and g,
respectively, knotted to each other once (-/\[linking =1). The
partition function of this system has a contribution of the form

ei47'“(qlq2+‘/l‘/2ECoulomb. (12)
Apart from the Coulomb interaction, the contribution to

the partition function given in Eq. (12) resembles that of
linked word lines of an anyon system with its fractional
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statistics [18]. The first term in the exponent 4w« q,g, equals
twice the statistical angle ® under the exchange of two
anyons realized by vortex loops with vorticities ¢; and g,
giving ® = 27wk g q,. In 3D Euclidean space-time, there exists
nontrivial braiding statistics between loops [19]. Our system
thus manifests anyonic loop statistics in 3D. Withg; = ¢» = 1
for an elementary vortex loop, we obtain ® = 2wk and
therefore need J\/;nyon =27 /® = 1/k anyons to get a boson
before the anyons can condense. The occurrence of anyon
condensation (and that of spin gapped state) thus depends
crucially on the magnitude of the Chern-Simons coupling «.
The Coulomb interaction then determines the critical value
of the parameter that characterizes any possible condensation
transition for this interacting system. We will show a scenario
from a microscopic model where « takes small enough values,
leading to large Nynyon and as a consequence prevents anyon
condensation and the occurrence of a state with gapped
magnetic excitations.

IV. MICROSCOPIC REALIZATION

In this work, we propose a way to generate a Chern-Simons
term explicitly in a spin system from the fermion-spin field
coupling. This topological term is obtained upon integrating
out the fermions, as summarized in Eq. (1). The key ingredient
is to have massive Dirac fermions coupled to the spin field from
the spin sector for which we propose to consider the staggered
7w flux state [16] and we will now describe the scheme to
obtain it.

According to Eq. (2), the bare hopping integral is modified
by the overlap of spin coherent states r — #(2,|Q2y). This
spin coherent state overlap generally takes complex values,
which gives an exponential phase factor where the argument
of the exponent, to be referred to as link spin field, contains
a static background flux plus the fluctuating part, representing
a dynamical spin field. In order to get a Dirac spectrum, the
static background flux has to take an appropriate configuration,
which can be chosen to be a staggered 7 flux configuration
[16]. In order to attain such a staggered m flux configura-
tion, in turn, the spin sector should take a particular spin
configuration accordingly. In Appendix A, we first derive the
expression for the link spin field from evaluating the spin
coherent state overlap explicitly. Then, from that, we determine
the corresponding spin configuration to obtain the staggered
7 flux state. We then propose a microscopic spin Hamiltonian
that stabilizes the required spin configuration. We summarize
the results as follows.

Representing the spin as a classical vector S =
S(sinf cos ¢, sinf sin ¢, cos 0) and evaluating the spin coher-
ent state overlap in Eq. (2) gives the following result for the
link spin field [22]:

. c B s Oy
. sin(¢y — ¢y) sin 3 sin =
ayy = —tan 7 o o o |
COs 5 €OS 3= + cos(dy — ¢y) sin 7 sin -

13)

The flux &g through a square plaquette is then given by &g =
Y rrem) dr Where the link rr’ is taken to be such that the four
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FIG. 1. The planar spin configuration on a square lattice with the
labeling of the four sublattices.

links traverse the square in counter-clockwise direction. The
“mean-field part” of the link spin field needed to give -
flux state is obtained by assigning 6,,¢; their classical lowest-
energy configuration values. It can be checked from Eq. (13),
that a £7 flux through square plaquette can be realized by
planar spin configuration where 8 = /2 at all sites, while
the azimuthal angle takes values such that the four spins on
a square rotate by a total of £2x as illustrated in Fig. 1. The
need for such planar spin configuration fully agrees with the
intuition that the total solid angle & swept by the four spins
around the square should equal 27 for them to produce net
flux &g = SP equals & with § = 1/2.

Similar planar spin configurations can be realized using
J1 — J> model with impurity [20]. Here, we propose an alter-
native method. We find that such kind of spin configurations
can be stabilized as a classical lowest-energy configuration of
the following Hamiltonian, involving Dzyaloshinskii-Moriya
(DM) interactions [21]:

H=7Y8-8;+D> (5 +Y Dy
ij i ij

. (Sl X SJ)

(14)

The easy-plane anisotropy (D > 0) favors an in-plane Néel
state. To retain global U(1) symmetry, only the component
of D3y, along z direction can be allowed to be nonzero. DM
interaction usually occurs in lattice systems with low degree
of symmetries. Here, we consider a staggered DM interaction
where DDM[ ikt = D]SM[ i+y° while DDMU - DDM! =0
[22]. According to Moriya’s symmetry analysis [21], thls DM
pattern is, in principle, allowed as long as the system has
no bond-centered inversion symmetry but has mirror planes
perpendicular to the bonds and passing through the bond
centers.

To find the lowest-energy spin configuration, we rewrite
the Hamiltonian (14) in terms of angular variables 6,¢ as
before and minimize H with respect to these variables [22].
The lowest energy configuration of H in Eq. (14) is found to
be a planar spin configuration with azimuthal angles A¢;; =
¢; — ¢; between nearest-neighbor spins given by

D
A¢;; = tan”! < JDM> (15)

as shown in Fig. 1. Our calculation confirms that the planar
spin configuration is indeed the lowest-energy configuration of
H atleast within a finite regime of the phase diagram defined in
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parameter space (J — D — Dpy space) and therefore requires
no fine tuning.

We then derive from Eq. (2) the low-energy effective theory
of fermions around the Dirac points coupled to the spin quan-
tum fluctuations around the lowest energy spin configuration.
This is done by expanding the spin vector around its lowest
energy orientation and expanding the fermion field operator
using gradient expansion in real space and expansion around
a Dirac point in momentum space. The details are given in
Appendix B. The resulting scalar theory takes the form given in
Eq. (3) for the spin sector with ¢ = ¢ = (ZINZ“T“““ &)/ Nunitcell
(where ¢; is the ¢ of the ith sublattice) representing the
massless Goldstone mode. Here, as the other fields are gapped,
gapped magnetic excitations imply a spin gap. The Berry phase
term gives a contribution exp(i 2 S) to the partition function in
imaginary time. For integer S, this equals unity corresponding
to constructive interference and one can thus expect the
presence of a spin gapped state. The fermion-spin field theory
is given by Eq. (4) with ¥(r) = (c}(r),c3(r),ch(x),chH ).
Here, ci),i =1,...,4 represents the Dirac fermion operator
for the i’ sublattice, while Y, = 0,1,2 are 4 x 4 matrices
satisfying the Clifford algebra {y,,,y,} = 2g,. and v =9y
[22]. We take the unit hopping integral + = 1 and unit lattice
spacing @ = 1 as units of energy and length, respectively.
One important result is that the gauge charge is found
to be

(ST

1 J
e= 1— (16)

22\ S,

where o = e?/(4m) gives the dimensionless “fine structure
constant” of the U(1) gauge theory. This gauge charge is
obtained directly as the coupling constant of the derived
fermion-spin field theory. It is to be noted that in realistic
situations, |Dpm| < J and as a result, @ becomes a small
parameter, as is normally the case in quantum field theory.
It will be shown in the next section that this fact will play
a key role in the mechanism of protection against spin gap
that we propose in this work. Strictly speaking, the derivation
of our fermion-spin field theory is justified only in the large
spin S limit. While we have performed explicit calculation to
obtain the quantitative result for the gauge charge e as above
using S = 1/2 [22], as an example, our main result regarding
a mechanism for protection against spin gap that follows
soon will still hold qualitatively and apply to the general
spin S.

Now we show how to get the Dirac mass for the massive
Dirac fermion spectrum. We consider a perturbation on the
ideal system in terms of a dimerization of the strength of
the hopping integral and a staggerization of the sublattice
chemical potential. Since we aim for a Chern-Simons effective
theory, which intrinsically breaks discrete symmetries, the full
system consisting of the spin and fermion sectors including
the perturbation should break the symmetry under parity and
time reversal times any lattice translation. Equation (1) also
suggests that Dirac fermion masses from different fermion
flavors must necessarily have the same sign in order to ensure
nonzero net Chern-Simons term, as masses of opposite signs
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FIG. 2. (Color online) The columnar dimerized plus staggered
chemical potential added to the staggered 7 -flux state.

will give no net parity-breaking effect [23]. We find that
this can be achieved by considering a combination of a
columnar dimerization and a staggered sublattice chemical
potential with profiles shown in Fig. 2. It gives a Dirac mass
Hamiltonian

H, = / LTy v+ Ty v, (17)

where WI ) V12 represent the first (second) pair of sublattice
I-sublattice-2 spinor |, = (c’1(3),c’2(4))T in diagonalized
basis, with yo = 17, the Pauli matrix in this sublattice space.

The resulting mass is found to be my, = ,/m3._ .+ m? where
Mgimer = ) — 1 with n > 1 is the strength of a dimerized
bond with respect to the normal bond and m; is the staggered
sublattice chemical potential. The above perturbation is an
example but in principle, any perturbations breaking the same
discrete symmetries are expected to give rise to the same
phenomena.

V. DISCUSSION

A Chern-Simons term is known to give rise to a mass to
the gauge field in the Maxwell-Chern-Simons theory. What
we have here is an XY-Chern-Simons theory plus the ever
important Berry phase term. Plateaus in XY model without
a Chern-Simons term occur when the spin sector is gapped
and vortex-loops proliferate corresponding to condensation
of bosons. In the presence of the Chern-Simons term, vortex
loops are anyon worldlines as we noted from Eq. (12), with a
statistical phase ® = 2«7 = mwe?/2. If the vortex loops could
ever condense, we would realize the analog of a fractional
quantum Hall state (FQHE) with its chiral edge states. For
our microscopic model with gauge charge e as given in
Eq. (16), we obtain an upper bound ® = /16 from the
limit |Dpm|/J — oo, which means that in order to obtain
condensation of anyons, we need at minimum ./\funy(,n =32
vortex loops to form a boson first before they can ever condense
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and give rise to a spin gapped state, taking the fact that for
bosons, the statistical angle is ® = 2m. Realistic situations
where |Dpum|/J < 1 require much larger number of anyons
for them to condense.

Based on the analogy with the FQHE, condensation of
anyons and thus a Chern-Simons-induced spin-gapped state in
doped antiferromagnets can occur only when the microscopic
parameters give rise to a Chern-Simons term with coupling «
suchthatv = 2k = @/ = €?/2 = P/ satisfies a continued
fraction expansion condition, where v is the filling factor
of typical values 1/v <9 for Laughlin’s states [24]. With
a minimum of 32 vortex loops needed to form a boson
(equivalent to 1/v > 16 for the realistic case |Dpml|/J <K 1)
and the strict condition on the Chern-Simons coupling, it is
thus in general very unlikely to form such a vortex loops
condensate and the associated spin gapped state. We can
therefore conclude that the spin system (14) is protected
from being in a spin gapped state, due to the Chern-Simons
term induced by the fermion-spin field coupling in doped
antiferromagnets with a massive Dirac fermion spectrum. In
contrast, the conventional XY model with the Berry phase
term would mandate the occurrence of a spin gapped state.
On the other hand, if the net Chern-Simons term vanishes,
then the protection effect is inactive and one can get back a
conventional spin gapped state that occurs for integer spin S.
It is to be noted that this result on the novel mechanism for
protection against spin gap is valid for general spin S because
the applicability of the mechanism is determined more by the
value of coupling constants of the spin model (J and Dpyp)
rather than the spin § itself.

It would be interesting to find other microscopic spin
models that can generate a Chern-Simons term via similar
fermion-spin field coupling as we proposed here and yet are
able to induce anyonic vortex loop condensation, giving rise
to a spin gapped state, and the analog of the FQHE with chiral
edge states in spin systems. Our choice for a square lattice is
because a discrete Chern-Simons gauge theory with precisely
the same physics as the continuum one can be constructed
consistently on this lattice [25] as well as on the kagome
lattice [26], due to the presence of one-to-one face-vertex cor-
respondence on these lattices [27]. We would like to propose a
study on compounds La,CuOy4 [28] and LaMnOj3 [29], which
are effectively 2D square lattice antiferromagnets as candidate
materials to test our theory. Beyond these particular materials,
we claim that this novel scenario of spin gap protection is
general enough to be expected anytime a Chern-like charge
insulator is at play as the high-energy sector. The Kondo
lattice model in the triangular lattice may be another possible
laboratory [30].

ACKNOWLEDGMENTS

LM. is supported by Grant No. ANR-10-LABX-0037 of
the Programme des Investissements d’Avenir of France. We
thank M. Oshikawa, A. Tanaka, D. Poilblanc, and 1. Affleck
for the insightful discussions and C. Mudry and C. Chamon
for the critical reading of the manuscript.

PHYSICAL REVIEW B 92, 144507 (2015)

2 1 e T Xy 7

4“' =‘\
5]

Ve N ad g “a

FIG. 3. The (commensurate) planar spin configuration on a
square plaquette of the square lattice giving rise to a staggered 7 -flux
state of Affleck-Marston ansatz.

APPENDIX A: THE CLASSICAL LOWEST-ENERGY
SPIN CONFIGURATION

A key requirement in our proposal to generate a Chern-
Simons term in a spin system is to have a Dirac spectrum for
the fermions that are to be doped into the system. In order to
get a Dirac spectrum on the square lattice, we need a w-flux
state of the type as first proposed by Affleck-Marston and
G. Kotliar [16]. The flux per square plaquette is a staggered
m and —m configuration, where the flux alternates from m
to —m between adjacent squares. Here, we will show that
such a staggered 7 flux state can be realized by a planar spin
configuration illustrated in Fig. 3. The derivation to arrive at
such a spin configuration is as follows.

The spin sector couples to the fermion by providing the spin
field in the form of Goldstone modes in addition to providing
the background staggered m-flux state. This is well described
by the following tight-binding Hamiltonian:

H=—1) (QlQ)cler + He.

r,r

(A)

In spherical coordinates, the classical spin vector is written
as S = S(sinf cos ¢, sinf sin ¢, cosf). The spin coherent
state for general spin § is given by

S
12:(0), () = /25! Y
m,=—S

(cos &ei?) S (sin ZeiF) S

(S+mH!(S—m)! |S,m;),

(A2)
which for § = 1/2 allows us to write

¢r

. . O 0\
Q) = ol (erﬁ cos % ¢ sin 5) L@y

where b, is a pure gauge function which we can set to a
constant function b, = by in the simplest case. The coherent
state overlaps for electrons where S = 1/2 is given by

(Q|Q2) = e2 i(by +¢r —br—¢r)

9!‘ 01" i . 91‘ . 9r’
x [ cos = cos — + @~ gin — sin — ).
2 2 2 2

(A4)
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This spin coherent state overlap gives rise to a spin field as

follows. Taking the gauge function to be by = —¢r,
. . . 0
. sin(¢p — ¢y) sin 9—' sin %
arr = —1a g O i
COS 5 oS 5 + cos(Ppr — ¢r) sin 5 ' sin 5~

(AS)

We will consider the Dirac spectrum obtained from the
staggered m flux state configuration of Affleck-Marston. It can
be checked from Eq. (A5) that for 6, = /2 at all sites r,r’, we
will always get ) .. arr = £, as the link spin field is then
given by ayy = —A¢yr /2 where A¢yr = ¢ — ¢r. This gives
rise to the needed 7 flux per square plaquette. This remarkable
result will give rise to the planar spin configuration shown in
Fig. 3 for an appropriate choice of Hamiltonian.

We will prove here that this planar spin configuration can be
obtained as the lowest-energy configuration of the following
Hamiltonian:

H=JY8-8;+DY (5 + > Dy
ij i ij

-(S; x 8§;),

(A6)

consisting of a Heisenberg antiferromagnetic coupling (J >
0), easy-plane anisotropy (D > 0), and a Dzyaloshinskii-
Moriya terms. To retain global U(1) symmetry, only one
(x, y, or z) component of Dpj,, normal to the easy plane can
be allowed to be nonzero; for concreteness we choose the z
component. It will be shown here that in order to get the planar
spin configuration, Fig. 3, we must take DgMZ > 0 on x links

and DgMZ < 0 on y links (of equal magnitude but opposite in
sign) or vice versa.
In spherical coordinates, the full Hamiltonian is given by

H=1JS§? Z[sin& sinf; cos(¢p; — ¢;) + cos 6; cos 6]

—i—DSchos 0; +ZDDM,S sin 6; sin 0;

x sin(¢; — ¢;).

To find the lowest-energy configuration, we
take 0H/0¢; =0,0H/06; =0 and verify whether
32H/3¢;0¢p; > 0,0°H/360,00; > 0,0°H/d¢;00; =0. We
find the lowest-energy configuration solution where the
nearest-neighbor spins have polar angles as 6, = /2 at

(A7)

all sites i and azimuthal angle A¢;; = ¢; — ¢; between
nearest-neighbor spins given by
DY
Adjj = tan”! (%) (A8)

whereas next-nearest-neighbor spins across the diagonal
of square have A¢;; = ¢; —¢; = £m as shown in Fig. 3.
We verify that the conditions on the second derivatives are
indeed satisfied. The above calculation guarantees that such
planar spin state indeed exists within a finite regime of the
phase diagram defined in the parameter space (/ — D — Dpm
space) and therefore requires no fine tuning.

Now we can describe the precise resulting lowest-
energy spin configuration for a particular pattern of the
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Dzyaloshinskii-Moriya interaction coupling D pum Of relevance

to our purpose. For case 1, we take D JM = Dpy to be uniform
equal to a constant vector at all links, and without loss of
generality we take it to point to the z direction for simplicity.
It can be checked from Eq. (A8) that unless |Dpy|/J =1
giving A¢;; = m /4,57 /4, one cannot get 7 flux on a square
plaquette for realistic case where |Dpy|/J < 1. The four spins
just cannot be arranged to rotate in total by 27 and at the
same satisfy Eq. (A8) from link to link on a square. What this
means is that we have to consider a plaquatte involving further
distanced spins to get & flux. Thus, in general, we will get
an incommensurate state for case 1. For case 2, we consider
Dpm; ;13 = (0, £d;,0) on each “column” and alternating
Dpwm; ity = (0, & d,0) on each “row” of square lattice, where
|di| = |d»| and so d; = £d,. It can be easily checked using
Eq. (A8) that one can arrange the four spins to rotate by 27 on
a square but when we tile up the pattern on a lattice, it will take
a relatively large cluster of squares with their spins to form a
unit cell from which the full lattice spin configuration can be
formed. We, however, get a commensurate staggered r-flux
state. This DM pattern occurs in real materials, e.g., La;CuOy4
[28] but such large unit cell complicates the derivation of a
Dirac fermion field theory as the spinor and matrix sizes grow
with unit cell size. We then consider the model case 3 where
we have DDMl i+t — D]ZDMt NE=) while DDMz DDMU =0.
It can be checked using Eq. (A8) that the four spins on a square
will take a configuration as shown in Fig. 3, and this can be
nicely repeated over the whole square lattice and gives what
we call (commensurate) a planar spin configuration with the
resulting commensurate staggered m-flux state with just four
sublattices (four sites per unit cell). The needed DM pattern is,
in principle, allowed by symmetry according to Moriya’s orig-
inal consideration. We take this latter case as an example but
our final results apply to the real materials mentioned above.

We label the four sublattices as shown in Fig. 4. It is to be
noted that in such a planar spin configuration, each sublattice
has its own 6 and ¢. We therefore have four sets of (¢p,0?)
fields: (¢™,01),(¢,09),(0®,0%),(¢™®,6@). From these,
we can define four orthogonal fields:

b6 = 1 (D1+dat+d3 +da), i = (D1 + 2 — Pz — ),

b2 = F(D1—drtds — Ba),  hi3 = 1(d1 — dr — B3 + P4,
(A9)

2 1

3 4

FIG. 4. Labeling of the four sublattices is as shown in the square.
The labeling of the four Dirac points in the Brillouin zone also follows
the same numbering.
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0 =101 + 6,4+ 65+ 04), 01 =101 +0,—03—04),
Op = 301 — 0+ 05— 05), O3= 10 —0,— 05 +06)
(A10)

and the inverse mappings

¢1 = (PG+Pi1 + P2 + Pr3),
¢3 = (P —P11 + b2 — P13),

¢2 = (¢c + 11 — Pr2—P13),
s = (PG — Gr1 — P2 +d13),
(A1)

01 = (O +61 + 02 + 613),
03 = (O —06;1 + 012 — 013),

0, = (0g + 60,1 — 0,2—013),
94 = (QG - erl - 9t2+9t3)-
(A12)

The effective low-energy theory of the spin sector from the
Hamiltonian (A6) will give rise to a gapless Lagrangian for
¢ and gapped ones for ¢;;,60;;,i = 1,2,3, so that these latter
fields can all be integrated out in the low-energy physics
[11]. We therefore have only the ¢¢ remaining in the low-
energy physics. This ¢¢ is nothing but the Goldstone modes
of the rotational symmetry-breaking classical lowest-energy
configuration that we have obtained in the beginning: the
planar spin configuration. The effective low-energy description
of the spin sector obtained upon integrating out all massive
fields take the form

L= &8“%%(}50 + ii@rqﬁc, (A13)

2 a?
and it is to be noted that the Berry phase term is obtained
from summing over the Berry phases of the four sublattices,
which finally involves only the diagonal field ¢ (Goldstone
mode) with overall prefactor S. Since upon integration over t
Berry phase gives the phase factor exp(i2x S), it equals unity
for an integer spin S and thus has no effect in such a case.
To simplify the notation, in the rest of this calculation, ¢,6
represent ¢¢,6¢.

APPENDIX B: DERIVATION OF THE EFFECTIVE
FERMION-SPIN FIELD ACTION OF AN INSULATING
ANTIFERROMAGNET WITH A MASSIVE
DIRAC SPECTRUM

We have shown in the previous section the microscopic
spin model to obtain (gapless) the Dirac spectrum for the
fermions doped into the system. We have to verify that the
resulting low-energy effective theory is indeed that of Dirac
fermions. Furthermore, in order to generate the Chern-Simons
term properly, the Dirac fermions must be massive rather than
massless. We will therefore also demonstrate in this section
the way to generate a massive Dirac fermion spectrum.

To derive the low-energy effective theory of fermions
coupled to the spin field, we start from Eq. (Al). A
fermion in the staggered m-flux state of Affleck-Marston
has the Dirac spectrum E; = £2y;,/cos? k, + cos? k, with
four Dirac points at k = (+m7/2, & 7 /2) as shown in Fig. 5
with their numbering. In the four-sublattice description of
Affleck-Marston -flux state, the new first Brillouin zone is
defined by the square with k., k, = £ /2.

PHYSICAL REVIEW B 92, 144507 (2015)

A k"?}
™
@ — @
2
s ™
—_—— ——
2 2 ka
® m
2

FIG. 5. (Color online) The first Brillouin zone of the staggered
m-flux state in the four-sublattice description and the Dirac points
(solid circles).

We first expand the fermion field operator around these four
Dirac points:

d2k ik-r : d2k ik-r
c(r) = / @) cxe'" "t & ,Z_;/lwkm 2 cke

4
=) e P Tep,(r), (B1)
a=1
where the slow-fermion field operator cp,(r) is given by
d’k ;
¢pa(r) = / soe! Koo
k~kp, (277)
d’q ;
~ ———Ckp,+q, € " (B2)
/| i<qe @02

with q, = k — kp, and kp,, are the momentum of the a’" Dirac
points kp, = (£7/2, £ 7/2) and ¢, is some appropriate UV
cutoff.

We then perform a gradient expansion and in doing so,
we expand the spin coherent state parameterized in terms
of these two angles around the respective classical lowest-
energy configuration value 6y and ¢ at each site (sublattice).
Eventually, only the Goldstone mode ¢¢ survives and in the
following, the sublattice index is omitted and in the final results
¢,0 represent ¢ ,0G:

|2(6r,0)) = [2(67.87)) + 86:80[ 2 (6. 87))
+ 8¢ | (62.07)) + O(86°,89%,505¢),
(B3)

|2 (G b)) = |2 (67 67)) + 8600 |Qr (67.67))
+ 8¢ 0y |2 (02.90)) + O(36%,5¢°,805¢),
(B4)

ch.@)=ch )+ Ar-vel, +0ar?),  (B5)
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where Ar = r’ — r, we obtain from Eq. (A1),

4
H=—1Y Y Corkoer)cl )(QQ0)eps(r) — chyi Ar - (—i(Q2]QL)V — eA)epy(r)] + Hee.

rxr' a,b=1
4
=1 Y e Arel QDR L\ Jepa®) — ch i Ar - (= i{QD|Q, )V — eA)cpa(r)] + Hee. (B6)
r a=l

SR I

r a=I1m,n=1

Q]2 )b (1) — i Ar - (= i(Q2]Q0, \ IV — eA)ch, ()] + He.,  (B7)
where the superscript m,n = 1, ... ,4 represents the sublattice index of the spin sector and Da = 1, ... ,4 the Dirac point index.
In what remains, we take the unit hopping integral + = 1.0 and the unit lattice spacing a = 1.0 as the units of energy and length,

respectively. The spin field is given by
eA = —i (86, (7] (3| 22)) + 060, (30(20]) | 20) + 0 (2] (3 |21 )) + 8 (39(27 ) 120), (BS)

where in the continuum limit, we do a gradient expansion by defining VO = 86y — §6;,V¢ = §¢r — S¢r. We have included the
gauge charge e coupling the spin field to the fermions. The expression (B8) suggests that this spin field is a Berry connection type
of pseudogauge field. The actual contribution to the spin field A in Eq. (B8) only comes from the ¢ field part, corresponding to a
Goldstone mode representing a symmetric combination of the sublattice phase fields ¢ = (¢; + P2 + ¢d3 + ¢4)/4, whereas the
terms containing §6;.,66,+ give rise to a massive momentum operator and correspond to the massive 6 field, which can therefore

be integrated out in the low-energy physics.
For § = 1/2, we get the result for the spin field:

1 A
eA(r) =~ sinfsin MV(b(r), (B9)

where 6,

2

= /2. The above result can be derived in a more direct and straightforward way by evaluating the coherent state

overlap and matching the complex phase factor exponent with the spin field

(Qr|Qp) ~ el

(B10)

and as one takes the continuum limit, one has a,» — A(r). We obtain

oo e 0y
[(w)_mml [ sinAg, sin - sin £~
2 0

0
or Hr/ 0 gin O gin 1’
€0S - COS —5— +cos Aq)l_r, sin - sin —5—

(l2) = [(2]20)]e

where Aq&?r, = ¢p — ¢y and

<Q?’Q?> = sin 6y cos

A¢rr’

, B12

> (B12)

where 6y = 7 /2 for our planar spin configuration. We can
immediately identify

0

A
r,r+Ar Vd)(r)

eA(r) 5

1
=5 sin 6 sin (B13)
in complete agreement with Eq. (B9), while the last term in
Eq. (B11) is dependent on the momentum operator:

1 1
Me=—> <aer sin 6, + 556’3 cos 0r>, (B14)

which is massive and therefore in the low-energy physics can
be integrated out to give simply a renormalization correction to
the coefficients (couplings) in the effective fermion-spin field
action without changing the physics. It is to be noted that the
expression for spin field (B13) is proportional to the gradient
of the phase field, as we expected.

3" (T +11,0)
, (B11)

o AeY,
0]—155111 I’ in Q) Vp+i —4— tdn

sin“ 6

Following our definition A,, = 9,,¢ and using Eqgs. (A8) and
(B13), the above result gives as the effective gauge coupling:

1

1 J
e=——| 1 - ———
V7?2 + Diy

2V2
We note that if we set the Dzyaloshinskii-Moriya interaction to
zero Dpy — 0, the whole picture breaks down and the gauge
charge equals zero. So, DM interaction is crucially needed
here.

As can be seen from Fig. 5, the Dirac points kp, =
(£m/2, £ 7/2) are located precisely at the corners of the
first Brillouin zone. The implication of this is that the
four Dirac points are now equivalent to each other and it
suffices to consider only one Dirac point, e.g., the kp; =
(/2,7 /2) Dirac point. In the low-energy limit, we define a
Dirac 4-spinor associated with this representative Dirac point
Y(r) = (c})(r),c%(r),c%(r),c‘},(r))T. Here, ¢ (r),i = 1,....,4
represents the Dirac fermion annihilation operator for the i’
sublattice of the spin sector in the planar configuration Fig. 3.

(B15)
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The low-energy Hamiltonian is

H= / d*x Yy (—id, — eA )V, (B16)
where u = t,x,y =0,1,2, and ¥ = ¢ fy°.

The next task is to find the y matrices. We obtain the
following result:

0 vy O 0
s _fva 00 0
= , B17
Y'="109 o o v (B17)
0 0 yv5 O
0 0 0 ¥
0 0 S0
y' =iy’ L : (B18)
0 vy O 0
v 00 0
where the matrix elements are given as follows:
s —ikpiy T
vis = ite” 0 (QL [Q0)) = (),
) . —ikpiy [0 |0\ T
vis = ite” (@) = (vi))" (B19)

y . —i " T
yas = ire” O (Q|Q0) = (v52)",
- ikpi [O0 [0 | T
V3X4 =ite"™" <Qr4|9r’3) = (Véi%) :
These matrix elements need to be “normalized” in such a way
that each of them is of unit magnitude. We have to find the
appropriate y° = y’. It needs to be checked that the y matrices
satisfy Dirac algebra {y*,y"} = 26"".
Taking ¢t = 1, we obtain the following gamma matrices

valid for a spin system in a planar configuration on the square
lattice:

01 0 0 0 i 0 0
c .1 0 0o o) [- 0o 0 o
V=10 o o —-1|=lo o o —il

00 -1 0 0 0 i 0
(B20)
0 0 0 1 0 0 0 i
s oo 1 0o} o 0o -i o
V"=%1o0 1 0 ol=lo i 0 o
1 0 0 0 i 0 0 0
(B21)
with
1 0 0 0
. o =1 0o of .,
Y =1o 0 1 0 =) . (B22)
0 0 0 —I

We aim this Dirac fermion system to produce a Chern-
Simons term. For that, we need the spectrum to be massive.
We need to make sure that the Dirac masses from the first two
sublattices and the second two sublattices have the same sign,
otherwise the net Chern-Simons term vanishes. Such mass
term can be obtained in several different ways. First, using
a staggered sublattice chemical potential, which represents

PHYSICAL REVIEW B 92, 144507 (2015)

T —1r T
S 4 @mm—
— T i — T

FIG. 6. (Color online) The columnar dimerized m-flux state of
Affleck-Marston ansatz.

some internal sublattice or microscopic degree of freedom,
which gives rise to an effective chemical potential alternating
in sign between the four sublattices of the square lattice. In this
case, the mass term from a staggered chemical potential takes
the form Hy = [ d*xy[diag(ms, — mg,ms, — m;)|yr, where
[diag(- - - )] represents a diagonal matrix with the diagonal
elements as given.

The second method is to consider a dimerization of
the strength of the hopping integral ¢ in the tight-binding
Hamiltonian (A1). Dimerization has been known to produce a
mass for the Dirac fermions. We consider one of the simplest
dimerization patterns as shown in Fig. 6. The strength of the
dimerized bonds is larger than the undimerized bonds. The link
spin field and the flux per plaquatte remain the same as those
of the original Affleck-Marston 7 -flux state. This dimerization
does open up a gap on the Dirac points in the 4 x 4 form of
the Dirac theory, which for the dimerization pattern shown in
Fig. 6 takes the form

0 myg 0 0

dimer __ 1 ma 0 0 0
(A S N 2X)

0 0 m* 0

where mo = —(n — 1)exp(—in /4 —ikpy),my = —(n —
D exp(—im/4 + ikp,) with n > 1 is the relative strength of a
dimerized bond with respect to an undimerized bond of unit
strength. Using kp, = /2 from the location of the Dirac
point, we obtain my = —mgo = (n — 1) exp(—3im/4). So, the
Dirac mass Hamiltonian induced by dimerization, Fig. 6, can
be written as

Hy = f XY HY™ Y = / dzx%’—("\}zl)w — )oY,

(B24)

where 7 is the Pauli matrix defined within each of the 1-2 and
3-4 sublattice pairs while o is the Pauli matrix connecting
the two pairs. In the rest of this derivation, we always
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imply

Hy = / IxYHuy = / d*xy Hu, (B25)
where Hy; = (') "My is the Hermitian mass matrix derived directly from the tight-binding Hamiltonian.

Evaluating the mass Hamiltonian matrix (B23) at the representative Dirac point, we obtain the following result for mass
matrix:

0 L1+ i) 0 0
. =D —j) 0 0 0
H([:lvllmer — yl NG (n—1) . (B26)
0 0 10 —7(1 + 1)
0 0 —(’7—3(1 — i) 0

The above result, however, suggests that the masses are opposite in sign between the two (two-sublattice) pairs of the four-sublattice
theory (1-2 sublattice pair versus 3-4 sublattice pair). The net Chern-Simons term will be zero in this case. To remedy this, we
combine columnar or staggered dimerization with a staggered sublattice potential where the staggerization takes a two-sublattice
structure; the chemical potentials of sublattices 1 and 3 are equal but opposite to the chemical potentials of sublattices 2 and 4.
The resulting mass matrix is

my 21+ i) 0 0
i 201 — i) —m 0 0
dimer+stagg.chem.pot — ot 2 ( l s B27
Hy y 0 0 m. D14 | (B27)
0 0 %(1 —i) —m

where m; is the mass from the staggered sublattice chemical
potential. It can readily be seen that the above mass matrix
will give rise to a nonzero net Chern-Simons term since
the mass block matrix of the 1-2 sublattice pair is not
opposite of that of the 3-4 sublattice pair as the staggered
sublattice potential-induced mass term matrix has precisely the
same form and sign in both sectors. If upon diagonalization the
masses are of the same sign in both sectors, which is indeed
the case at least for certain range of parameters m;, the net
Chern-Simons term is nonzero. Performing this 4 x 4 matrix
diagonalization of the corresponding H,,, we find that the
Dirac mass Hamiltonian can be written as

Hy = / P my ¥, + Tamp ¥y, (B28)

(

where Wuz)»l/f{(z) represent the first (second) pair of sub-
lattice 1-sublattice-2 spinor ¥ = (c},c5)" in a diagonal-
ized basis, with y° = 1% and mass my = vVm3 ., +m?,
where mgimer = 17 — 1 for both pairs, indicating that the two
pairs have identical mass and thus a nonzero net Chern-
Simons term eventually. This result is nicely consistent
with symmetry considerations because the combination of
columnar or staggered dimerization plus staggered chemical
potential completely breaks parity. It can also be checked
that this dimerization plus staggered chemical potential
breaks the invariance under time reversal times any lattice
translation and this guarantees a nonzero net Chern-Simons
term.
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