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We study the effect of disorder on the London penetration depth in iron-based superconductors. The theory is
based on a two-band model with quasi-two-dimensional Fermi surfaces, which allows for the coexistence region
in the phase diagram between magnetic and superconducting states in the presence of intraband and interband
scattering. Within the quasiclassical approximation we derive and solve Eilenberger’s equations, which include a
weak external magnetic field, and provide analytical expressions for the penetration depth in the various limiting
cases. A complete numerical analysis of the doping and temperature dependence of the London penetration depth
reveals the crucial effect of disorder scattering, which is especially pronounced in the coexistence phase. The
experimental implications of our results are discussed.
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I. INTRODUCTION

Measurements of the magnetic penetration depth λL as a
function of temperature, doping, magnetic field, and crystal
orientation provide invaluable information about the nature of
superconductivity and the symmetry of the underlying order
parameter (see, e.g., reviews [1,2]). In a single-component
clean s-wave BCS superconductor, with order parameter � and
a fully gapped Fermi surface, the low-temperature behavior of
the London penetration depth δλL(T ) = λL(T ) − λL(0) shows
an exponential decrease with temperature

δλL(T )

λL(0)
∝

√
�

T
e−�/T . (1)

Even though nonmagnetic disorder does not directly affect
�, it does modify the value of λL, which becomes λ−2

L (T ) ∝
�(T )σ tanh[�(T )/2T ], where σ is the normal-state conduc-
tivity [3,4].

In contrast to the s-wave case, d-wave symmetry of the
order parameter with nodes on the Fermi surface translates
to power-law temperature dependence for the penetration
depth [5]

δλL(T )

λL(0)
∝ T

�
. (2)

The power exponent of the low-temperature behavior is
very sensitive to disorder scattering, such that δλL crosses
over to quadratic behavior, δλL(T )/λL(0) � (T/�)2, below
a certain temperature scale T ∗, which is determined by the
concentration of strong scatterers [6,7].

The dependence of the penetration depth on various pa-
rameters in the case of iron-pnictide superconductors (FeSCs)
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is of special interest. These materials have multiple Fermi
pockets with electronlike and holelike dispersion of carriers.
Because of a delicate interplay between interactions in various
pairing channels, superconductivity in FeSCs emerges in
close proximity to a spin-density-wave (SDW) order, and the
superconducting (SC) critical temperature Tc has a dome-
shaped dependence on doping, with the Tc maximum near
the onset of SDW order [8–11]. It has been proposed [12]
that superconductivity in FeSCs is unconventional, with the
order parameter having opposite signs on different Fermi
sheets, and named s± symmetry. The latter emerges because
SDW fluctuations increase interpocket interaction, which is
attractive for s± gap symmetry, to a level where it overcomes
intrapocket repulsion. Likewise, SC fluctuations tend to
increase the tendency towards SDW.

The emergent complexity of FeSCs with competing super-
conducting and magnetic instabilities, which may coexist in a
certain region of the phase diagram [13,14], leads to peculiar
dependencies of the penetration depth. Early experiments in
122-materials, Co- and K-doped BaFe2As2, revealed that down
to the lowest temperatures and in a wide range of dopings
the T dependence of δλL can be systematically fitted by
δλL ∝ T 2 [15–17]. In contrast, in 1111-compounds such as
SmFeAsO1−xFx [18] and PrFeAsO [19] the penetration depth
has an exponential temperature dependence consistent with
a gap without nodes; no appreciable effect of scattering was
observed. At the same time, data on another 1111-material
LaFePO [20] pointed out that δλL(T ) varies approximately
linearly with T , strongly suggesting the presence of gap nodes
in this compound. Since these initial reports, the London
penetration depth has been measured systematically in a
variety of families of iron-pnictides and iron-chalcogenides
[21–31]. Perhaps the most striking recent observation is a
disorder-induced topological change of the superconducting
gap structure, as revealed from the low-T behavior of
δλL in BaFe2(As1−xPx)2 [32]. Nonmagnetic defects were
controllably introduced by electron irradiation, and it was
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found that the nodal state of P-doped BaFe2As2 changes to
a nodeless state with increasing disorder. Moreover, under
further irradiation, the gapped state evolves into a different
gapless state, thus providing evidence of unconventional sign-
changing s-wave superconductivity. Such unusual sensitivity
of the superconducting gap structure to disorder scattering is
a unique characteristic feature of FeSCs.

Theoretical studies of the penetration depth in FeSCs were
discussed in Refs. [33–36] for clean samples based on the band
model. The effects of disorder on the phase diagram, including
pair-breaking scattering, and on the penetration depth were
investigated in Refs. [37–44]. We study the effect of disorder
on λL in a systematic way and analyze its behavior in the part of
the phase diagram where the SC and SDW phases coexist. On
the technical side, we develop a formalism that enables us to
study the doping and temperature evolution of the penetration
depth in the whole parameter space of the phase diagram.
Recently, electron irradiation was used to introduce disorder
into FeSC systems in a controlled way [30,32,45]. Thus our
theory is relevant for the interpretation of existing and future
experiments along this exciting direction.

This paper is organized as follows. In Sec. II we present our
model, discuss underlying approximations and assumptions,
and we analyze the phase diagram of the FeSC compounds.
In Sec. III we derive and solve quasiclassical Eilenberger
equations with emphasis on the coexistence of SC and SDW
orders. We then apply that formalism to study the London
penetration depth across the whole range of the phase diagram,
and at different temperatures. In Sec. IV we summarize
our findings and place our work in the context of future
developments.

II. MODEL AND APPROXIMATIONS

In this section we introduce the minimal model for iron-
based superconductors in which doping acts as a source
of disorder and produces a region of coexistence between
superconductivity and magnetism. Furthermore, right from
the outset, we consider the case of nonzero external magnetic
field that acts on orbital electron motion, but assumed to be
weak enough not to affect spin. We discuss the ground state
properties of this model in zero field within the quasiclassical
approximation, which we use later to compute the penetration
depth across a wide doping range from the coexistence region
to the purely superconducting state.

A. Model

Following the discussion in Refs. [41,42], we consider a
model with two cylindrical Fermi surfaces. One Fermi surface
has electron-type and another one has hole-type excitations.
We introduce the following eight-component spinor:

�(r) = (ψ̂†
c (r),ψ̂c(r),ψ̂†

f (r),ψ̂f (r)), (3)

where ψ̂a(r) = (ψ†
a↑(r),ψa↓(r)) (a = c,f ) is a Gor’kov-

Nambu spinor, and ψ
†
aσ (r) are the creation operators for the

electron (a = f ) and hole (a = c) fermionic excitations at
point r in real space with a spin component σ =↑↓.

The full Hamiltonian for the problem at hand,

H = 1

2

∑
rαβ

�α(r)[Ĥ (r)]αβ�β(r), (4)

consists of kinetic part and interactions

Ĥ (r) = Ĥ0(r) + Ĥmf(r). (5)

In the limit of weak magnetic field the noninteracting Hamil-
tonian matrix [Ĥ0(r)]αβ can be compactly written as

Ĥ0(r) = −ξ̂ τ̂3ρ̂3σ̂0 + ie

mc
A · ∇τ̂3ρ̂0σ̂0. (6)

Here, τ̂i , ρ̂i , and σ̂i with i = 0,1,2,3 are sets of Pauli matrices
acting correspondingly in the band, Gor’kov-Nambu, and spin
spaces; τ̂0, ρ̂0, σ̂0 are unit matrices, A(r) is the vector potential,
ξ̂ = −∇2/2m − μ, and μ is the chemical potential.

Interactions between the quasiparticles on the electron- and
holelike Fermi surfaces lead to the development of supercon-
ducting and spin-density-wave orders. Within the mean-field
theory approximation, the corresponding expression for the
interaction part of the model Hamiltonian Ĥmf reads

Ĥmf = Ĥ� + ĤM, (7)

Ĥ� = −�τ̂3ρ̂2σ̂2, ĤM = τ̂1ρ̂3 M · σ̂ . (8)

Here, � is the superconducting order parameter, while M is
the spin-density-wave order parameter. We explicitly assume
that the magnetic field is weak enough so that we can
ignore the spatial dependence of both SC and SDW fields
[see discussion after Eq. (14) below]. Also note that � and
M must be computed self-consistently; we will derive the
corresponding equations in what follows. We emphasize that
within the model under consideration, we study the case of
s± pairing, i.e., the superconducting order parameters on the
electronlike and holelike Fermi surfaces have opposite signs,
�(c) = −�(f ) = �. We also ignore the possible mismatch due
to differences in the band occupations and effective masses
between the two Fermi surfaces.

Let us now introduce a disorder potential. In what follows
we consider two types of disorder scattering: the first type is
intraband disorder with potential U0, which scatters quasiparti-
cles within the same band, while the second type with potential
Uπ accounts for interband scattering. Thus, in the basis (3) for
disorder potential we write

Û (r) =
∑

i

[U0τ̂0ρ̂3σ̂0 + Uπ τ̂1ρ̂3σ̂0]δ(r − Ri), (9)

where the summation goes over impurity sites. We assume that
concentration of impurities is ximp.

We will treat the effects of disorder within the self-
consistent Born approximation. Specifically, we introduce a
single-particle Green’s function in the Matsubara representa-
tion [3] as a solution of the following matrix equations:

[iω̂n − Ĥ (r1) − �̂ω(R)]Ĝ(iωn,r1,r2) =Î ,

[−iω̂n − Ĥ (r2) − �̂ω(R)]Ĝ(iωn,r1,r2) =Î ,
(10)

where ω̂n = πT (2n + 1)τ̂0ρ̂0σ̂0, T is a temperature, Î =
τ̂0ρ̂0σ̂0δ(r1 − r2), and R = (r1 + r2)/2 is the center-of-mass
coordinate. In order to write down an explicit expression for
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the self-energy �̂(iωn,R), in addition to the center-of-mass
coordinate we introduce the relative coordinate r = r1 − r2,
and consider the matrix Green’s function (10) as a function of
R and r. Furthermore, we perform the Fourier transformation
with respect to the relative coordinate r, and in what follows
we consider the function Ĝ(iωn,R,p). Then, assuming that
disorder is uncorrelated, upon averaging over various disorder
configurations [3] we find the following expression for the
self-energy (hereafter � = c = 1):

�̂ω(R) = 4�0

πν

∫
d2p

(2π )2
τ̂0ρ̂3σ̂0Ĝ(iωn,R,p)τ̂0ρ̂3σ̂0

+ 4�π

πν

∫
d2p

(2π )2
τ̂1ρ̂3σ̂0Ĝ(iωn,R,p)τ̂1ρ̂3σ̂0, (11)

where the cross terms ∝ U0Uπ vanish; ν is the single
particle density of states, �0 = πνximp|U0|2/4, and �π =
πνximp|Uπ |2/4. Clearly, the fully self-consistent computation
of the order parameters � and M along with the self-energy
�̂ω(R) is a challenging problem. However, this problem can
be solved efficiently using the quasiclassical approach.

B. Quasiclassical approximation

The quasiclassical approximation is justified when the
characteristic quantities for the problem at hand vary signif-
icantly on length scales that are much longer than the Fermi
wavelength λF . In the context of iron-based superconductors,
the quasiclassical approximation works well since both super-
conducting and magnetic correlation lengths greatly exceed
λF [41,42,44,46].

The central object in the quasiclassical approach is the
Eilenberger function [47]

Ĝω(R,n) = 4i

πν

∫
pdp

2π
τ̂3ρ̂3σ̂0 · Ĝ(iωn,R,p). (12)

To derive an equation for the Eilenberger function Ĝω(R,n) in a
weak external magnetic field, one needs to eliminate the single-
particle dispersion via a series of algebraic manipulations (see
Appendix A for details). Taking into account that the relevant
values of the quasiparticle momentum p are close to the Fermi
momentum pF , so that p/m ≈ vF n, we find the following
equation for Ĝω:

[iωnτ̂3ρ̂3σ̂0,Ĝω(R,n)] − [Ĥmf τ̂3ρ̂3σ̂0,Ĝω(R,n)]

− [�̂ω(R)τ̂3ρ̂3σ̂0,Ĝω(R,n)]

+ [evF n · A(R)τ̂0ρ̂3σ̂0,Ĝω(R,n)]

+ vF n · (−i∇R)Ĝω(R,n) = 0, (13)

where the square brackets denote a commutator. Since we
consider the limit of a weak magnetic field, we can look
for the solution of this equation by perturbation theory,
namely

Ĝω(R,n) = Ĝ(0)
ω + Ĝ(1)

ω (R,n), (14)

restricting ourselves to corrections linear in powers of the vec-
tor potential A. This is why we could neglect the dependence
of � and M on R, since the corrections that render both order
parameters spatially inhomogeneous are of the order of O(A2)

[3]. Next, we discuss the solution of the Eilenberger equation
in the spatially homogeneous case.

C. Phase diagram

In this section we first review the ground-state properties
of the model (5) with disorder by taking the limit of A = 0
in Eq. (13) and considering a uniform system, ∇G(0)

ω = 0. We
thus have[

ωnτ̂3ρ̂3σ̂0,Ĝ(0)
ω

] + i
[
(Ĥmf + �̂ω) · τ̂3ρ̂3σ̂0,Ĝ(0)

ω

] = 0. (15)

Without loss of generality we choose the SDW magnetization
to be along the z axis, M = M ez. Then, the solution of (15)
has the following form:

Ĝ(0)
ω = gωτ̂3ρ̂3σ̂0 − ifωτ̂0ρ̂1σ̂2 − isωτ̂2ρ̂0σ̂3, (16)

where the functions gω, fω, and sω are determined by the
solution of the following system of algebraic equations:

i�gω = fω(ωn + 2�πgω), iMgω = sω(ωn + 2�tgω). (17)

Here we introduced the total scattering rate �t = �0 + �π . In
addition, the functions gω, fω, and sω satisfy the normalization
condition g2

ω − f 2
ω − s2

ω = 1. Subsequently, superconducting
and SDW order parameters can be found from

iM

gm

= πT

�∑
ωn>0

sω,
i�

gsc
= πT

�∑
ωn>0

fω, (18)

where gsc and gm are the coupling constants, and � is an
ultraviolet cutoff. In the clean system, there is a phase transition
from the paramagnetic to the SDW state at critical temperature
Ts0 = 1.13�e−2/νgm provided that gm > gsc. If gsc > gm, the
ground state is a superconductor with a critical temperature
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FIG. 1. (Color online) Phase diagrams in the (�0,T ) plane com-
puted by solving the self-consistency equations (18) and the Eilen-
berger equations (17) for various ratios between intraband and
interband scattering rates. Tc0 denotes the superconducting critical
temperature in a clean system. All plots are obtained assuming
Ts0 = 3Tc0, and Ts0 is the critical temperature for the SDW state.

144501-3



DZERO, KHODAS, KLIRONOMOS, VAVILOV, AND LEVCHENKO PHYSICAL REVIEW B 92, 144501 (2015)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Γπ / Γ0

0.002

0.004

0.006

0.008

0.01

W
id

th
 o

f 
th

e 
co

-e
xi

st
en

ce
 r

eg
io

n,
 δ

Γ 0 / 
2π

T
c0

T
 s0

 = 3.0 T
c0

FIG. 2. (Color online) Width of the coexistence region (�(sdw)
0 −

�
(sc)
0 )/2πTc0 is shown as function of �π/�0. The data points are

found from the solution of Eqs. (18) and (17) at zero temperature.
The plot is obtained assuming Ts0 = 3Tc0.

Tc0 = 1.13�e−2/νgsc . We consider Ts0 > Tc0, so that without
disorder, the SDW phase develops at a higher temperature.

We solve Eqs. (17) and (18) numerically, and show our
results in Figs. 1–3. In agreement with an earlier work [41],
we find that for a narrow region in �0 values, there is a region in
the phase diagram where SDW and superconductivity coexist.
Specifically, superconductivity emerges when �0 reaches some
value denoted by �

(sc)
0 . With further increase of intraband

scattering, the SDW order is fully suppressed at some value
�0 = �

(sdw)
0 . As the ratio �π/�0 increases, both �

(sc)
0 and �

(sdw)
0

decrease. In Fig. 2 we plot the width of the coexistence region
(�(sdw)

0 − �
(sc)
0 )/2πTc0 at T = 0. Thus we conclude that the

coexistence region remains quite robust with respect to the
interband scattering, and it only vanishes when both scattering
rates become comparable, �0 ∼ �π .

III. LONDON PENETRATION DEPTH

In this section we solve the Eilenberger equation (13) and
use the resulting correction to the Eilenberger function to
compute the penetration depth as a function of disorder and
temperature in the lowest order in A.

A. Solution of the Eilenberger equation in an external
magnetic field

The field-induced correction to the Eilenberger function
(14) is given by the solution of the following matrix equation:[

iωnτ̂3ρ̂3σ̂0,Ĝ(1)
ω (R,n)

] − [
Ĥmf τ̂3ρ̂3σ̂0,Ĝ(1)

ω (R,n)
]

−[
�̂ωτ̂3ρ̂3σ̂0,Ĝ(1)

ω (R,n)
] = −[

evF n · Aτ̂0ρ̂3σ̂0,Ĝ(0)
ω

]
, (19)

which is found from (13) by keeping terms linear in the
vector potential. The function Ĝ(1)

ω (R,n) must also satisfy the
following condition, which results from the normalization of
the full Eilenberger function (14):

Ĝ(0)
ω · Ĝ(1)

ω (R,n) + Ĝ(1)
ω (R,n) · Ĝ(0)

ω = 0. (20)
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FIG. 3. (Color online) Phase diagrams in the (�0,T ) plane for
Ts0 = 1.7Tc0. In panel (a) we show the variation of the critical
temperatures with �0 for �π = 0.1�0, while panel (b) shows critical
temperatures for �π = 0.3�0. The insets show the variation of the
pairing amplitude and magnetization with disorder, evaluated at
T = 0.01Tc0. We use these data to evaluate the variation of the London
penetration depth with disorder and temperature.

We look for a solution of this equation in the following form:

Ĝ(1)
ω (R,n) = g(1)

ω (R,n)τ̂0ρ̂3σ̂0 − if (1)
ω (R,n)τ̂3ρ̂1σ̂2 − ŝ(1)

ω (R,n).

(21)

The matrix form for the first two terms follows from solving
Eq. (19): first in the limit when � = M = 0, and then for
M = 0. In order to find the matrix structure of the third term
we use condition (20), which can only be fulfilled for

ŝ(1)
ω (R,n) = s(1)

ω τ̂2ρ̂2σ̂1. (22)
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Using condition (20) we obtain for the functions g(1)
ω , f (1)

ω , and
s(1)
ω :

g(1)
ω (R,n) = −f 2

ω

zω

evF n · A(R),

f (1)
ω (R,n) = −fωgω

zω

evF n · A(R),

s(1)
ω (R,n) = − sωgω

zω

evF n · A(R),

(23)

with

zω = (iωn + i�tgω)gω + (� − i�sfω)fω + (M + i�t sω)sω,

(24)

where �s = �0 − �π . Equations (23) and (24) constitute the
perturbative solution of the Eilenberger equation (13).

B. Effect of disorder on the penetration depth

The expression for the current density in terms of the
original Green’s function is given by [3]

j = eT

2m

∑
ωn

∫
d2p

(2π )2
p Tr

[
τ̂3ρ̂0σ̂0Ĝ

(1)
ω (R,p)

] − Ne2A
mc

,

(25)

where the last term guarantees the gauge invariance of the
normal state. We can now use the same approximation that
we have already employed in our derivation of the Eilenberger
equation: since the main contribution to the current comes
from a narrow energy region around the Fermi surface, in the
integral above we approximate p ≈ pF n. It follows that

j = −ieπνpF T

8m

∑
ωn

〈
n Tr

[
τ̂0ρ̂3σ̂0Ĝ(1)

ω (R,n)
]〉
, (26)

where we used the definition (12); angular brackets denote
averaging over directions of unit vector n. Using our solution
of the Eilenberger equation together with the equations (17)
for the current we obtain at an intermediate step

j = −QA, Q = πνe2v2
F

2c
T

∑
ωn

if 2
ω

zω

, (27)

where the auxiliary function zω is defined by Eq. (24). This
expression can be significantly simplified by using the mean-
field equations (17) together with the normalization condition.
Indeed, one observes that first and third terms in zω can be
combined as follows:

(ωn + �tgω)gω − i(M + i�t sω)sω

= (ωn + �tgω)gω − (iMgω − �tsωgω)
sω

gω

= (ωn + �tgω)gω − (ωn + �tgω)
s2
ω

gω

= (ωn + �tgω)
1 + f 2

ω

gω

, (28)

and then (ωn + �tgω)(1 + f 2
ω ) − i(� − i�sfω)fωgω = (ωn +

�tgω). Consequently, Q can be brought to the form

Q = −πν e2v2
F

2c
T

∑
ωn

f 2
ωgω

ωn + �tgω

. (29)

Note that since fω is a purely imaginary function, Q is
manifestly positively defined. Curiously, the function sω does
not enter explicitly into the final expression for the current.
Thus, for the London penetration depth, we have

λ−2
L (T ) = −πνe2v2

F

c2
2πT

∑
ωn

f 2
ωgω

ωn + �tgω

, (30)

which is the main result of this paper. Next we analyze various
limiting cases.

In the clean limit, �t = 0, and Eq. (17) is solved by fω =
i�gω/ωn and sω = iMgω/ωn, so that it is easy to show that at
T = 0

λ−2
L = λ−2

L (0)
�2

M2 + �2
, (31)

where λ−2
L (0) = 4πNe2/mc2, in agreement with earlier stud-

ies [35,36]. Another useful check for our general expression
(30) is the limit M = 0 and �π = 0, which effectively cor-
responds to a single-band superconductor with nonmagnetic
disorder. In this case gω = ωn/

√
ω2

n + �2 and fω = i�gω/ωn,
so that zero-temperature penetration depth is given by [3,4]

λ−2
L = λ−2

L (0)

2γ0

⎡
⎣π − 2√

1 − γ 2
0

arctan

√
1 − γ 2

0

γ0

⎤
⎦, (32)

where γ0 = �0/�.
Let us now analyze the Matsubara sum in (30) in the limit

of low temperatures and for weak interband disorder, �π 	
�0. In that limit, using Eq. (17) for the function fω, we find
fω ≈ i�gω/ω. Next, we set T → 0, and convert the frequency
summation into an integral over the variable x = ω/�. The
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Γ0 / 2πT

c0
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0.4

0.6

0.8

λ L

Γπ  = 0.1Γ0
Γπ  = 0.3Γ0

0.057 0.06 0.063
Γ0 / 2πT

c0

0

0.2

0.4

0.6

0.8

λ L

-2

-2

FIG. 4. (Color online) Inverse square of the London penetration
depth (dimensionless units) as a function of intraband scattering rate
�0 evaluated at T = 0.01Tc0. In the coexistence region λ−2

L grows
linearly with � in contrast with the clean case where λ−2

L ∼ �2,
Eq. (31).
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FIG. 5. (Color online) (a) Temperature dependence of λ−2
L for

various values of �0. (b) Temperature dependence for δλL(T ) =
λL(T ) − λL(0) at low temperatures. The inset shows the same data
as in the main panel (b), but plotted in log-log scale. The interband
scattering rate is fixed at �π = 0.1�0.

resulting expression for the Matsubara sum in (30) has the
following form:

2πT
∑

ω

→
∫ ∞

0

x[x + γtg(x)]−1dx(
x2 + 1 + M2x2

�2[x+2γt g(x)]2

)3/2 , (33)

where we have introduced the parameter γt = �t/�. For small
enough values of �, such that γt � 1, it follows that for the
moderate range of x ∼ O(1) we can simplify x + 2γtg(x) ≈
2γtg(x). Furthermore, the dominant contribution to the integral
(33) comes from the region of x where g(x) ∼ x. Thus, for
sufficiently small �, we approximately obtain for the integral

λ−2
L � λ−2

L (0)
�√

M2 + 4�2
0

. (34)

In the opposite limit, and still at zero temperature, another
analytical result for λL as a function of the scattering rates and
� can be derived (see Appendix B for details)

λ−2
L = λ−2(0)

6γ 4
s

[
3πγ 3

s + 3πγπ

(
2 + γ 2

s

) − 4γsγπ

(
3 + 2γ 2

s

)

0 0.2 0.4 0.6 0.8
1 / λ

L

0

0.5

1

1.5

Δ 
/ T

c0

Γπ = 0.1Γ0 (coex.)
Γπ = 0.1Γ0  (M=0)
Γπ = 0.3Γ0 (coex.)
Γπ = 0.3Γ0 (M=0)

2

FIG. 6. (Color online) Plot of λ−2
L on � across the phase diagram

at T = 0.01Tc0. Remarkably, the position of the line for the purely
superconducting state depends on the strength of the interband
scattering rate. This is expected as the superconducting order
parameter is strongly suppressed for higher values of �π/�0.

− 6
(
2γπ + γ 3

s

)
√

1 − γ 2
s

arccos(γs)

]
, (35)

where we introduced the following parameters for brevity:
γs = �s/� and γπ = �π/�. Note that when interband scat-
tering becomes negligibly small, then the term of Eq. (35) in
square brackets is proportional to �/�0, in agreement with
our estimate, Eq. (34), taken in the same limit.

Our complete numerical analysis of Eq. (30) confirms
our asymptotic analytical expressions, and in particular the
estimate (34). In fact, we find that this behavior persists for
much larger values of � ∼ �t . Lastly, comparing this result
with the corresponding expression for the London penetration
depth in the clean limit (31), we conclude that disorder has a
crucial effect on the dependence of λ−2

L on both � and M .
In Fig. 4 we show the variation of λ−2

L with disorder, com-
puted using Eq. (30) together with �(�0) and M(�0), which
in turn have been computed self-consistently and are shown
in Fig. 3. Furthermore, in Fig. 5 we show the temperature
dependence of λ−2

L (T ) for various values of �0 across the phase
diagram [see inset (a) in Fig. 3]. Finally, in Fig. 6 we show
the dependence of � on λ−2

L evaluated at T = 0.01Tc0. One
immediately observes that combining measurements of the
London penetration depth in the coexistence region with those
made in the superconducting state should, in principle, allow
one to obtain an estimate for the ratio between the interband
and intraband scattering rates. Indeed, for moderate values of
�π/�0, superconductivity is strongly suppressed, leading to
lower values of � in the superconducting state compared to
those in the coexistence state.

IV. DISCUSSIONS AND PERSPECTIVES

In this paper, we obtained the phase diagram of doped
iron-pnictide superconductors and calculated the magnetic
penetration depth at different temperatures under the assump-
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tion that doping introduces disorder but does not affect the
band structure. In several limiting cases we have been able to
reproduce previously known results.

Our main finding concerns the behavior of λL in the
coexistence phase that has not been systematically analyzed
before in the presence of disorder scattering. Our modeling
shows that starting from the overdoped side, λ−2

L grows with
the reduction of the scattering rate induced by doping up to
an optimal doping where superconducting order is maximal.
Once the system enters the coexistence phase, the inverse
square of the penetration depth, which is proportional to
the superfluid density, exhibits a kink followed by a sharp
falloff. In that region, disorder primarily affects magnetic
order rather than superconductivity. In sharp contrast with
the clean case, where λ−2

L ∝ �2 near the end point of the
superconducting dome from the side of the preexisting SDW,
within the disorder model we find a completely different
scaling law λ−2

L ∝ �. Another important observation concerns
the low temperature dependence of δλL(T ). The log-log plot
presented in Fig. 5(b) suggests either a power law behavior
of δλL on temperature, δλL ∝ T a , with rather high power
exponent a � 5, or exponential dependence δλL ∝ e−W/T .
The exponential dependence indicates the presence of the gap
W in the spectrum of electron states near the Fermi surface
for parameters of curves presented in Fig. 5. It is plausible,
however, that for stronger �π electron spectrum becomes
gapless at low temperature and δλL(T ) exhibits a power law
with a � 2 [37].

Several extensions of the presented model are in order to
improve the comparison with experiments. First, one could
treat the band [13,14] and disorder [41,42] models on an
equal footing in order to study the observed anisotropy in
λL. Second, one could consider the extension of the presented
formalism beyond the Born approximation, which might be
necessary for an accurate interpretation of the low-temperature
data. Third, one could account for diffusive scattering from
the surface of the superconductor. That would complicate
the calculation of the penetration length considerably, since
one would have to work with an integral Milne equation,
instead of a differential London equation, which governs
the distribution of the magnetic field in superconductors and
consequently determines the precise value of λL in the nonlocal
limit [48]. Fourth, our analysis, so far, has been restricted to
the mean-field level. A most intriguing recent experimental
observation [49,50] is an apparent sharp peak in λL observed
in isovalently P-doped BaFe2As2 at nearly zero temperature
around the optimal doping. This effect was attributed to
quantum critical fluctuations of the SDW order at the onset
of the transition into the coexistence phase [51–53]. It is of
apparent theoretical and experimental necessity to investigate
to what degree such quantum effects are robust against disorder
scattering. On a technical level, this would require the inclusion
of magnetization fluctuations into the existing formalism. We
note that such a generalization has already been carried out
in the context of thermal magnetic fluctuations, which are
relevant for the interpretation of specific heat data [54]. Finally,
when analyzing the quantum critical behavior of the superfluid
density in FeSC compounds, it might be useful to use the
results obtained in the context of cuprate superconductors [55].
In the vicinity of the quantum critical point (QCP), generic

scaling analysis indicates that the superconducting critical
temperature should vanish as Tc ∝ δzν , where δ = |x − xc|
measures the deviation in doping from the QCP, while z and ν

are the quantum dynamical and correlation length exponents.
At the same time, the superfluid density should scale as ns ∝
λ−2

L ∝ δ(z+d−2)ν , where d is the dimensionality of the system.
When combined together, these two scaling laws predict
that there should exist a precise relation d ln Tc/d ln ns =
z/(z + d − 2). In the two-dimensional case there should exist
a linear relation between Tc and ns . For FeSCs, each of the
end points of the coexistence phase represent a QCP and,
consequently, establishing the relation between Tc and ns

will provide new information about superconductivity in these
complex materials.
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APPENDIX A: DERIVATION OF THE
EILENBERGER EQUATION

We start by writing down the equations of motion for the
matrix Green’s function using an imaginary time representa-
tion, while ignoring the disorder potential for the time being:

− ∂

∂τ1
Ĝ(r1τ1; r2τ2) − Ĥ (r1) · Ĝ(r1τ ; r2τ2)

= Î δ(τ1 − τ2)δ(r1 − r2), (A1)

∂

∂τ2
Ĝ(r1τ1; r2τ2) − Ĝ(r1τ1; r2τ2) · Ĥ (r2)

= Î δ(τ1 − τ2)δ(r1 − r2). (A2)

Next, we use mixed space momentum, keeping the center-
of-mass coordinate R = (r1 + r2)/2, but making the Fourier
transformation with respect to the relative coordinate r = r1 −
r2. In the Matsubara frequency representation, we find[

iωnτ̂3ρ̂3σ̂0 + ξp − ip · ∇R

2m

]
τ̂3ρ̂3σ̂0Ĝω(R,p)

+ v · A(R)τ̂3ρ̂0σ̂0Ĝω(R,p) − Ĥmf(R)Ĝω(R,p) = Î , (A3)

iωnĜω(R,p) +
(

ξp + ip · ∇R

2m

)
Ĝω(R,p)τ̂3ρ̂3σ̂0

+ Ĝω(R,p)τ̂3ρ̂0σ̂0v · A(R) − Ĝω(R,p)Ĥmf(R) = Î , (A4)

where we redefined the vector potential e
c
A → A for brevity,

and we used Eqs. (6) and (7). We write p/m ≈ vF n, v ≈
vF n, n = p/p, and using Eq. (12) we multiply Eq. (A3) by
τ̂3ρ̂3σ̂0 from the left, and multiply Eq. (A4) by the same matrix
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from the right. Then, we subtract the second equation from the
first. Lastly, we use τ̂3ρ̂3σ̂0 · τ̂3ρ̂3σ̂0 = Î where necessary, and
integrate both parts over the absolute value of the momentum,
which allows us to use the Eilenberger Green’s function (12).
We thus find

iωnĜω(R,n) − iωnτ̂3ρ̂3σ̂0Ĝω(R,n)τ̂3ρ̂3σ̂0

+ vF n · (−i∇R)τ̂3ρ̂3σ̂0Ĝω(R,n)

+ vF n · A(R)[τ̂3ρ̂0σ̂0Ĝω(R,n) − τ̂3ρ̂3σ̂0Ĝω(R,n)τ̂0ρ̂3σ̂0]

+ τ̂3ρ̂3σ̂0Ĝω(R,n)Ĥmf(R)τ̂3ρ̂3σ̂0

− τ̂3ρ̂3σ̂0Ĥmf(R)τ̂3ρ̂3σ̂0Ĝω(R,n) = 0. (A5)

This equation can be written in a compact form if we multiply
it from the left by τ̂3ρ̂3σ̂0. Then, Eq. (13) from the main text
follows, where we have included the effects of disorder by
trivially writing the self-energy correction to the mean-field
Hamiltonian. In terms of the Eilenberger Green’s function it is
given by

�̂ω(R) = −i�0τ̂0ρ̂3σ̂0τ̂3ρ̂3σ̂0

∫
dφn

2π
Ĝω(R,n)τ̂0ρ̂3σ̂0

− i�π τ̂1ρ̂3σ̂0τ̂3ρ̂3σ̂0

∫
dφn

2π
Ĝω(R,n)τ̂1ρ̂3σ̂0. (A6)

APPENDIX B: LONDON PENETRATION
DEPTH FOR M � �

In this section we will derive an expression for the London
penetration depth at low temperatures, assuming that the SDW
order parameter is much smaller than the superconducting
order parameter, M 	 �. We start by writing Eqs. (17), where
we replace f → if and s → is:

�gω = (ωn + 2�π )fω, Mgω = (ωn + 2�t )sω. (B1)

The functions in (B1) satisfy the normalization condition g2
ω +

f 2
ω + s2

ω = 1. From Eq. (B1) it follows that

�sω − Mfω = −2�0fωsω. (B2)

We can now eliminate sω from this equation by using the
normalization condition, which yields the following equation
for gω:

1

1 − g2
ω − f 2

ω

[
1 − �

Mfω

√
1 − g2

ω − f 2
ω

]2

= 4�2
0

M2
. (B3)

Solving this equation for g2
ω one obtains

g2
ω = 1 − f 2

ω − M2f 2
ω

(2�0fω + �)2
. (B4)

Next, we consider the following integral:

Q(�,M) = −
∫ ∞

0

f 2
ωgωdω

ω + �tgω

, (B5)

which in a way determines the penetration depth. The idea is
to replace the integration over ω with an integral over fω. To
do that, we employ Eqs. (B1), (B2), and (B4). It follows then
that

Q(�,M) =
∫ 1

0

fωdfω

gω(� + �sfω)

[
�g2

ω

+ (� − 2�πfω)f 2
ω

(
1 + �M2

(� + 2�0fω)3

)]
, (B6)

and gω is a functional of fω, Eq. (B4). Clearly, for �t = 0 we
find Q(�,M) = �2/(M2 + �2). When M = 0, the expres-
sion for Q(�,M = 0) simplifies to

Q(�,0) =
∫ 1

0

(� − 2�πf 3)f df√
1 − f 2(� + �sf )

. (B7)

This integral can be evaluated exactly, and it gives Eq. (35)
from the main text. Lastly, one can also expand Q(�,M) in
powers of M/� to derive the correction to the penetration
depth due to the development of the SDW order in the
superconducting state. The resulting expression, however, is
too cumbersome to show here.
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