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Quasiclassical analysis of vortex lattice states in Rashba noncentrosymmetric superconductors
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Vortex lattice states occurring in noncentrosymmetric superconductors with a spin-orbit coupling of Rashba
type under a magnetic field parallel to the symmetry plane are examined by assuming the s-wave pairing case
and in an approach combining the quasiclassical theory with the Landau level expansion of the superconducting
order parameter. The resulting field-temperature phase diagrams include not only a discontinuous transition but
a continuous crossover between different vortex lattice structures, and, further, a critical end point of a structural
transition line is found at an intermediate field and a low temperature in the present approach. It is pointed out
that the strange field dependence of the vortex lattice structure is a consequence of that of its anisotropy stemming
from the Rashba spin-orbit coupling, and that the critical end point is related to the helical phase modulation
peculiar to these materials in the ideal Pauli-limited case. Furthermore, calculation results on the local density of
states detectable in STM experiments are also presented.
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I. INTRODUCTION

Motivated by the recent revival of spatially modulated
superconducting (SC) states induced by paramagnetic pair
breaking (PPB) [1–4], noncentrosymmetric superconductors
[5] in nonzero magnetic fields have been studied in recent
years as a novel type of system with a peculiar modulated
SC state. In noncentrosymmetric superconductors, the lack of
spatial inversion symmetry results in a splitting of the original
Fermi surface into two sheets and makes effects of PPB
anisotropic. Then, this anisotropic PPB effect tends to create
a helical modulation of the phase of the SC order parameter
just in a specific direction [2]. In particular, it is remarkable
that such a modulated state may be realized even in a small
enough magnetic field [2], in contrast to the conventional
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [6], which
do not appear unless the applied magnetic field reaches a high
value of the order of the PPB field HP at zero temperature.

In any type-II superconductors, however, when the applied
magnetic field is higher than the so-called lower critical field
Hc1, the field-induced vortices enter the SC material, and, if the
PPB-induced helical direction is perpendicular to the applied
field, the induced phase modulation may be absorbed in a
nontrivial manner into a change of the vortex lattice pattern
of the SC order parameter. In fact, it has been pointed out
in the Ginzburg-Landau (GL) approach that, in the case of
noncentrosymmetric superconductors with an antisymmetric
spin-orbit coupling of Rashba type [7], any periodic phase
modulation perpendicular to the field is gauged away in the
order parameter solution so that the PPB-induced helical
modulation cannot be seen in bulk Rashba superconductors.
However, it is unclear whether any effect of the helical
modulation in the vortex-free limit does not occur even beyond
the GL theory.

In this paper, vortex lattice states in Rashba superconductors
which occur when the magnetic field is parallel to the basal
plane corresponding to the symmetry plane for the spatial
inversion are examined beyond the GL approach and by
combining the quasiclassical approach [8,9], which is widely
exploited in microscopic analysis of superconductors [10–12]
including that of multiband ones [13,14], with the Landau

level (LL) expansion of the order parameter [15]. It has been
found in the previous GL approach [16,17] that the structural
symmetry of the vortex lattice in Rashba superconductors in
the in-plane field configuration dramatically changes as the
field increases through first-order transitions or continuous
crossovers. This is a consequence of the enhanced role of
the higher LLs induced by the PPB. It is difficult to describe
such a field-dependent structural change of the vortex lattice
in terms of the conventional method based on comparison
in energy among a couple of assumed lattice structures. On
the other hand, the LL expansion has been regarded as a
convenient tool in the GL approach which is not applicable
to lower temperatures and lower fields. However, the LL
expansion of the order parameter has been applied to the
quasiclassical (Eilenberger-Larkin-Ovchinnnikov) approach
to examine the diamagnetic properties [15] by incorporating an
approximation analogous to the so-called Pesch approximation
[18]. We have chosen to use this LL expansion method in the
quasiclassical approach [15] to address the low-temperature
vortex lattice states which cannot be examined in the GL
approach [17].

One of the main results in the present work is the presence
of a critical end point of a first-order structural transition of
the vortex lattice in the low-temperature and intermediate-
field regime which cannot be well described by the previous
GL approach [17]. We argue that the presence of this critical
end point is related to the helical phase modulation in the
vortex-free limit mentioned above and to the field-induced
compression of the vortex lattice structure due to the PPB.
Furthermore, as an electronic measure of the structure of the
vortex lattice at each field and temperature, we calculate the
local density of states (LDOS) in each vortex lattice.

The rest of this paper is organized as follows. In Sec. II,
the electronic model examined in the present work and the
content of our theoretical approach are explained. The obtained
phase diagrams and the vortex lattice structures are shown and
discussed in Sec. III together with the calculation results on the
LDOS. In Sec. IV, our results are summarized, and the details
of the quasiclassical analysis we have used are explained in
Appendices.
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II. MODEL AND THEORETICAL APPROACH

Following the previous work [16], we start from the
Hamiltonian with only an s-wave attractive interaction:

H = Hsingle + Hint, (1)

Hsingle =
∑
k,α,β

c
†
kα[εkσ0 + ζ gk · σ ]α,βckβ

+
∫

d3r
∑
αβ

c†α(r)μs B(r) · σ α,βcβ(r), (2)

Hint = −gV

4

∑
q

�†
q�q, (3)

where ckα is the annihilation operator of an electron with
momentum k and spin α(=↑ , ↓), cα(r) is that at position r ,
the σμ’s (μ = 0,1,2,3) are the Pauli matrices, g is the coupling
constant, V is the volume of the system,

�q = 1

V

∑
k,α,β

c−k+q/2,α(−iσ2)αβck+q/2,β (4)

is the field operator of a spin-singlet s-wave Cooper pair
with the total momentum q, Hsingle is the noninteracting
term of the quasiparticle Hamiltonian, and Hint is the s-wave
pairing interaction term. Regarding the centrosymmetric term
of the quasiparticle dispersion εk, we assume the quasi-two-
dimensional form

εk = 1

2m

(
k2
x + k2

y

)+ J (1 − cos kzd), (5)

where m is the effective mass of a quasiparticle, and d is
the lattice constant in the c-axis direction. The antisymmetric
spin-orbit coupling (ASOC) of Rashba type is described by

g(k) = k⊥ × ẑ
kF

, (6)

where k⊥ = k − kz ẑ is the two-dimensional wave vector, kF =√
2mEF, EF is the bare Fermi energy, ẑ is the unit vector in

the direction of the broken inversion symmetry, and ζ is the
strength of the ASOC. Throughout this paper, the xy plane is
the basal plane on the broken inversion symmetry, and J is
the interplane coupling constant. Then, the anisotropy of the
coherent lengths is given by

γ = ξx

ξz

=
√√√√〈v2

x

〉
FS〈

v2
z

〉
FS

= 2
√

1 − J/EF

kFdJ/EF
, (7)

where ξx and ξz are the in-plane and the out-of-plane coherent
length, respectively. The angle average over the Fermi surface
is defined as

〈h(k)〉FS =
∫ π/d

−π/d

dkz

2π/d

∫ 2π

0

dφk

2π
h(k) (8)

for an arbitrary function h(k), where φk = tan−1 ky

kx
. In addition,

μs is the magnetic moment of the spin of a quasiparticle, and B
is the magnetic flux density. Although in model (1) the orbital
effect of a magnetic field is not incorporated, it can be readily

FIG. 1. Fermi surfaces (FS1 and FS2) under an in-plane magnetic
field. The gray arrows indicate the direction of the spin fixed by the
spin-orbit coupling of Rashba type. Each surface shifts oppositely
from � by ± Q0. The vector Q0 is defined by Eq. (20) and in
Appendix A.

included through the Peierls substitution:

k → k + eA, (9)

where −e is the electronic charge, and A is the vector potential
associated with B.

As in the previous works [2,16,17], we focus on the case
with such a realistically large ASOC that

Max(Tc, μs |B|) 	 |ζ | 	 EF, (10)

where Tc is the transition temperature at zero field. The small-
ness of the ratio Max(Tc,μs |B|)/|ζ | results in simplifying the
mean-field (BCS) Hamiltonian under which the Eilenberger
equations are constructed. Before constructing the mean-field
quasiparticle Hamiltonian, however, the quadratic term Hsingle

has to be diagonalized. After diagonalization, we encounter
a quasiparticle Hamiltonian consisting of two independent
bands. In Fig. 1, the resulting Fermi surfaces are sketched.
On the other hand, this diagonalization induces pairing inter-
actions between the split two bands. However, these interband
interaction terms are relatively of O([Max(Tc,μs |B|)/ζ ]3) and
hence can be neglected.

Then, as explained in Appendix B, the corresponding
transformation of the Green’s functions leads to the Gor’kov
equations consisting only of intraband terms. As a result, we
obtain the following Eilenberger equations:

[2{ωn + i(−1)a+1μs ĝk · B} + ivF · �]fa = −2iwa�ga,

(11)

[2{ωn + i(−1)a+1μs ĝk · B} + ivF · �∗]f̄a = −2iw∗
a�

∗ga,

(12)

ga = −
√

1 + faf̄a (Re ga < 0). (13)

The indices a (=1,2) specify the two split bands. Furthermore,
ga , fa , and f̄a are the normal and anomalous quasiclassical
Green’s functions, vF is the Fermi velocity on each FS which
has the same value for both FSs up to the lowest order in
ζ/EF and J/EF (see Refs. [19,20] and also Appendix E in the
present work),

wa = (−1)ai exp[i(−1)aφk]

= (−1)ai|k⊥|−1[kx + i(−1)aky] (14)
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is a pairing function associated with the two bands occurring
after the diagonalization,

� = −i∇ + 2eA,

�∗ = i∇ + 2eA, (15)

and ωn (> 0) is the fermion Matsubara frequency. This
set of equations is equivalent to that used in previous
works [19,21,22] except for the inclusion of the Zeeman effect.
Note that the two bands split by the ASOC are coupled with
each other only through the shared order parameter � due to
the condition ζ � Tc.

Next, to solve Eqs. (11) and (12), we assume the type-II
limit hereafter so that B = H , where H is the applied field
along the y axis. In addition, following Adachi et al. [15],
the Landau level (LL) expansion of � is used in the
quasiclassical approach. This is because the conventional
treatment based on comparison in the free energy among a
couple of assumed structures is not fruitful in the present issue
where field-dependent and continuous changes of the vortex
lattice structure are expected to occur [16,17]. Nevertheless,
it is difficult to find an exact solution of Eqs. (11) and (12)
based on the LL expansion method, and hence, we adopt an
approximation [15] underestimating spatial variations of |�|2
to be included in the normal Green’s function ga corresponding
to an analog of the Pesch approximation [18]. The result
following from this approximation, dubbed the “approximate
solution” in Ref. [15], was argued there to be valid not
only near the Hc2 line but also in the low-field region as
long as thermodynamic quantities are considered [23]. Since
the central part of our present work is to find the vortex
lattice structure with the lowest free energy at each field
and temperature, this approximated method can be used to
determine the lattice shape to be realized over wide field
and temperature ranges in the phase diagram. Nevertheless,
one should keep in mind that, for the purpose of resolving a
fine spatial structure, e.g., a single vortex core structure, this
approximation gets less precise at lower fields [15].

Then, Eqs. (11) and (12) are rewritten as

fa = ga�a, f̄a = ga�̄a, ga = −1/
√

1 − �a�̄a, (16)

where

�a = −2iwa[2{ωn + i(−1)a+1μs ĝk · H} + ivF · �]−1�,

�̄a = −2iw∗
a[2{ωn + i(−1)a+1μs ĝk · H} + ivF · �∗]−1�∗.

(17)

The order parameter � can be expanded in terms of LLs:

�(r) =
∑
N

dNψN (r), (18)

where

ψN (r) = e− Q·r√ν
∑
m∈Z

e−iπλm2
eimνγ 1/2z/rH

×�N (γ −1/2x/rH − mν) (19)

is the N th LL (N � 0) when the Landau gauge A = −Hx ẑ
is chosen. Here, rH = 1/

√
2eH is the magnetic length which

characterizes the spacing between two vortices.

The wave vector of the helical phase Q is nonvanishing as
far as δN is finite. Throughout the present work, Q is fixed to
2δN Q0, where

Q0 = μsH

vF
x̂ (20)

is the shift of the Fermi surfaces (see Fig. 1 and Appendix A),
and the deviation of the true Q from 2δN Q0 is assumed to
be compensated by incorporating as many LLs as possible.
It is originally known that the identification Q = 2δN Q0 is
safely valid near Hc2(T ) at high temperatures [2,16] where
the higher gradients may be neglected. In the GL approach in
Ref. [17], the validity of this identification has been tested in
the simplest s-wave pairing case by comparing with the exact
result obtained by determining the Q value minimizing the
free energy at each magnetic field, and the simplified treatment
based on the identification Q = 2δN Q0 has been shown not
to affect the phase diagram even quantitatively (see Fig. 3 and
its related discussions in Ref. [17]).

The function �N is expressed by the N th Hermite polyno-
mial HN as follows:

�N (x) = HN (x)e−x2/2

√
2NN !π1/4

. (21)

Parameters ν and λ, which represent the lattice shape, are
defined as in Fig. 2. Due to this expansion, the function �a

can be described as the linear algebraic expression:

�a = −2iwa

∑
M,N

ψMMa
MNdN, (22)

and �̄a can be calculated from the relation

�̄a(k) = �a(−k)∗, (23)

which can be proved with the symmetry relations presented in
Appendix D. The matrix Ma

MN is defined as follows:

Ma
MN =

∫ ∞

0
dρe−(2ωnρ+|s|2ρ2/2)

× ei{vF· Q−2(−1)a+1μs ĝk ·H}ρLMN (−is∗ρ), (24)

FIG. 2. Definition of the parameters ν and λ, which represents
the shape of the vortex lattice. Here, a1 and a2 are principal lattice
vectors of the lattice.
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which is remarkably independent of the lattice shape, where

s = γ 1/2vF,z + iγ −1/2vF,x√
2r2

H

, (25)

LMN (z) =
min(M,N)∑

l=0

√
M!N !

(M − l)!(N − l)!l!
(z)M−l(−z∗)N−l . (26)

The derivation of Eq. (22) is shown in Appendix G.
Since the shape of the vortex lattice to be realized is

determined through minimization of the free energy per unit
volume, we need an expression of the free energy represented
by the quasiclassical Green’s functions. According to the
theory of Eilenberger [8], the free energy F is calculated
through the variational principle in the form

F =N

∫
d3r

⎡⎣|�|2 ln
T

Tc
+ 2πT

∑
ωn>0

∑
a=1,2

1 + (−1)aδN

2

×
〈( |�|2

ωn

− iwa�f̄a + i�∗w∗
afa

ga − 1

)〉
FS

⎤⎦, (27)

where T is the temperature,

N = N1 + N2

2
, (28)

δN = N2 − N1

N1 + N2

(
∝ ζ

EF

)
, (29)

and Na is the normal DOS on the ath FS. More details on the
derivation of Eq. (27) are given in Appendix F.

To make the optimization feasible, the LLs are transformed
into the linear combinations of the LLs by diagonalizing
the quadratic term, F2, of the free energy with respect to
the order parameter �. Using the parameter integral A−1 =∫∞

0 dρ exp(−ρA), the quadratic term F2 is easily obtained
from Eq. (27) and becomes

F2

V
= N

∑
M,N

dM

[
δM,N ln

T

Tc

+
∫ ∞

0
dρf (ρ)

{
δM,N

−
∑

a

1 + (−1)aδN

2
〈|wa|2e−|s|2ρ2/2LM,N (−is∗ρ)

× ei{vF· Q−2(−1)a+1μs ĝk ·H}ρ〉FS

}]
dN, (30)

which coincides with the expression obtained in the previous
study [17], where

f (ρ) = 2πT

sinh(2πTρ)
. (31)

The matrix to be diagonalized is the expression between the
square brackets in Eq. (30), and the resulting modes are the
linear combinations of the LLs. If the modes resulting from
the diagonalization are separated in energy from one another,
we only have to select just the mode with the lowest energy to
obtain the vortex lattice structure in equilibrium, because an
energy difference between lattice structures is usually much

smaller [24]. Thus, we have three variational parameters: ν, λ,
and the amplitude of the relevant mode.

After the diagonalization, the Hc2 line is determined, as
usual, as the line in the H -T phase diagram on which the
eigenvalue of the lowest energy mode changes its sign upon
cooling. As already noted elsewhere [16,17], the transition at
the Hc2(T ) line defined in the mean-field approximation is,
in contrast to that in the centrosymmetric case [1], of second
order irrespective of the temperature and the strength of the
PPB effect. Indeed, we have confirmed that the quartic term in
F with respect to � is positive for the mode with the lowest
eigenvalue even in the high-field and low-temperature region
when δN = 0, where the suppression of the Zeeman effect due
to the ASOC is the weakest.

Furthermore, as a physical quantity testable in STM
experiments and reflecting the vortex lattice structures, we
have considered the LDOS. To obtain this quantity, the analytic
continuation, iωn → E + iη is performed, where η is an
infinitesimal and positive. In the present formalism, this is
equivalent to the replacement iωn → E + iη in Ma

MN , which
leads instantly to the retarded quasiclassical Green’s function
gR

a . Then, we have

N (r; E) = −N
∑

a

[1 + (−1)aδN ]Re
〈
gR

a (r; k̂,E)
〉
FS (32)

as the LDOS (see Appendix H). In this case, note that the
relation between the retarded versions of �a and �̄a is given
not by Eq. (23) but by

�̄a(k,E) = �a(−k, − E)∗. (33)

III. RESULTS

In this section, our calculation results on the phase diagram
are shown and explained. In all of our calculation results
presented in this paper, we have commonly used the parameter
values J/EF = 0.1, H 2D

orb/HP(∝ μs) = 2.0, and d = π/kF,
which are the same values as those in Fig. 3 in Ref. [17],
where H 2D

orb (= 0.56φ0/2πξ 2
0 ) and HP (=1.25Tc/μs) are the

orbital pair breaking field in 2D systems and the paramagnetic
pair breaking field at zero temperature, respectively, φ0 = π/e

is the flux quantum, and ξ0 = vF /2πTc is the coherent length
in the directions parallel to the basal plane.

A. δN = 0 case

In this subsection, the resulting phase diagram in the
limiting case with δN = 0 is explained. According to the
inequality (10), this case corresponds to the limit of a large
bandwidth.

First, the number of the LLs to be incorporated in our
calculation should be determined. As more LLs are included,
the resulting Hc2 value at each temperature becomes higher.
In Fig. 3, such an example of the dependence of Hc2(T ) on the
number of the incorporated LLs is presented, where nmax is the
index of the highest LL incorporated. Ideally, the saturation of
Hc2 value should be reached by a finite value of nmax. Based
on the nmax dependence of the Hc2(T ) curve obtained in Fig. 3,
we have kept just the lowest eight LLs to determine the vortex
lattice structure, as in Ref. [17].
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FIG. 3. (Color online) Dependence of the Hc2 curve on the
number of LLs incorporated in the calculation in the δN = 0 case,
where nmax is the index of the highest LL incorporated.

Next, the details of the mode splittings resulting from
the diagonalization in F2 are explained. In Fig. 4, the field
dependencies of the eigenvalues of the diagonalized modes are
shown at a low temperature. In this δN = 0 case, the lowest
two modes are found to be nearly degenerate for H > 0.4H 2D

orb .
Thus, the free energies resulting from the two modes have
been calculated individually and compared with each other to
determine the vortex lattice structure in equilibrium.

The resulting phase diagram is shown in Fig. 5, in which
there are three phases (I–III) separated by first-order structural
transitions (FOSTs). The structure in phases I and II may be
regarded as a stretched triangular lattice. On the other hand,
a crossover from a one-dimensional-like structure, in which a
vortex layer and a nodal line are alternating, to a honeycomb-
like vortex lattice occurs in phase III. In the former (low-field)
structure of phase III, the alternation occurs along the x axis,
namely, the direction of the shift of the Fermi surfaces.

The most remarkable character seen commonly in these
vortex states is the lattice compression parallel to the x axis
occurring with the field increasing. This is a consequence of
the shift of Fermi surfaces caused by the in-plane applied field
due to the interplay between the ASOC and the PPB effect.
Without PPB, no such field-induced anisotropy arises. To avoid
any confusion, the length scales in the x and z directions
are measured in units of rHγ 1/2 and rHγ −1/2, respectively,
hereafter. Reflecting the above-mentioned shift of the Fermi
surfaces, the system favors the periodicity proportional to

-2.4

-1.6

-0.8

 0

 0.8

 0  0.4  0.8  1.2

ei
ge

n 
va

lu
e

H/Horb
2D

FIG. 4. (Color online) Field dependence of eigenvalues of the
modes obtained by diagonalizing F2 at T = 0.1Tc when δN = 0.
The modes with the lowest two eigenvalues (the red and blue lines)
are nearly degenerate for H > 0.4H 2D

orb with each other and cross at
H = 0.48H 2D

orb .

FIG. 5. (Color online) Resulting phase diagram and vortex lattice
states appearing when δN = 0. The first-order structural transition
(FOST) points are numerically determined, and the line connecting
between them is a guide to the eye. Phases I and II are stretched
triangular lattice phases. Phase III is a modulated triangular lattice
phase. (B) shows that the modulation is along the direction of the shift
of the Fermi surfaces. The figures (C), (E), and (F) indicate that the
lattice is compressed along the x axis with increasing field. In (A),
the spatial modulation in the region surrounded by the broken white
circle does not imply the presence of an additional vortex there. Here,
�0 is the magnitude of the order parameter at each temperature in the
absence of magnetic fields.

1/(Q0rH ) ∝ 1/H 1/2 along the x axis in real space. On the other
hand, since, due to the flux quantization, the area of the unit cell
of the vortex lattice (in the above-mentioned units) is kept con-
stant, the lattice spacing parallel to the z axis is expanded with
the field increasing. In this manner, the field-induced lattice
compression in the x direction is explained (see also Fig. 6).

This field-induced compression parallel to the x axis tends
to induce FOSTs between different vortex lattice symmetries
in different ways. In general, a compression in one direction
merely enhances the anisotropy of the lattice, and a super-
fluous compression accompanied by no change of the lattice
symmetry would lead to some energy cost. Then, a FOST to a
more isotropic lattice state may occur. When a couple of lattice
symmetries are competitive in energy to each other, however, it
is possible for a FOST to occur between the two states without
releasing the anisotropy. In the present δN = 0 case, the FOST
of the latter type seems to be realized between the I and II
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FIG. 6. (Color online) Field dependence of ν, which is the lattice
spacing along the x axis (see Fig. 2), of the lattice in phase I of
Fig. 5. Note that ν is almost proportional to 1/

√
H for H > 0.3H 2D

orb

at T = 0.3Tc.

phases in the low-field regime where the vortex lattice solution
is formed in terms of only the LLs with even indices. On the
other hand, in higher fields, the vortex lattice consisting only
of the LLs with odd indices is favored because of enhanced
roles of the PPB in higher fields. The above-mentioned release
of the anisotropy is realized through the FOST between I and
III phases together with this switching in the description of the
order parameter from the even to odd LLs.

On the other hand, at a glance, one might wonder why no
FOST occurs between the structures (A) and (B) if noting the
appearance in (A) of an additional modulation of the order pa-
rameter amplitude indicated by the broken white circle. How-
ever, this modulation suggesting a node of the order parameter
is not accompanied by any nonvanishing winding number and
thus is not a genuine vortex but just a modulated structure
with a low but nonvanishing amplitude of the order parameter.
Hence, the structure change between (A) and (B) can occur
gradually and continuously to compensate the anisotropy of
the vortex lattice as the field increases, which leads to the
continuous crossover between them rather than a FOST.

As mentioned above, the appearance of the vortex lattice
consisting only of odd LLs in higher fields stems from the
PPB effect, and consequently, the resulting vortex lattices
in higher fields are mostly occupied by the spatial regions
in which the order parameter amplitude |�| nearly vanishes.
To correctly describe such vortex lattices with PPB-induced
additional modulations on the length scales of the magnetic
length rH = √

φ0/(2πH ), the nonlocality needs to be taken
into account properly in the terms distinguishing different
lattice structures in the free energy. In the previous works based
on the GL free energy kept up to the quartic order in the order
parameter �, the quartic term has been assumed in a spatially
local form. In describing details of the lattice structure, this
local form is insufficient particularly in higher fields where the
PPB effect is not negligible. In fact, the resulting structures
in the phase III are different from those in the previous GL
approach. On the other hand, the field-induced transition from
a triangular structure to another one, namely, from I to II in
Fig. 5, is qualitatively similar to the previous one [16,17].

B. δN = 0.1 case

Next, we turn to a more realistic case with a nonvanishing
δN or a finite bandwidth. The choice of the value δN = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1
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FIG. 7. (Color online) Dependence of the Hc2 curve on the
number of LLs incorporated in calculation when δN = 0.1. As in
the δN = 0 case, we have assumed nmax = 7.

seems to be reasonable if one images the materials including
CePt3Si [25] as the corresponding model systems.

As in the δN = 0 case, the phase diagram is examined by
including the lowest eight LLs (see Fig. 7). In this case, the
even and odd LLs are mixed in every mode resulting from
the diagonalization. Furthermore, as seen in Fig. 8, there is no
competition between the modes, and we have a well-defined
mode with the lowest energy eigenvalue. Thus, we only have
to focus on this mode to determine the vortex lattice structure
at each field and temperature based on the free energy (27).

Figure 9 shows the resultant phase diagram and vortex
states. There, the phase I and II are stretched triangular lattice
phases, while a rectangular lattice is stable in the phase III.
The phase IV is characterized by a modulated triangular
lattice structure. The most remarkable difference of this phase
diagram from Fig. 5 in the δN = 0 case is the emergence of a
critical end point of the FOST line between phases I and II.

First, to elucidate the effect of finite δN , as in the former
δN = 0 case, the relation between the lattice spacing along the
x axis and the applied field has been plotted. It is remarkable
in Fig. 10 that, although the spacing in the x direction,
broadly speaking, shrinks with the field increasing reflecting
the compression induced by the ASOC, an upturn appears in
its field dependence. This seems to result from the appearance
of another periodicity caused by the emergence of the helical
phase in the vortex-free case [2]. The wave vector Q of the
helical phase is known to be proportional to δN (see the
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FIG. 8. (Color online) Field dependence of the eigenvalues of the
modes obtained by diagonalizing F2 at T = 0.1Tc when δN = 0.1.
The mode with the lowest eigenvalue (red line) is dominant at any
field.
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FIG. 9. (Color online) Phase diagram and vortex lattice states
when δN = 0.1. The first-order structural transition (FOST) points
are numerically determined, and the line connecting between them
is a guide to the eye. Phases I and II are stretched triangular lattice
phases, while phase III is a rectangular lattice one. Furthermore,
phase IV is a modulated triangular lattice phase. Figure (A) shows
that the modulation develops along the direction of the shift of the
Fermi surfaces with the field increasing. (D), (E), and (F) can be
continuously transformed to one another circumventing the critical
end point (CEP).

description below Eq. (19) or Refs. [2,17]), and thus, it is
natural to expect that the effect of Q becomes larger as δN

increases. In general, the magnitude of Q is not commensurate
with that of Q0, and hence, the role of Q can interfere with
that of Q0, which is thought to lead to the upturn.

Furthermore, the emergence of the critical end point of the
low-field FOST seems to be closely related to the upturn in
Fig. 10. It is found in our calculation that, in the parameter (ν,
λ) space, where ν and λ are defined in Fig. 2 as parameters
characterizing the vortex lattice unit cell, phases I and II
correspond to two neighboring valleys to each other. In the
previous δN = 0 case, these two valleys move to the same
direction in the parameter space as the field, and hence Q0,
increases, and consequently, they do not merge with each other.
On the other hand, in the present case, the effect of the nonzero
Q0 is weakened by the presence of the finite Q in particular
at lower temperatures, and hence, the structure in phase II,
which is more strongly compressed in the x direction than that
in the phase I, starts to return to a more stretched structure

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

ν

H/Horb
2D

T = 0.5Tc
T = 0.35Tc

FIG. 10. (Color online) Field dependence of ν, the lattice spacing
parallel to the x axis, of the states in phase II of Fig. 9. The upturn of
the width for 0.4H 2D

orb < H < 0.5H 2D
orb means that the field-induced

compression parallel to the x axis is weakened in higher fields. As
for the definition of ν, see Fig. 2.

at a δN-dependent value of the applied field. Therefore, the
above-mentioned two valleys tend to merge with each other,
resulting in the disappearance of the low-field FOST between
the I and II phases and thus in the critical end point. In fact,
the change of the lattice structure in Fig. 9 from (E) to (D)
and then to (F) can be naturally understood as being due to the
field-induced compression in the x direction and stretch in the
z direction.

In the higher-field region where the anisotropic triangular
lattice is destabilized, the resulting structure (C) has the
rectangular symmetry. Interestingly, this phase III with the
rectangular symmetry is wide, and, with no transition,
the nodelike region with extremely small |�| becomes wider
as the field grows. This increase of the spatial modulation of
|�| in the phase III is a consequence of the roles of the odd LLs
due to the enhancement of the PPB effect in the higher-field
region. Furthermore, at the high-field end, we have the narrow
phase IV with highly anisotropic and modulating structures.

C. Calculation of LDOS

As available results for comparison with real experiments
to be performed in future, the LDOS of vortex lattices have
been examined, and their examples are shown in Fig. 11. The
smearing factor η is fixed at the value where the η dependence
of the spectrum of the LDOS is moderate.

In the low-field region, there is a double peak structure
with a narrow splitting around E = 0 in the vortex core, and
as the field increases, the splitting of the peaks grows wider.
This splitting seems to stem from the Zeeman effect [26],
because its width is nearly equal to the double of μsH [=
0.4(H/H 2D

orb )2πTc in the present cases].
Although the peaks are split due to the Zeeman effect, the

spatial dependence of the LDOS at E = 0 reflects that of |�|
directly. Thus, observation of these peaks around the vortex
cores in STM experiments would lead to the verification of the
compressing effect due to the finite Q0 (i.e., the shift of the
split Fermi surfaces induced by the interplay between the PPB
effect and the ASOC).

We should comment, however, on the smearing factor η. In
the present approach, the value of η/2πTc is of O(10−1) and
is much larger than that in the methods used in such papers as
Refs. [10] and [11], where η/2πTc = O(10−3). Therefore, the
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FIG. 11. (Color online) Panels (a) and (b) are the images of the
local density of states (LDOS) at the excitation energy E = 0 of the
states (F) and (D), respectively, in Fig. 9. The smearing factor η here
is set at 0.1 and 0.15, respectively, in units of 2πTc. Panels (c) and
(d) are the graphs of the energy dependence of the LDOS at the
vortex center of the same state as in (a) and (b), respectively, with
different smearing factors η. In (c), the spectrum is stable around
η/2πTc = 0.1 and has slightly split peaks. In (d), the spectrum is
stable around η/2πTc = 0.15 and has widely split peaks.

results here are highly smeared, and the detailed information on
the electronic structure may be lost. Nevertheless, we believe
that the essential structure is captured because there is a good
correspondence between the vortex core and the peak of the
LDOS.

We may be able to overcome this difficulty within the
present framework, where the Eilenberger equation and the
Landau level expansion are combined, by calculating the “full
solution,” which is introduced in Ref. [15]. As is mentioned in
Sec. II, the validity of the approximate solution is not ensured
in computing quantities related to the fine spatial structure of
the system, which might result in the large η. We can get over
this point by examining the full solution, where the Fourier
transform of the normal quasiclassical Green’s function is
employed instead of the approximation analogous to that used
by Pesch [18]. Development of the method to calculate the
LDOS in this direction may be done in future works.

IV. SUMMARY

In this paper, possible vortex lattices in Rashba noncen-
trosymmetric superconductors under magnetic fields parallel
to the basal plane have been studied based on the quasiclassical

approach, and the obtained results have been compared with
those in the previous GL approach [16,17] neglecting the
nonlocality [1] in the quartic term of the GL free energy.

We have found that the overall field dependence of the
vortex lattice structure in the realistic δN �= 0 case remains
unchanged even in the quasiclassical approach: The lattice
structure is hexagonal in lower fields, while it is rectangular in
higher fields.

However, we have also noticed that the details of the field
dependence of the lattice structure are significantly changed.
First of all, the lattice structure at the high-field end is
significantly changed compared with the corresponding GL
result because of our proper treatment of the nonlocality
of the quartic term in the free energy with respect to the
superconducting order parameter. The need for such treatment
comes from the strong PPB effect. Due to this effect, higher
LLs, the effect of which is known to make the lattice structure
complicated in the context of centrosymmetric superconduc-
tors [27], play a more important role in the higher-field region.
Meanwhile, their spatial variation is more intense than that of
the lowest LL. Therefore, the nonlocality has to be dealt with
appropriately in such region. Second, we have found a critical
end point of a first-order structural transition line at a low
temperature and an intermediate field, where the previous GL
approach [16,17] did not give any reliable result. Furthermore,
its appearance has been argued to be a reflection of the helical
phase modulation [2] which can be directly seen only in the
vortex free limit.

Moreover, in the present work, we have been able to
clarify that the origin of the complex field-dependent structural
changes of the vortex lattice consists in the anisotropic
compression of the lattice occurring as a consequence of the
relative shift of the two Fermi surfaces due to the interplay
between the PPB and the lack of the inversion symmetry.
In addition, we have also examined the LDOS in such
vortex lattice structures. We hope that, through some STM
experiments, the strange field dependencies of the vortex
lattice structure would be verified by measuring the LDOS
in Rashba superconductors.

ACKNOWLEDGMENT

One of the authors (R.I.) was financially supported by a
Grant-in-Aid for Scientific Research (No. 25400368) from
MEXT, Japan.

APPENDIX A: DIAGONALIZATION OF Hsingle

For convenience, we define here again the noninteracting
part of the Hamiltonian Hsingle and its concomitant quantities:

Hsingle =
∑
k,α,β

c
†
kα[εkσ0 + ζ gk · σ ]α,βckβ

+
∫

d3r
∑
αβ

c†α(r)μs B(r) · σ α,βcβ(r), (A1)

where ckα is the annihilation operator of an electron with
momentum k and spin α (=↑ , ↓), cα(r) is the counterpart
at the position r in the real space, and the σμ’s (μ = 0,1,2,3)
are the Pauli matrices. As to the centrosymmetric part of the
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quasiparticle dispersion εk, the quasi-two-dimensional form is
assumed:

εk = 1

2m

(
k2
x + k2

y

)+ J (1 − cos kzd), (A2)

where m is the effective mass of a quasiparticle, and d is the
lattice constant in the c-axis direction;

g(k) = k⊥ × ẑ
kF

(A3)

is the (g) vector expressing the antisymmetric spin-orbit
coupling (ASOC) of Rashba type, k⊥ = k − kz ẑ is the two-
dimensional wave vector, kF = √

2mEF, EF is the bare Fermi
energy, ẑ is the unit vector in the direction of the broken
inversion symmetry, and ζ is the strength of the ASOC.
Throughout this paper, the xy plane is the basal plane for the
broken inversion symmetry, and J is the interplane coupling
constant. In addition, μs is the magnetic moment of the spin
of a quasiparticle, and B is the magnetic flux density.

In the absence of magnetic fields, Hsingle can be diagonal-
ized by using the matrix

U (k) = σ0 + i(cos φkσ1 + sin φkσ2)√
2

(A4)

(φk = tan−1 ky

kx
), namely, by introducing the new field operator

c̃ak = Uaα(k)cαk. (A5)

Then, Hsingle with B = 0 becomes

Hsingle =
∑

k

{ε1k c̃
†
1k c̃1k + ε2k c̃

†
2k c̃2k}, (A6)

where

εak = εk + (−1)a+1ζ |gk|. (A7)

In the presence of a homogeneous magnetic field H , the
existence of the Zeeman energy term does not permit the
precise diagonalization by using U (k). Nevertheless, if the
temperature T and the magnitude of the Zeeman energy μsH

are sufficiently small compared to the strength of the ASOC
ζ , the interband mixing caused by the Zeeman term can be
quantitatively neglected, so that Hsingle simply becomes

Hsingle =
∑

k

{(ε1k + μs ĝk · H)c̃†1k c̃1k

+ (ε2k − μs ĝk · H)c̃†2k c̃2k}, (A8)

in which the momentum Q0 giving the shift between the two
Fermi surfaces is given by

Q0 = μsH

vF
x̂ (A9)

because

μs ĝk · H � −vF · μsH

vF
x̂ (A10)

is satisfied near the Fermi surface, where vF is the Fermi
velocity.

APPENDIX B: DERIVATION OF
THE EILENBERGER EQUATION

Throughout the present paper, we use the mean-field
approximation

H�Hsingle − V

2

∑
q

(�∗
q�q + �†

q�q) + V

g

∑
q

|�q |2 (B1)

for the HamiltonianH, where g (> 0) is the coupling constant,
V is the volume of the system, and

�q = 1

V

∑
k,α,β

c−k+q/2,α(−iσ2)αβck+q/2,β (B2)

is the field operator of a spin-singlet s-wave Cooper pair with
the total momentum q. The component �q with the momentum
q of the order parameter �(r) is given by

�q = −g

2
〈�q〉eq , (B3)

where �(r) =∑q eiq·r�q . Here, 〈X̂〉eq is the grand canonical

ensemble average of an arbitrary operator X̂ under the
Hamiltonian H.

As usual, the Gor’kov Green’s functions are defined as

Gαβ(r1,r2; τ1 − τ2) = −〈Tτ cα(r1,τ2)c̄β(r2,τ2)〉eq,
Ḡαβ(r1,r2; τ1 − τ2) = −〈Tτ c̄α(r1,τ1)cβ(r2,τ2)〉eq,
Fαβ(r1,r2; τ1 − τ2) = −〈Tτ cα(r1,τ1)cβ(r2,τ2)〉eq,
F̄αβ(r1,r2; τ1 − τ2) = −〈Tτ c̄α(r1,τ1)c̄β(r2,τ2)〉eq, (B4)

where Tτ denotes the imaginary time ordering operation, and

cα(τ ) = e(H−μN )τ cαe−(H−μN )τ ,

c̄α(τ ) = e(H−μN )τ c†αe−(H−μN )τ . (B5)

Here, μ is the chemical potential, and N =∑k,α c
†
kαckα is the

particle number. By taking derivatives of the Gor’kov Green’s
functions with respect to the imaginary time, the following
left- and right-sided Gor’kov equations are obtained:

−∂τ1Gαβ(r1,r2; τ1 − τ2) = δ3(r1 − r2)δ(τ1 − τ2)δαβ +
∑

γ

[ξ ( − i∇1 + eA(r1)) + μsσ · B(r1)]αγ Gγβ(r1,r2; τ1 − τ2)

−
∑

γ

�αγ (r1)F̄γβ(r1,r2; τ1 − τ2),

−∂τ1Ḡαβ(r1,r2; τ1 − τ2) = δ3(r1 − r2)δ(τ1 − τ2)δαβ −
∑

γ

[ξ (i∇1 + eA(r1)) + μsσ · B(r1)]T
αγ Ḡγβ(r1,r2; τ1 − τ2)

−
∑

γ

�†
αγ (r1)Fγβ(r1,r2; τ1 − τ2),
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−∂τ1Fαβ(r1,r2; τ1 − τ2) =
∑

γ

[ξ ( − i∇1 + eA(r1)) + μsσ · B(r1)]αγ Fγβ(r1,r2; τ1 − τ2) −
∑

γ

�αγ (r1)Ḡγβ(r1,r2; τ1 − τ2),

−∂τ1 F̄αβ(r1,r2; τ1 − τ2) = −
∑

γ

[ξ (i∇1 + eA(r1)) + μsσ · B(r1)]T
αγ F̄γβ(r1,r2; τ1 − τ2) −

∑
γ

�†
αγ (r1)Gγβ(r1,r2; τ1 − τ2)

(B6)

and

∂τ2Gαβ(r1,r2; τ1 − τ2) = δ3(r1 − r2)δ(τ1 − τ2)δαβ +
∑

γ

Gαγ (r1,r2; τ1 − τ2)[ξ ( − i∇2 + eA(r2)) + μsσ · B(r2)]γβ

−
∑

γ

Fαγ (r1,r2; τ1 − τ2)�†
γβ(r2),

∂τ2Ḡαβ(r1,r2; τ1 − τ2) = δ3(r1 − r2)δ(τ1 − τ2)δαβ −
∑

γ

Ḡαγ (r1,r2; τ1 − τ2)[ξ (i∇2 + eA(r2)) + μsσ · B(r2)]T
γβ

−
∑

γ

F̄αγ (r1,r2; τ1 − τ2)�γβ(r2),

∂τ2Fαβ(r1,r2; τ1 − τ2) = −
∑

γ

Fαγ (r1,r2; τ1 − τ2)[ξ (i∇2 + eA(r2)) + μsσ · B(r2)]T
γβ −

∑
γ

Gαγ (r1,r2; τ1 − τ2)�γβ(r2),

∂τ2 F̄αβ(r1,r2; τ1 − τ2) =
∑

γ

F̄αγ (r1,r2; τ1 − τ2)[ξ (−i∇2 + eA(r2)) + μsσ · B(r2)]γβ −
∑

γ

Ḡαγ (r1,r2; τ1 − τ2)�†
γβ(r2),

(B7)

where −e is the electronic charge, A is the vector potential associated with B,

�αβ(r) = (−iσ2)αβ�(r), (B8)

and

ξ (k) = (εk − μ)σ0 + ζ gk · σ . (B9)

Hereafter, we define the operation of ∇ to an arbitrary function h(r) from the right side as

h(r)∇ = −∇h(r). (B10)

The Wigner representation of the Green’s functions is

Xαβ(r; k,ωn) =
∫

d3r ′e−ik·r ′
∫ 1/T

0
dτeiωnτXαβ(r + r ′/2,r − r ′/2; τ ) (B11)

for X = G,Ḡ,F,F̄ . By Fourier-transforming Eqs. (B6) and (B7) and neglecting the higher-order terms with respect to 1/kFξx

and 1/kFξz (ξx and ξz are the coherent lengths in the x and z directions), the left- and right-sided Gor’kov equations in the Wigner
representation become

Ǧ−1Ǧ = ǦǦ−1 = 1̌ (B12)

in the matrix form, where

Ǧ(r; k,ωn) =
(

G(r; k,ωn) F (r; k,ωn)
−F̄ (r; k,ωn) −Ḡ(r; k,ωn)

)
, (B13)

Ǧ−1(r; k,ωn) =
(

iωnσ0 − [ξ (k) + v(k) · �/2 + μsσ · B(r)] iσ2�(r)

−iσ2�
∗(r) −iωnσ0 − [ξT(−k) + vT(−k) · �∗/2 + μsσ

T · B(r)]

)
,

(B14)
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and 1̌ is the 4 × 4 identity matrix. Here,

� = −i∇ + 2eA,

(B15)
�∗ = i∇ + 2eA,

X =
(

X↑↑ X↑↓
X↓↑ X↓↓

)
(X = G,Ḡ,F,F̄ ), (B16)

and

v(k) = ∇kξ (k). (B17)

The subtraction of the two equations in Eq. (B12) leads to the
following equation

[Ǧ−1,Ǧ] = 0. (B18)

To obtain Gor’kov equations in a more useful form, the
transformation with the matrix

Ǔ (k) =
(

U (k) 0
0 U (−k)∗

)
(B19)

is considered, namely, the Green’s functions and its inverse
operator in the transformed new representation are defined as

Ǧ′ = Ǔ (k)ǦǓ †(k) (B20)

and

Ǧ′−1 = Ǔ (k)Ǧ−1Ǔ †(k), (B21)

and further, we put

Ǧ′ =

⎛⎜⎝ G1 G12 F1 F12

G21 G2 F21 F2

−F̄1 −F̄12 −Ḡ1 −Ḡ12

−F̄21 −F̄2 −Ḡ21 −Ḡ2

⎞⎟⎠. (B22)

Suppose here that the length scales on any inhomogeneity are
sufficiently longer than k−1

F . Then, X1 and X2 are interpreted
as the intraband Green’s functions of the bands 1 and 2 at
r , while X12 and X21 are interpreted as the interband ones
(X = G,Ḡ,F,F̄ ). Here, we neglect the off-diagonal elements
by assuming that Tc, the critical temperature at zero field, and
μsH , the magnitude of the Zeeman energy, are much smaller
than ζ , the strength of the ASOC (see the main text). Then,
Eq. (B18) becomes [

Ǧ−1
a ,Ǧa

] = 0, (B23)

where

Ǧa =
(

Ga Fa

−F̄a −Ḡa

)
(B24)

and

Ǧ−1
a (r; k,ωn) =

(
iωn − [ξa + va · �/2 + (−1)a+1μs ĝk · B(r)] wa�(r)

−w∗
a�

∗(r) −iωn − [ξa − va · �∗/2 − (−1)a+1μs ĝk · B(r)]

)
. (B25)

Here,

ξa = εak − μ, (B26)

wa = (−1)aiei(−1)aφk , (B27)

and(
v1 v12

v21 v2

)
= U (k)

(
v↑↑(k) v↑↓(k)
v↓↑(k) v↓↓(k)

)
U †(k). (B28)

In this representation, we define the quasiclassical Green’s
functions on each FS as follows:

ga(r; k̂,ωn) =
∮

dξa

πi
Ga(r; k,ωn), (B29)

ḡa(r; k̂,ωn) =
∮

dξa

πi
Ḡa(r; k,ωn), (B30)

fa(r; k̂,ωn) =
∮

dξa

πi
Fa(r; k,ωn), (B31)

f̄a(r; k̂,ωn) =
∮

dξa

πi
F̄a(r; k,ωn), (B32)

and their matrix form as

ǧa =
(

ga fa

−f̄a −ḡa

)
. (B33)

Here, the complex integration
∮

represents the average of the
two contour integrals along the paths 1 and 2 illustrated in
Fig. 12. The integration of Eq. (B23) with respect to ξa leads

to the Eilenberger equation:[
Ǧ−1

a

∣∣
k=kFa

,ǧa

] = 0, (B34)

where kFa is the Fermi wave vector of the ath band, and we
also use the fact that every Green’s function has a sharp peak
with the width |�| around ξa = 0.

APPENDIX C: CONDITIONS ON ǧa

Because of the subtraction which leads to Eq. (B18),
some information is lost. Actually, we cannot determine
the quasiclassical Green’s functions uniquely based only on
Eq. (B34). This information, however, can be recovered with
the following two conditions:

ǧ2
a = 1̌, sgn Re ga = −sgn ωn, (C1)

FIG. 12. Two paths of the complex integration
∮

.
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where 1̌ is the 2 × 2 identity matrix. In this section, we derive
these conditions based on some assumptions.

According to the Eilenberger equation (B34), we have the
relations

vFa · ∇(ga − ḡa) = 0, (C2)

vFa · ∇
{(

ga + ḡa

2

)2

− faf̄a

}
= 0, (C3)

where vFa = va|k=kFa
.

In the spatially homogeneous case, the solutions of the
Gor’kov equations in Eqs. (B6) or in Eqs. (B7) lead to the
quasiclassical Green’s functions

ga = ḡa = − ωn√
ω2

n + |wa�|2 , (C4)

fa = − wa�

i
√

ω2
n + |wa�|2 , f̄a = − (wa�)∗

i
√

ω2
n + |wa�|2 , (C5)

which obey

ǧ2
a = 1̌. (C6)

These are the physical solution of the Eilenberger equation
(B34).

In the cases with spatial inhomogeneity, it is assumed that
the system can be smoothly transformed to the homogeneous
state towards infinity so that the normalization condition (C6)
is still valid according to Eqs. (C2) and (C3). Therefore,
generally,

ga = ḡa = −
√

1 + faf̄a (C7)

is also valid. Strictly speaking, the branch of the root in
Eq. (C7) cannot be determined based only on Eq. (C6).
However, we note that the inequality

|faf̄a| < 1 (C8)

is satisfied in the homogeneous case, and that the averaged
magnitude of the superconducting energy gap |�| becomes
smaller due to a spatial inhomogeneity of �. Thus, the
inequality (C8) should remain valid in vortex states so that
the same branch as in the homogeneous case may be chosen.

APPENDIX D: SYMMETRY RELATIONS OF
QUASICLASSICAL GREEN’S FUNCTIONS

In this section, we derive some symmetry relations con-
necting one quasiclassical Green’s function with another.

In the Wigner representation, the Gor’kov Green’s functions
have the symmetry relations

Fαβ(r; k,ωn) = −Fβα(r; −k, − ωn),

F̄αβ(r; k,ωn) = −F̄βα(r; −k, − ωn),

Fαβ(r; k,ωn) = F̄βα(r; k, − ωn)∗,

Gαβ(r; k,ωn) = −Ḡβα(r; −k, − ωn),

Gαβ(r; k,ωn) = Gβα(r; k, − ωn)∗,

Ḡαβ(r; k,ωn) = Ḡβα(r; k, − ωn)∗ (D1)

following from their definition. In other words, with the use of
the transformation (B20), we have

Fa(r; k,ωn) = −Fa(r; −k, − ωn),

F̄a(r; k,ωn) = −F̄a(r; −k, − ωn),

Fa(r; k,ωn) = F̄a(r; k, − ωn)∗,

Ga(r; k,ωn) = −Ḡa(r; −k, − ωn),

Ga(r; k,ωn) = Ga(r; k, − ωn)∗,

Ḡa(r; k,ωn) = Ḡa(r; k, − ωn)∗. (D2)

Integrating these equations with respect to ξa and using the
fact that ga = ḡa lead to

fa(r; k,ωn) = −fa(r; −k, − ωn),

f̄a(r; k,ωn) = −f̄a(r; −k, − ωn),

fa(r; k,ωn) = −f̄a(r; k, − ωn)∗,

ga(r; k,ωn) = −ga(r; −k, − ωn),

ga(r; k,ωn) = −ga(r; k, − ωn)∗, (D3)

from which useful relations

fa(r; k,ωn) = f̄a(r; −k,ωn)∗,

ga(r; k,ωn) = ga(r; −k,ωn)∗ (D4)

are obtained.
We often use these relations in this paper when summands

in k or ωn summations include the quasiclassical Green’s
functions.

APPENDIX E: APPROXIMATION ON FERMI VELOCITY

The velocity in the band a is given, following its definition,
by

va = v0 + (−1)a+1 ζ

kF
k̂⊥, (E1)

where

v0 = ∇kεk (E2)

and

k̂⊥ = k⊥/|k⊥|. (E3)

Here, we put

kFa = kF0 + δka, (E4)

where kFa (a = 1, 2) and kF0 are the Fermi wave vectors on
the Fermi surfaces split by the ASOC and that on the bare
band, respectively (see Fig. 13). Keeping

δka

kF
= O

(
ζ

EF

)
(E5)

in mind, we get

vF · δka = −(−1)a+1ζ (E6)

from Hsingle, where vF = v0|k=kF0
. Hereafter, the terms of

O((ζ/EF)2), O((J/EF)2) and O(Jζ/E2
F) are neglected. In this
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FIG. 13. Relations among the three vectors in Eq. (E4). FS0

denotes the Fermi surface of the bare band, while FSa’s (a = 1, 2)
express the two Fermi surfaces split by the ASOC of Rashba type. In
the figure, FSa is represented by that of band 2.

approximation,

δka = −(−1)a+1m
ζ

kF
k̂⊥. (E7)

Substituting this expression to Eq. (E4) and using Eq. (E1)
lead to

vFa = vF. (E8)

APPENDIX F: DERIVATION OF FREE ENERGY

The free energy measure from that in the normal phase, i.e.,

F = −T ln tre−βH + T ln tre−βH|�=0 (F1)

(β = 1/T ), is used in the text to determine the vortex lattice
structure at each field and temperature. Since obtaining a
tractable expression of the free energy directly from the above
expression is not easy, it is first rewritten by following the
procedure based on the variational principle [8] used by
Eilenberger.

For this purpose, the gap equation and the expression of the
electric current density are needed. According to the definition
of the order parameter (B3) and the relation (D4), the gap
equation is

1

g
� + 2πT

∑
0<ωn<ωc,a

Na

2
〈iw∗

afa〉FS = 0, (F2)

where Na is the normal DOS on each FS,

〈h(k)〉FS =
∫ π/d

−π/d

dkz

2π/d

∫ 2π

0

dφk

2π
h(k) (F3)

is the average over each FS for an arbitrary function h(k), and
ωc is the frequency cutoff introduced to prevent the divergence
of the summation. To treat ωc implicitly, we transform this
equation to

N ln
T

Tc

�+ 2πT
∑

ωn>0,a

Na

2

〈
iw∗

afa + |wa|2�
ωn

〉
FS

= 0 (F4)

by introducing the mean-field transition temperature Tc at zero
field through the well-known relation

1

g
− 2πT N

∑
0<ωn<ωc

1

ωn

= N ln
T

Tc

. (F5)

Here, N is the average of the normal DOS on the two FSs. The
current density is obtained from the relation

j = −
〈
δH
δ A

〉
eq

= jS + jM, (F6)

where

jS = −e
∑
α,β

〈c†α(r)vαβ(−i∇ + eA)cβ(r)〉eq, (F7)

jM = −μs∇ ×
∑
α,β

〈c†α(r)σ αβcβ(r)〉eq . (F8)

The relative current density components measured from their
normal counterparts are expressed in terms of the quasiclassi-
cal Green’s functions as follows:

� jS = jS − jS |�=0

= − T

V

∑
k,ωn,α,β

eiωn0+
evαβ(k)�Gβα(r; k,ωn)

= − ie2πT
∑

ωn>0,a

Na〈va(ga + 1)〉FS, (F9)

� jM = jM − jM |�=0

= ∇ × �Mpara, (F10)

�Mpara = − T

V

∑
k,ωn,α,β

eiωn0+
μsσ αβ�Gβα(r; k,ωn)

= − iμs2πT
∑

ωn>0,a

Na〈(−1)a+1 ĝk(ga + 1)〉FS.

(F11)

Here,

�Gβα(r; k,ωn) = Gβα(r; k,ωn) − Gβα(r; k,ωn)|�=0 (F12)

and we have used the fact that ga|�=0 = −1 for ωn > 0.
Then, we define the expression

�[A,�,f,f̄ ] = −
∫

d3r(� jS · A + �Mpara · B)

+
∫

d3r

⎧⎨⎩N |�|2 ln
T

Tc

+ 2πT
∑
ωn>0

Na

2

×
〈[

i�∗w∗
afa + iwa�f̄a + |wa�|2

ωn

+ (ga + 1)

(
2ωn + 1

2
vF · ∇ ln

fa

f̄a

)]〉
FS

⎫⎬⎭
(F13)

as the functional from which the Eilenberger equations (11)
and (12), the gap equation (F4), and the difference of the
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current � jS + � jM follow after variations with respect to f̄a

and fa , �∗, and A, respectively. Next, by replacing fa and f̄a

with the solutions fa[�,A] and f̄a[�,A] of the Eilenberger
equation under given � and A, Eq. (F13) is rewritten in the
form

�̃ = �[�,A,f [�,A],f̄ [�,A]]

=
∫

d3r

⎡⎣N |�|2 ln
T

Tc

+ 2πT
∑

ωn>0,a

Na

2

×
〈( |�|2

ωn

− iwa�f̄a + i�∗w†
afa

ga − 1

)〉
FS

⎤⎦, (F14)

obeying the conditions

δ�̃

δ�
= δ�

δ�

∣∣∣∣fa = fa [�,A]
f̄a = f̄a [�,A]

= δF

δ�
, (F15)

δ�̃

δ A
= δ�

δ A

∣∣∣∣fa = fa [�,A]
f̄a = f̄a [�,A]

= δF

δ A
, (F16)

�̃[� = 0,A = 0] = F [� = 0,A = 0] = 0. (F17)

Thus,

F = �̃, (F18)

which coincides with Eq. (27).

APPENDIX G: CALCULATION OF �a

Here, the relation (22) is derived.
For ωn > 0,

[2{ωn + i(−1)a+1μs ĝk · B} + ivF · �]−1

=
∫ ∞

0
dρe−2{ωn+i(−1)a+1μs ĝk ·B}ρe−ivF·�ρ. (G1)

The operators

a = rH√
2

(γ −1/2�Q,z − iγ 1/2�Q,x), (G2)

a† = rH√
2

(γ −1/2�Q,z + iγ 1/2�Q,x), (G3)

which fulfill the relation [a,a†] = 1, are the annihilation and
creation operators of the LLs (19), where γ = ξx/ξz, Q =
2δN Q0 [δN = (N2 − N1)/(N1 + N2)], rH = 1/

√
2eH , and

�Q = � + Q. (G4)

With the identity eA+B = e[A,B]/2eAeB in the case where
[A,[A,B]] = [B,[A,B]] = 0,

e−ivF·�Qρ = e−|s|2ρ2/2e−is∗ρa†
e−isρa. (G5)

Thus, with the definition of the N th LL ψN (r) [see Eq. (19) in
the main text],

[ψ∗
Me−iρvF·�Q ψN ]UC = e−|s|2ρ2/2LMN (−is∗ρ), (G6)

where [ · ]UC is the average over the unit cell and the relation

[ψ∗
MψN ]UC = δM,N (G7)

is used. Here,

s = γ 1/2vF,z + iγ −1/2vF,x√
2r2

H

, (G8)

LMN (z) =
min(M,N)∑

l=0

√
M!N !

(M − l)!(N − l)!l!
(z)M−l(−z∗)N−l .

(G9)

From Eqs. (G1) and (G6),

[2{ωn + i(−1)a+1μs ĝk · B} + ivF · �]−1�

=
∫ ∞

0
dρe−2{ωn+i(−1)a+1μs ĝk ·B}ρeivF· Qρe−ivF·�Qρ�

= ψMMa
MNdN (G10)

with the definition of the matrix

Ma
MN =

∫ ∞

0
dρe−(2ωnρ+|s|2ρ2/2)

× ei{vF· Q−2(−1)a+1μs ĝk ·H}ρLMN (−is∗ρ), (G11)

which leads to Eq. (22).

APPENDIX H: DERIVATION OF LDOS

Here, we define the retarded Green’s function as usual:

GR
αβ(r1,r2; t1 − t2) = −i�(t1 − t2)〈{cα(r1,t1),c†β (r2,t2)}〉eq,

(H1)

where {Â,B̂} = ÂB̂ + B̂Â is the anticommutator of arbitrary
operators Â and B̂,

�(t) =
{

1 (t > 0),
0 (t < 0) (H2)

is the step function, and

X̂(t) = eit(H−μN )X̂e−it(H−μN ) (H3)

is the Heisenberg representation of any operator X̂. Its Wigner
representation is defined as

GR
αβ(r; k,E) =

∫
d3r ′ e−ik·r ′

∫ +∞

−∞
dt eiEt

× GR
αβ(r + r ′/2,r − r ′/2; t). (H4)

As is well known, this can be obtained from Gαβ(r; k,ωn) by
the analytic continuation iωn → E + iη (η is an infinitesimal
positive number).

The LDOS N (r; E) can be defined by using this function:

N (r; E) = − 1

π

1

V

∑
k,α

Im GR
αα(r; k,E). (H5)

Finally, after performing the unitary transformation Eq. (B20)
in the above expression, Eq. (32) is obtained.
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