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Numerical calculations on a mesoscopic ring of a type-II superconductor in the London limit suggest that an
Abrikosov vortex can be trapped in such a structure above a critical magnetic field and generate a phase shift in
the magnetoresistance oscillations. We prepared submicron-sized superconducting loops of single-crystal, type-II
superconductor NbSe2 and measured magnetoresistance oscillations resulting from vortices crossing the loops.
The free-energy barrier for vortex crossing determines the crossing rate and is periodically modulated by the
external magnetic flux threading the loop. We demonstrated experimentally that the crossing of vortices can be
directed at a pair of constrictions in the loop, leading to more pronounced magnetoresistance oscillations than
those in a uniform ring. The vortex trapping in both a simple ring and a ring featuring two constrictions was
found to result in a phase shift in the magnetoresistance oscillations as predicted in the numerical calculations.
The controlled crossing and trapping of vortices demonstrated in our NbSe2 devices provide a starting point for
the manipulation of individual Abrikosov vortices, which is useful for future technologies.
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Vortex motion in a type-II superconductor is an important
problem to consider for increasing the critical current density
and upper critical field of superconducting materials, both of
which are crucial for applications of superconductors such
as electromagnets and magnetic levitation. Manipulating the
motion of Abrikosov vortices is also of fundamental interest. It
is known that a moving Abrikosov vortex is subjected to vari-
ous fundamental forces, including damping, pinning, boundary
image, and transverse (Lorentz and Magnus) forces [1]. None
of these forces influencing vortex motion are fully understood.
Indeed, even the effective vortex mass upon which the forces
act remains a subject of controversy [2–5]. Additionally,
Abrikosov vortices in conventional type-II superconductors
have long been a model system for motion in soft matter [6],
and controlled vortex manipulation in superconducting devices
has potential application in rectifiers [7], superconducting
logic circuits [8], and hybrid superconductor and dilute
magnetic semiconductor spintronic systems [9].

In order to manipulate and detect the motion of individual
Abrikosov vortices, a scanning superconducting quantum
interference device (SQUID) and magnetic-force microscope
were employed on planar films of YBa3Cu2O6.354 [10] and
Nb [11], respectively. On the other hand, little work has been
done on the manipulation and detection of vortex motion
in mesoscopic superconductors, which are more relevant for
technological applications than planar films. Static few vortex
states in mesoscopic superconductors have been studied previ-
ously both theoretically [12–16] and experimentally [17–25],
with an impressive accumulation of detailed understanding.
Studies of vortex motion have also been carried out [26–30]
and have led to interesting findings such as vortex-crossing-
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induced magnetoresistance oscillations [27,29,30] with an
amplitude much larger than that of the traditional Little-Parks
effect [31]. Nevertheless, the manipulation of the vortex
motion in these mesoscopic devices has yet to be pursued
systematically.

In the present work, we use electrical transport measure-
ments to explore the vortex crossing of a mesoscopic type-II
loop as well as vortex trapping in such a loop. As the magnetic
flux threading the loop is varied, the rate of vortex crossing,
which is controlled by the free energy barrier through a
Boltzmann factor, varies accordingly. The free-energy barrier
is a function of superfluid velocity, which is a periodic function
of the global winding number of the superconducting phase
as well as the applied flux [31]. This leads to a periodically
varying rate for vortex crossing [27,29], and, consequently, a
periodically varying magnetoresistance. Interestingly, a vortex
can also be trapped in the loop under suitable conditions. The
trapping of such a vortex, which demands the local phase
winding around the vortex core be superimposed on the global
phase winding, will have observable effects. It should be
emphasized that this Abrikosov vortex trapping is distinct from
the so-called “few-vortex states” in mesoscopic systems of
type-I superconductors. In the latter, the “vortices” are static
solutions to the London or Ginzburg-Landau equations in an
applied magnetic field, which are different from Abrikosov
vortices in a type-II superconductor. For example, as shown in
the present study, the vortex crossing can be directed to con-
strictions with a minimal crossing barrier and at the same time,
Abrikosov vortices can also be trapped in the wide regions of
the loop, isolated from the crossing events, providing a clean
experimental system for the study of vortex manipulation.

To obtain the conditions under which Abrikosov vortices
can be trapped in a mesosopic superconducting loop of a type-
II superconductor, we follow the analysis of Kogan, Clem, and

1098-0121/2015/92(14)/144502(7) 144502-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.144502


SHAUN A. MILLS, CHENYI SHEN, ZHUAN XU, AND YING LIU PHYSICAL REVIEW B 92, 144502 (2015)

-100

0

100

-100 0 100
x (nm)

y 
(n

m
)

(a)

0

1

2

3

4

0 1 2 3 4

F

H/ H

(c)

v

0

10

20

30

0 4 8 12

F

H/ H

(b)

H   / Hc1

10

12

7.5 8

F

H/ H

H   / Hc1

FIG. 1. (Color online) (a) Color plot of current density in a
10-nm-thick loop with inner radius a = 73 nm and outer radius
b = 158 nm [purple (dark gray) is lowest magnitude, yellow
(light gray) is highest]. Applied field is 0.39 T and a vortex is
fixed at (x,y) = (115,0) nm (black disk). Plot generated assuming
ξ (0) = 10 nm and λ(0) = 200 nm. Loop boundaries are shown in
black, and current streamlines are shown in white. (b) Ground-state
free energy (F) in units of ε0 (Appendix A) versus normalized applied
magnetic field for loop in (a). Black curves are for vortex-free state,
and purple (light gray) curves are with a single vortex trapped at a
radius v = 115 nm. Vortex trapping field is indicated. Inset: Close-up
of boxed region in main panel. (c) Same as (b) over a restricted field
range to emphasize the phase shift (δv) between vortex-trapped and
vortex-free states.

Mints [15] (see Appendix A for more details) using the London
equations in the limit d � λ, where d is the loop thickness
and λ is the magnetic penetration depth. Using the analytic
results of these authors, we obtain the current distribution in
a superconducting loop with a single vortex trapped at radius
v, as shown in Fig. 1(a). Near the vortex, the current density
diverges. Therefore, a cutoff is introduced at |�r − �v| � 1.2ξ ,
where ξ is the superconducting coherence length, to facilitate
the plotting.

Both the free energy (F) of the superconducting loop as a
function of global winding number (N ), vortex position (v),
and magnetic field (H ), and the free-energy difference between
the vortex-trapped and vortex-free states (Vin(N,v,H )) were
calculated (Appendix A). In Fig. 1(b), we plot the free energy
of the trapped vortex state, which depends upon the vortex
position. As the magnetic field increases, the free energy of
the loop is represented as consecutive parabolas with different
N . For the vortex-free loop, the transition from state N − 1
to state N requires the system overcome a free-energy barrier
with a local maximum at H/�H = N − 1/2. However, when
a vortex is trapped in the loop, a different set of parabolas
are generated. The backgrounds of the two sets of parabolas,

which reflect the kinetic energy resulting from the finite wire
width, have different slopes. At the lower critical field, Hc1, the
state with a vortex becomes energetically more favorable than
that without one, as shown in Fig. 1(b). At this field, Vin first
acquires a global minimum [32]. The background of the free
energy originates from the induced currents required by the
global phase winding. The crossing of the two curves suggests
that introducing a vortex into the loop disrupts this current dis-
tribution, leading to the lowering of the free energy of the loop.

The vortex-trapped parabolas are phase shifted from the
vortex-free parabolas by an amount δv , as shown in Fig. 1(c).
To calculate the magnitude of the phase shift, we look for
solutions to F(N − 1,v,HN ) = F(N,v,HN ) [Eq. (A10)] and
see that

HN/�H =
(

N − 1

2

)
+ ln(b/v)

ln(b/a)
. (1)

The acquired phase shift is δv = ln(b/v)/ ln(b/a). It is interest-
ing to note that an apparent free-energy oscillation phase shift
accompanied by a period change may occur in mesoscopic
loops as a result of a field-dependent crossover between effec-
tive singly and doubly connected geometries [13]. However,
in the mechanism considered in the present work, the phase
shift is not accompanied by a change in oscillation period and
therefore corresponds to a different scenario. Vortex trapping
discussed here is also distinct from pinning. In vortex pinning,
a vortex preferentially occupies a spot where superconductivity
is locally suppressed by a material defect. In the scenario
presented here, the trapping potential originates from the
image force even in the absence of local defects.

While the theoretical prediction is clear, it is not obvious
a priori that the vortex trapping leads to an experimen-
tally observable effect. For devices recently reported in the
literature [27–29], the measurements appear to have been
performed at fields below Hc1, which depends on the sample
size and geometry (Fig. 4). Furthermore, as seen in Eq. (1),
δv depends upon the vortex position within the loop, which
may not be fixed. Additionally, near the trapping field, the
energy difference between the vortex-trapped and vortex-free
states is quite small. Indeed, the free energy curves intersect
multiple times [inset to Fig. 1(b)], potentially prohibiting a
clean transition between the vortex-free and vortex-trapped
states. So it is quite interesting to see if the phase shift can be
detected in a real system.

Experimentally, we used a combination of electron-beam
lithography and CF4 reactive ion plasma etching to prepare
mesoscopic loops from atomically thin crystals of NbSe2.
The pinning force found in bulk NbSe2 is small. In addition,
superconductivity was found to survive down to single-unit-
cell thickness [33], making NbSe2 the material of choice for
the present study. In the bulk, the superconducting coherence
length is ξ (0) = 10 nm, and the magnetic penetration depth
is λ = 200 nm [34]. The thickness of our starting crystals is
�10 nm, so the condition d � λ is satisfied. The fabrication
of NbSe2 devices with feature sizes comparable to the vortex
normal core size was described previously [35].

Shown in Fig. 2(a) is a scanning electron microscope
(SEM) image of a NbSe2 square loop (Sample A) with
median diameter, s = 200 ± 4 nm, arm width, w = 80 ± 4 nm
(uncertainty comes from edge roughness and SEM resolution),
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FIG. 2. (Color online) (a) Scanning electron microscope (SEM)
image of Sample A: a single-crystal NbSe2 square loop with median
diameter s ≈ 200 nm and arm width w ≈ 80 nm. Current is sourced
from 1 to 6 and voltage is measured from 3 to 4. (b) SEM image
of Sample B: a NbSe2 loop with s ≈ 200 nm, w ≈ 80 nm, and two
artificial constrictions. Current is sourced from 1 to 5 and voltage is
measured from 3 to 6. (c) Magnetoresistance of Sample A (black) and
Sample B (light purple) at 1.8 K. Sample A data is after subtraction
of a smooth background; Sample B data has no subtraction, but is
scaled for ease of comparison. Curves offset vertically for clarity.
Dashed lines are separated by �H = 520 Oe, and the phase shift,
δv ≈ 0.3�H , is indicated. (d) Magnetoresistance of Sample B at
1.8 K and 900 nA for increasing (black) and decreasing (light purple)
magnetic fields. Dashed lines are separated by �H = 520 Oe.

and thickness, t = 9 ± 1.3 nm (measured by AFM-calibrated
color code [33,35]). This square loop, which has the same
effective area and arm width as the loop considered in Fig. 1,
is easier to fabricate than a circular loop, but likely complicates
a direct quantitative comparison to theory. Measurement
leads were fabricated on either side of the ring to allow for
four-terminal transport measurements. Measurements were
carried out using standard current-biased DC techniques under
high vacuum (P � 10−5 Torr) in a Quantum Design Physical
Property Measurement System with a base temperature of
1.8 K and a 9 T superconducting magnet. The magnetic
field was oriented perpendicular to the plane of the device
as indicated.

Sample A is fully superconducting with an onset transition
temperature of Tc = 6.3 K, which is only slightly reduced
from the bulk value of 7.1 K. The residual resistivity ratio
[RRR ≡ R(300 K)/R(8 K)] is 3.3 for this loop, which is
typical for this thickness of NbSe2 [33,36], indicating the
processing did not degrade the quality of the flake. In Fig. 2(c),
we present the magnetoresistance oscillations of Sample A
at 1.8 K after removing a smooth background resistance.
The oscillations have a period of �H ≈ 520 Oe, which is

consistent with the measured geometry, and the amplitude of
the oscillations is much larger than that expected from the
Little-Parks effect, confirming the oscillations originate from
vortex crossing. We see that the local maxima in resistance
coincide with half-integer values of H/�H (dashed lines)
up to μ0H ≈ 0.25 T. Above 0.25 T, the oscillations acquire
a phase shift, δv ≈ 0.3�H , which is the expected signature
of vortex trapping. The field at which this phase shift occurs
is in reasonable agreement with the calculated value of Hc1

[0.38 T from Fig. 4(a)]. Qualitatively similar behavior was
observed in multiple samples. We note that the subtraction
of a nonmonotonic background can in principle introduce an
artificial phase shift into otherwise periodic data. However,
we can confidently rule out this possibility in the case of
Sample A. The observed phase shift between the low-field
and high-field peaks is nearly 160 Oe, but we find that the
background subtraction shifts the local maxima by less than
25 Oe (see Fig. 5 and accompanying discussion).

As discussed above, by deliberately fabricating artificial
constrictions in the loop, we can direct the vortex crossing
to the constrictions with a minimal crossing barrier, and
simultaneously isolate the trapped vortex from the crossing
events by confining it to the wider regions where Hc1 is
lowest (Fig. 4). An SEM image of a representative NbSe2

loop with a pair of constrictions is shown in Fig. 2(b) (Sample
B); this device features the same dimensions as Sample A
with the exception of the constrictions. While the addition
of the constrictions makes this device in principle a SQUID,
we restrict our analysis to the vortex crossing and trapping,
rather than quantum interference measurements. In Fig. 2(c)
we plot the magnetoresistance at 1.8 K. In this device, the
magnetoresistance oscillations are much more pronounced,
with no background subtraction necessary when plotting the
data of this sample. This is likely because the vortex crossing
events are localized to the constrictions where the energy
barrier to crossing is suppressed. Further discussion of the
effect of the constrictions on vortex crossing can be found
in Appendix B, but we wish to focus now on the evidence
for vortex trapping. A clear phase shift of 0.3�H in the
magnetoresistance oscillations is again seen at +0.25 T. A
number of phase shifts at various positive and negative fields
were found (Fig. 6), due either to a sequence of vortex trapping
or a change in the location of the trapped vortex. The period
of oscillation always remains unchanged, distinguishing this
result from the mechanism presented in Ref. [13]. We
observe no hysteresis in the magnetoresistance [Fig. 2(d)],
confirming the vortex trapping is not the result of pinning
centers, but is instead determined by the field-dependent free
energy. Multiple samples were fabricated in the geometry of
Sample B, and all show qualitatively similar behavior; namely,
pronounced periodic magnetoresistance oscillations, which
are superimposed on a minimal background resistance and
acquire a discrete and reproducible phase shift at a critical
magnetic field.

In Fig. 3(a) we plot the magnetoresistance oscillations of
Sample B around 0.25 T at various applied currents. The
dashed vertical lines are placed at the expected (unshifted)
fields of the N = 4, 5, and 6 peaks. At low currents, the
N � 5 peaks are not phase-shifted, but the N = 6 peak is
(along with subsequent higher peaks not shown), indicat-
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FIG. 3. (Color online) (a) Normalized resistance (R/R0) of Sam-
ple B versus applied field (μ0H ) at 1.8 K and 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, and 1.0 μA (bottom to top). Vertical dashed lines indicate
the expected (unshifted) positions of peaks 4, 5, and 6. Slanted red
lines track approximate value of Hc1 as indicated by local resistance
maxima. Curves offset vertically for clarity. (b) R/R0(H ) for Sample
B at 0.4 μA and 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, and 3.4 K
(bottom to top). Curves offset vertically for clarity. (c) Calculated
μ0Hc1 versus applied current (I ) at 1.8 K. Horizontal dashed lines
are placed at half-integer multiples of H/�H . (d) Calculated μ0Hc1

versus temperature (T ) at I = 0. Horizontal dashed lines are placed
at half-integer multiples of H/�H .

ing 4.5�H � Hc1 � 5.5�H . At higher currents, the first
phase-shifted peak is the N = 5 peak, indicating the vortex
stability field has decreased to 3.5�H � Hc1 � 4.5�H . At all
currents, the phase shift is equal in magnitude, as demonstrated
by the consistent position of the N = 6 peak. A similar effect
is observed when sourcing a fixed current but varying the
temperature of the system [Fig. 3(b)]. The magnetoresistance
oscillations broaden with increasing temperature, but it is
still clear the first phase-shifted peak changes from N = 6
to N = 5 as temperature increases. We also observe an
additional local maximum in the magnetoresistance curves,
which evolves systematically with current [indicated with solid
red lines in Fig. 3(a)], and may be related to the fine structure
near Hc1 seen in the inset to Fig. 1(b).

The observed features agree with the expectations of the
theoretical picture presented above and demonstrate that both
temperature and applied current provide additional means of
manipulating the trapped vortex. The temperature dependence
of Vin is contained in the ξ (T ) term. Assuming that the
applied current is uniformly distributed within the loop, an
additional Lorentz force on the vortex is expected, resulting
in the addition of a linear term to the Vin curves in Fig. 4.
Numerical solutions for Hc1 as a function of applied current
and temperature are shown in Figs. 3(c) and 3(d) for the square
loop. Hc1(I ) should be an even function for our system, since

in our measurement geometry, current counter propagates in
both arms, but in Fig. 3(c), we consider Hc1 in only one arm
due to an experimentally observed asymmetry between the
arms (see Appendix C).

The discontinuities in the calculated Hc1 curves can
be understood by considering the energy difference be-
tween the N and N+1 states at a given applied field.
F0(N + 1,H ) − F0(N,H ) is periodic in H [Eq. (A12)] and
maximal just above half-integer values of H/�H [indicated by
dashed lines in Figs. 3(c) and 3(d)]. Going from a vortex-free
to vortex-trapped state is similar to increasing the winding
number from N to N + 1, and is therefore most energetically
costly where F0(N + 1,H ) − F0(N,H ) is maximal. Our
measured R(H,I ) curves appear to be consistent with a jump
in Hc1. The observed resistance peaks are sufficiently sharp
so that both the nonshifted and shifted N = 5 peaks would
be seen at intermediate currents if the critical field for vortex
stability evolves smoothly. Given that only one or the other is
found experimentally, and that the additional local resistance
maximum jumps discontinuously between the 0.6 and 0.7 μA
curves, at least a rapid decrease in Hc1 from H ≈ 5�H

to H � 4.5�H is present as I increases, if not an actual
discontinuity.

The manipulation of both vortex crossing and trapping in
a mesoscopic loop demonstrated in the present work lays a
foundation for further investigations into vortex motion in
mesoscopic samples. For example, if the trapped vortices
behave as complex quantum mechanical particles, this system
may possess macroscopic quantum coherence and form macro-
scopic energy levels, which can then be measured by radio or
microwave measurements [37]. Furthermore, if the trapped
vortex can perform coherent quantum motion, detection
of the Aharonov-Casher interference of Abrikosov vortices
may be attempted [38,39]. From a technological perspective,
the controlled manipulation of Abrikosov vortices within
mesoscopic superconducting devices lays the groundwork for
a variety of superconducting electronics [7–9].

Useful discussions with K. Roberts and A. J. Leggett are
gratefully acknowledged. The work at Penn State is supported
by DOE under Grant No. DE-FG02-04ER46159 with nanofab-
rication done at the Penn State MRI Nanofabrication Lab
under NSF Cooperative Agreement No. 0335765, NNIN with
Cornell University as well as DMR 0908700. Work in China
was supported by MOST of China (Grant No. 2012CB927403)
and NSFC (Grants No. 11274229 and No. 11474198).

APPENDIX A: CURRENT DISTRIBUTION AND FREE
ENERGY IN THE LONDON APPROXIMATION

The current density, �g, in a superconducting loop containing
a single vortex (+) or antivortex (-) at position �v can be
calculated by solving the equations

2π�

c
�∇ × �g = ±φ0δ(�r − �v) − H, (A1)

�∇ · �g = 0, (A2)

where �(T ) = 2λ(T )2/d is the Pearl length, φ0 = h/2e is
the flux quantum, and H is the applied field. If the radius

144502-4



VORTEX CROSSING AND TRAPPING IN DOUBLY . . . PHYSICAL REVIEW B 92, 144502 (2015)

of the loop, r , satisfies r � �, as is the case with the devices
considered in the main text, the self-fields of the currents within
the loop are negligibly small. By introducing a scalar stream
function,

�g = �∇ × Gẑ, (A3)

Eq. (A2) is automatically satisfied, and Eq. (A1) can be
expressed as

2π�

c
∇2G = ∓φ0δ(�r − �v) + H. (A4)

The linearity of Eq. (A4) allows for solutions of the form

G = Gv + GH, (A5)

where

∇2Gv = ∓ cφ0

2π�
δ(�r − �v) (A6)

and

∇2GH = c

2π�
H. (A7)

The latter equation is readily solved, and the former can be
solved using techniques from electrostatics. Equation (A6) is
analogous to that of an electric charge trapped between two
grounded, concentric cylinders, for which the exact solution
is given by Jacobi elliptic functions. For loops of the size
considered in Ref. [15] as well as in the main text, the exact
solution can be approximated by

G(r,θ ) ≈ cH

8π�
r2 + G0 ln

r

a
± cφ0

4π2�

×Re

{
ln

sin[π ln(vreıθ /a2)/2 ln(b/a)]

sin[π ln(v/reıθ )/2 ln(b/a)]

}
, (A8)

where

G0 = − cφ0

4π2�

[
N ± ln b/v

ln b/a

]
, (A9)

and a and b are the inner and outer radii, respectively. Note that
Kogan et al. erroneously omit the factor of 2 in the denominator
of the logarithm argument in Eq. (A8). The presence of a
vortex leads to an ambiguity in defining the winding number,
N , so we follow the convention of Ref. [15] that with a vortex
present, contours enclosing the annulus hole and the point �v
acquire a phase of 2π (N + 1), whereas contours enclosing
just the annulus hole acquire a phase of 2πN . Equations (A3)
and (A8) are used to generate the current distribution shown
in Fig. 1(a).

Once the exact current distribution is known, the free energy
(F) of the loop can be calculated as the sum of the kinetic and
magnetic energies. This energy calculation is the main result
of Ref. [15]. Kogan et al. obtain

F(N,v,H ) = εv(v) + ε0

[(
N + ln(b/v)

ln(b/a)

)2

− 2

(
H

�H

)

×
(

N + b2 − v2

b2 − a2

)
+

(
H

�H

)2

χ

]
, (A10)

70 80 90 100

0

V
in

v (nm)

(b)

w = 35 nm1.59 T

H = 1.86 T

V
in

70 100 130 160

0

v (nm)

w = 85 nm0.28 T

H = 0.43 T (a)

FIG. 4. (Color online) (a) Calculated energy (Vin) versus vortex
position (v) along radius of loop in Fig. 1(a) at applied fields of 0.28,
0.33, 0.38, and 0.43 T (top to bottom). Blue curve indicates Hc1. (b)
Vin(v) for loop with a = 70 nm and b = 105 nm at applied fields of
1.59, 1.68, 1.77, and 1.86 T (top to bottom). Blue curve indicates Hc1.

where

εv(v) = φ2
0

8π2�(T )
ln

[
2v ln(b/a)

πξ (T )
sin

π ln(v/a)

ln(b/a)

]
(A11)

is the self-energy of the vortex, ε0 = φ2
0 ln(b/a)/8π2�(T ) is a

characteristic energy scale, χ = b2/a2+1
b2/a2−1 ln(b/a) is a geometric

factor, and �H = 2φ0 ln(b/a)/[π (b2 − a2)]. The energy of
the vortex-free state is then

F0(N,H ) = ε0

[
N2 − 2N

(
H

�H

)
+

(
H

�H

)2

χ

]
. (A12)

Equations (A10) and (A12) are used to generate the curves in
Figs. 1(b) and 1(c).

Finally, the free energy difference between the vortex-
trapped and vortex-free states is given by

Vin(N,v,H ) = F(N,v,H ) − F0(N,H ). (A13)

Vin determines the stability of a vortex at a given position
within the arms of the loop. Hc1 is defined as the field at which
a global minimum of Vin is first found in the sample [32]. In
Fig. 4(a) we plot Vin for the loop in Fig. 1(a) at different values
of applied magnetic field. We see μ0Hc1 ≈ 0.38 T, as indicated
by the blue curve. If we consider a thinner loop with a = 70
nm and b = 105 nm, we find μ0Hc1 ≈ 1.77 T [Fig. 4(b)].

At this point, we will discuss the limitations of the London
approach. The finite size of the vortex core [on the order of
ξ (T )] is not considered in Eq. (A1). Thus, in a physical system,
the formalism breaks down within ∼ ξ (T ) of the edges of the
sample. To avoid an unphysical divergence, the authors of
Ref. [15] set ε0 = 0 within ξ (T )/2 of the sample boundaries.
Unfortunately, this essentially arbitrary choice has a direct
impact on the numerically calculated Hc1 when b − a ∼ ξ (T ).
For instance, if we instead choose to set a cutoff of ξ (T ), we
calculate μ0Hc1 ≈ 0.32 T for the same geometry as considered
in Fig. 1(a). For the sake of consistency, we maintain the cutoff
employed in Ref. [15], but the level of quantitative agreement
between theory and experiment must be understood in light
of these limitations. We stress, however, that the qualitative
results reported in the main text, namely, the existence of a free-
energy oscillation phase shift and the temperature, current, and
geometry dependence of the trapping field, are unaffected by
the choice of cutoff.
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APPENDIX B: BACKGROUND RESISTANCE AND
OSCILLATION AMPLITUDE

For loops without artificial constrictions, the observed
magnetoresistance oscillations are superimposed on a resistive
background. To more clearly observe the vortex-related oscil-
lations and phase shift in Sample A [Fig. 2(c)], we subtracted
a smooth background from the measured resistance data. For
completeness, we show the original data for Sample A in
Fig. 5(a). The dashed line shows the polynomial fit used for
the background subtraction.

As discussed in the main text, it is possible to introduce an
artificial phase shift with an improper background subtraction,
especially given that the observed background features a
“shoulder” very near the critical field for vortex trapping.
However, we can be confident that the observed phase shifts in
Fig. 2(c) are not an artifact of a poor background subtraction
near this shoulder for three reasons. First, the phase shift
is seen in the constricted thick loop without a background
subtraction. Second, the magnitude of the phase shift is the
same for the background subtracted thick loop as for the
nonbackground subtracted constricted thick loop, which would
be highly unlikely if the apparent phase shift in the former
case was a subtraction artifact. Third, we can directly compare
the position of the extrema before and after the background
subtraction. In the inset to Fig. 5(a), we plot the raw resistance
data (black) and the background-subtracted resistance data
(blue) for the thick loop without constrictions. The data has
been shifted vertically for ease of comparison. We see that the
background subtraction produces no substantial shift in the
position of the resistance maximum within the resolution of
our measurement. For comparison, the expected location of
this maximum in the absence of vortex trapping is indicated
by the dashed line.

In Fig. 5(b), we plot the magnetoresistance data for a second
NbSe2 loop. This sample features thin arms with a width w ≈
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FIG. 5. (Color online) (a) Magnetoresistance of thick loop with-
out constrictions. The smooth resistive background indicated by the
dashed line is subtracted to obtain the oscillations in Fig. 2(c). The
amplitude of oscillations is small compared to the thin loop in
(b). Inset: Comparison of raw (black) and background subtracted
resistance data (blue) near 0.36 T. Curves shifted vertically for
clarity. The dashed line indicates the expected (unshifted) position
of the n = 7 resistance maximum. (b) Magnetoresistance of thin loop
without constrictions. A smooth resistive background is still apparent
(indicated by the dashed line). The amplitude of oscillations is large
compared to the thick loop in (a). Inset: SEM image of thin loop, with
w ≈ 30 nm.

30 nm. This arm width was designed to mimic the width of the
artificial constrictions introduced to Sample B in the main text.
We make two observations regarding this “thin loop.” First, the
resistance background is still present, which is consistent with
our attribution of the background to the lack of a preferred
vortex crossing site. Second, the oscillation amplitude is larger
than that observed in Sample A [note the same scale of the
ordinate axes in Figs. 5(a) and 5(b)], which is consistent with
the claim that vortex crossing occurs more readily in narrow
samples.

Despite all this, our measurements provide only indirect
confirmation of the proposed effect of artificial constrictions
on the vortex crossing events. It would be beneficial to utilize
high-resolution magnetic imaging techniques to confirm the
positions of trapped and crossing vortices.

APPENDIX C: FIELD ASYMMETRY AND MULTIPLE
VORTEX TRAPPINGS

In the case of the loop with constrictions discussed in the
main text, several phase shifts are evident at different applied
fields (see shaded regions in Fig. 6). These phase shifts may
result from subsequent vortex trapping events, though the
present theory does not address this situation. The electrostatic
analogy employed in Appendix A can be extended to the case
of n charges equally spaced around two grounded concentric
cylinders, though this extension is beyond the scope of this
work. Qualitatively, it is reasonable to expect each subsequent
vortex trapping event to be accompanied by an additional phase
shift in the magnetoresistance oscillations. Alternatively, the
additional phase shifts may simply reflect a change in the
location of the trapped vortex, since the phase shift depends
on v [Eq. (1)].

A magnetic field asymmetry is seen in Fig. 6, and this
likely results from a fabrication-limited device asymmetry. In
positive field, the first phase shift occurs at μ0H ≈ 0.28 T,
while in negative field, the first phase shift does not occur until
μ0H ≈ −0.38 T. However, the phase shift in each orientation
is equal in magnitude (0.3�H ). This asymmetry is not
considered in the London calculations, but can be understood
as follows: In a perfectly symmetric loop in our measurement

0

3
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9

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

R
 (

)

µ
0
H (T)

2.3 H1.3 H

100 nm

B

FIG. 6. (Color online) Magnetoresistance of thick loop with con-
strictions at 1.8 K and 650 nA. Vertical lines are separated by
�H = 520 Oe except where indicated. Shaded regions denote where
oscillations acquire phase shifts. Inset: SEM image of NbSe2 thick
loop with constrictions with s ≈ 200 nm and w ≈ 70 nm. The
constrictions on the top and bottom of the loop have a width ≈ 30 nm.
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geometry, for positive (negative) fields and positive applied
current, a vortex will be trapped in the loop at a well-defined
Hc1 in the bottom (top) arm of the loop due to the tilting of
the potential energy. The zero-current Hc1 on either arm is

sensitive to inhomogeneities in the sample. This will produce
an asymmetry in Hc1 in the presence of a measurement current.
Once a vortex is trapped in an arm, it generates a phase shift
of fixed magnitude, as seen experimentally.
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