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Evolution of exchange interaction constants across magnetic phase transitions
in the chromium spinel oxide CdCr2O4
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High field electron spin resonance (ESR) and magnetization measurements reveal the crucial role of the
strong spin-lattice coupling to generate the peculiar phase transitions in the chromium spinel oxide CdCr2O4,
which possesses a spin-driven Jahn-Teller transition and a field-induced 1/2-magnetization plateau state. From
our analysis of the ESR modes and the spin wave dispersion, which was observed from the previous neutron
scattering studies, these magnetic properties are shown to originate from the modifications of the exchange
interactions due to the lattice distortions. The evaluated exchange constants are examined by the magnetoelastic
theory proposed by Penc et al.
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I. INTRODUCTION

Over the years, phase transitions in geometrically frustrated
spin systems have attracted attention because the spin degen-
eracy inherent in the ground state of the frustrated system
strongly suppresses magnetic long-range order [1–3]. In most
instances, a tiny perturbation, such as quantum fluctuations or
couplings with the lattice or orbital degrees of freedom, leads
to an unusual phase transition. One example of such phe-
nomena is the “spin-driven Jahn-Teller effect” observed in the
chromium spinel oxides ACr2O4 (A = Zn, Mg, Cd, and Hg)
[4–10], where the spin-lattice coupling plays an essential role
in relieving the geometrical frustration so that magnetic long-
range order is realized. In ACr2O4, magnetic Cr3+ ions with
spin S = 3/2 form a highly frustrated pyrochlore lattice, com-
posed of a three-dimensional arrangement of corner sharing
tetrahedra. Magnetic ordering in the chromium spinel oxides is
first order, accompanied by spontaneous lattice distortion from
cubic symmetry, Fd3̄m space group, to a lower symmetry. In
other words, the geometrically frustrated magnetism on the
pyrochlore lattice forces the crystal symmetry to be lowered,
thereby lifting the degeneracy and inducing magnetic order.
Recently, elastic deformations at magnetic ordering temper-
ature, driven by geometrical magnetic frustration, have also
been identified in triangular lattice antiferromagnets [11–15].
Interestingly, such a deformation in α-NaMnO2 was reported
to be inhomogeneous on the nanometer length scale [14].

A striking aspect of the pyrochlore antiferromagnets is that
the vast ground-state degeneracy remains even in the presence
of external magnetic fields [16]. In the chromium spinel oxides,
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this degeneracy generates a nontrivial magnetization plateau
with half of the saturation value, hereafter referred to as the
1/2-plateau. More specifically, this plateau has been found in
four kinds of chromium spinel oxides ACr2O4 with A = Zn,
Mg, Cd, and Hg [17–25], and as shown in Fig. 1, the 1/2-
plateau in CdCr2O4 appears at Hc1 � 28.5 T. The transition
to the 1/2-plateau phase is very isotropic and is accompanied
by a magnetostriction [17]. The powder neutron diffraction
data for HgCr2O4, which possesses Hc1 � 10 T [18], provide
insight about the 1/2-plateau phase and reveal a 16-sublattice
ferrimagnetic structure, with cubic P 4332 symmetry, in which
three up and one down spins occupy the vertices of each
chromium tetrahedron [26]. Furthermore, it was also reported
that the crystal structure in the 1/2-plateau region has the
same distorted symmetry as the magnetic structure. This result
indicates the spin-lattice coupling plays the main role in
stabilizing the magnetization plateau. The subsequent neutron
diffraction measurements in pulsed magnetic fields suggested
that the magnetic structure in the plateau phase of CdCr2O4 is
the same as the one identified for HgCr2O4 [27].

Theoretical studies also indicate spin-lattice coupling is
important for the appearance of the stable 1/2-magnetization
plateau in the chromium spinel oxides [16,28,29]. According
to the theory by Penc et al., the spin-lattice coupling leads to an
effective biquadratic interaction between spins, which favors
collinear spin alignments [16,28]. From the calculations,
which take into account the biquadratic interaction for classical
spins on the pyrochlore lattice, magnetization curves consis-
tent with the experimental results were obtained [16,28,30].
When the spin-lattice coupling works efficiently the atomic
displacements due to the lattice deformation cause changes in
exchange interactions. This mechanism is considered to be a
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FIG. 1. (Color online) Magnetization curves of CdCr2O4 for
H ‖ [100] and [111]. The solid curves are the experimental results
obtained at 1.3 K. The curve for H ‖ [111] is shifted up by
1.0 μB/Cr3+ for clarity. The dashed curve is the result calculated
using magnetoelastic theory.

reason why the robust magnetization plateau is stabilized in
the chromium spinel oxides. In fact, our recent experiments
showed the exchange interactions between Cr3+ spins are so
significantly modified by the lattice distortion in the plateau
phase of HgCr2O4 that the nearest-neighbor interactions
become unequal to the extent the 1/2-plateau is stable [31].

Herein, for a more comprehensive understanding of the
phase transitions in the chromium spinel oxides, the exchange
interactions of CdCr2O4 in both zero and high magnetic
fields have been investigated. In the case of CdCr2O4, for
which good quality single crystals are available, the spin wave
dispersion in zero field was obtained by neutron scattering
measurements [32]. From our analysis of this spin wave
excitation, the exchange interactions in the ordered phase in
zero field are extracted. Furthermore, from the high field ESR
and magnetization measurements, we evaluate the exchange
interactions of CdCr2O4 in the plateau phase. With the analysis
of these combined data sets, modifications of the exchange
interactions are established for both the magnetic ordered
phase and the field-induced transition to the 1/2-plateau phase.
Furthermore, these changes of the exchange interactions are
theoretically examined when incorporating the spin-lattice
coupling, and the outcomes are compared to our previous
results for HgCr2O4.

II. EXPERIMENTAL PROCEDURES

In our previous work, we reported the ESR and magnetiza-
tion measurements of CdCr2O4, at 1.3 K and in magnetic fields
up to 15 T, and suggested the spin structure varies from a helical
structure, which was indicated from the neutron diffraction
measurements at zero field, to a commensurate canted spin
structure near 5.7 T [33]. Thus, for the present experiment,
we focus on the results above 20 T. Specifically, high field
ESR measurements of CdCr2O4 at 1.3 K were performed in
pulsed magnetic fields up to about 53 T in the frequency region
from 78 GHz to 1017 GHz utilizing Gunn oscillators and a
far-infrared laser as light sources. For the observation of weak

ESR signals, which are labeled as ωu1 and ωu2 in this paper,
single crystals were used. On the other hand, the strong ESR
signals ω+ in high frequency region, observed by using the
single crystals, show complex structures, which are probably
due to interference effects. To avoid these issues, a small
amount of the powder samples were used to measure the ESR
signal ω+. High field magnetization curves of CdCr2O4 up to
65 T were measured utilizing nondestructive pulse magnets
by means of the induction method. Single crystals of CdCr2O4

were grown by a flux method. Powder samples were obtained
by crushing the single crystals.

III. RESULTS AND ANALYSIS

A. Experimental results and evaluation
of the exchange constants

Figure 1 shows the magnetization curves of CdCr2O4

at 1.3 K when H ‖ [100] and [1 1 1], and these data are
consistent with those reported previously [17,19,20,24]. The

FIG. 2. (Color online) (a) Frequency dependence of ESR spectra
in CdCr2O4, obtained at 1.3 K, in the frequency region from
655.7 GHz to 1016.7 GHz. The inset shows the extended ESR spectra
at 847.0 GHz. (b) The ESR spectra in the frequency region from 92
GHz to 220 GHz. The vertical dashed line marks the transition field
Hc1. These ESR spectra were observed when the field was increasing.
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FIG. 3. (Color online) Frequency-field relation of the ESR res-
onance points in CdCr2O4. Closed circles are the ESR resonance
points observed for the polycrystalline sample. Closed squares and
open triangles are the data points acquired with a single crystal in
magnetic fields applied along [100] and [111] axis, respectively. Solid
and dashed lines designate the theoretical ESR modes. The two solid
curves below Hc1 are the theoretical antiferromagnetic resonance
modes given from our previous analysis described in Ref. [28]. The
vertical dashed lines mark the transition fields Hc1 and Hc2.

magnetization curves show a sudden jump into the 1/2-plateau
phase at Hc1 � 28.5 T. The plateau phase ends at Hc2 � 58 T,
and then the magnetization gradually increases above Hc2. It is
noteworthy that our results show the transition fields Hc1 and
Hc2 are both isotropic. Figures 2(a) and 2(b) show the ESR
spectra of CdCr2O4 obtained at 1.3 K and in the frequency
ranges from 655.7 GHz to 1017.6 GHz and from 92 GHz to
220 GHz, respectively. In the high frequency region, a strong
ESR signal, ω+, is observed at a paramagnetic resonance field
with g = 1.97. In addition, several weak ESR signals appear
near ω+ in the 1/2-plateau phase above Hc1, as indicated by
upward arrows in Fig. 2(a). In the low frequency region, two
ESR signals, ωu1 and ωu2, are observed in the 1/2-plateau
phase as shown in Fig. 2(b). In addition, an anomaly of the
baseline of the ESR spectra is seen at Hc1, and we speculate that
this anomaly comes from a change of the dielectric constant
due to the lattice transformation accompanying the transition to
the plateau phase. The frequency-field relation of the observed
ESR resonance points is shown in Fig. 3. All ESR modes
obtained above Hc1 have a positive slope with g = 1.97.
In the following analysis, the exchange interactions in the
ordered phase of CdCr2O4 in zero field are evaluated from
the spin wave dispersion obtained from the previous neutron
scattering measurements [32]. Then, the exchange interactions
are evaluated in the plateau phase when using the analysis of
our high field experimental results.

From the neutron diffraction measurements, the helical spin
structure, characterized by an incommensurate wave vector
Q = 2π (0,δ,1) with δ � 0.09, was reported for the ordered
state in CdCr2O4 in zero magnetic field [32]. The magnetic or-
dering of CdCr2O4 is accompanied by a lattice distortion from
cubic to tetragonal symmetry with an elongated lattice (a =
b < c) [32]. Recent theories demonstrated that the reported spin

FIG. 4. (Color online) Assumed magnetic structure used for our
analysis in zero magnetic field.

structure is compatible with a staggered lattice distortion with
Eu symmetry [34,35]. More specifically, the pyrochlore lattice
is composed of corner sharing of two kinds of tetrahedra, which
are labeled as I and II in Fig. 4. The staggered lattice distortion,
in which tetrahedra I and II are compressively distorted along
the a and b axis, respectively, stabilizes the 8-sublattice
collinear Néel order with Q = 2π (0,0,1), depicted in Fig. 4,
through the change in the exchange interaction induced
by the lattice distortion. In addition, the Dzyaloshinskii-
Moriya (DM) interaction inherent in the pyrochrore lattice
modulates the collinear structure to the helical one, and the
experimentally observed (0, δ, 1) structure is stabilized by
the third neighbor antiferromagnetic interaction J3. In our
previous study, we analyzed our ESR results below 5.7 T when
assuming the helical structure is stabilized by competitive
exchange interactions [33]. However, we now recognize the
aforementioned theory, which takes the staggered distortion
of the lattice into account, is a more valid interpretation of
the ordered phase of CdCr2O4 in zero field. The spin wave
dispersion, observed by the neutron scattering measurement,
was explained by a theoretical magnon excitation from the
ordered state with the helical spin structure characterized by
Q = 2π (0,δ,1) [35]. It was also suggested that the magnon
excitation, numerically calculated by assuming 8-sublattice
collinear ordering with exchange constants that are the same
as those used in the calculation for the helical order, can
reproduce the overall features of the experimentally observed
spin wave dispersion when the DM interaction is neglected.
Thus we analytically calculate the magnon excitation of the
Néel ordered state with an 8-sublattice collinear spin structure,
shown in Fig. 4, in terms of a classical spin wave theory. The
details of the calculation are described in Appendix A. From
the calculation, four kinds of the spin wave branches, each
of which are doubly degenerate, are obtained. As mentioned
in Ref. [27], due to the crystallographic domain, which is
inevitably formed by the symmetry lowering from cubic to
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FIG. 5. (Color online) Spin wave dispersion for CdCr2O4 in zero
magnetic field. Closed circles are the experimental results obtained
from the previous neutron scattering measurement [32]. Dashed and
solid curves are the theoretical results calculated for (1 k 0) and
(0 k 1) directions, respectively.

tetragonal symmetry, the spin wave branches for the (1 k 0)
and (0 k 1) directions are observed to be superimposed in
the neutron scattering measurement. By accounting for this
superposition, the experimental spin wave dispersion can be
explained by the theoretical calculation, as shown in Fig. 5.
The exchange constants, evaluated by this calculation, are
J1 = 9.04 K, J2 = 5.8 K, and J3 = 1.05 K. Here, J1 and
J2 are the nearest-neighbor interactions between spins with
antiparallel and parallel alignment, respectively. The second
nearest-neighbor interaction is neglected in our analysis,
because the previous first-principles ab initio calculations
indicated it is much weaker than the third nearest-neighbor
one, J3 [34,36], and we assume J3 remains intact through the
lattice distortion. We recently reported the optical absorption
arising from the exciton-magnon excitation in the infrared
region also agrees with our spin wave calculation [37]. The
zero field gaps, estimated from our previous ESR study [33],
almost coincide with the calculated magnon energies at the
magnetic zone center [1 1 0] or [0 1 1], except for the lowest
gap. The finite energy of the lowest gap, observed in the
experiments, is due to the small DM interaction or singe-ion
anisotropy, which was neglected in our spin wave calculation.
From our ESR measurement, the lowest gap was estimated to
be 0.61 meV [33], which is consistent with the experimental
spin wave dispersion. If one assumes that this lowest energy
gap Eg comes from single-ion anisotropy, Eg is given as
Eg = 4S

√
J1D, where D is a single-ion anisotropy constant.

From this equation, D is evaluated to be D/kB = 0.16 K,
indicating the very isotropic nature of CdCr2O4.

Next, by analyzing our high field experimental results, we
evaluate the exchange interactions in the 1/2-plateau phase.
Different from the previous results in HgCr2O4 [31], the ωu

mode in CdCr2O4 splits into the two branches ωu1 and ωu2,
and no ω− mode is observed. The ωu1 and ωu2, observed for
H ‖ [100] and H ‖ [111], almost coincide with each other
as shown in Fig. 3. Therefore, the splitting between ωu1 and

ωu2 is not due to a magnetic anisotropy. In order to analyze
the observed ESR modes, we solve the resonance conditions
for a 16-sublattice ferrimagnetic structure with the P 4332
symmetry while neglecting any small magnetic anisotropy.
Details of the calculation are described in Appendix B.
Our calculation shows the splitting of the ωu modes can be
reproduced by taking the third nearest-neighbor interaction J3

into account. By introducing J3, the ωu mode with fivefold
degeneracy, as calculated from the 16-sublattice ferrimagnetic
structure, splits into the two branches ωu1 and ωu2, which have
three- and twofold degeneracy, respectively. For the analysis,
we assume the exchange interaction J1 is different from J2,
which is the nearest-neighbor interaction between the spins
with parallel alignment, because of the lattice distortion with
P 4332 symmetry, while the third nearest-neighbor interaction,
J3/kB = 1.05 K, is held at its value in zero field. Next, the
values of J1 and J2 are evaluated so as to reproduce ωu1,
ωu2, and Hc2 = 58.0 T, at which the ω− mode becomes soft.
The calculated ESR modes are shown in Fig. 3. Other than
the ω+, ω−, ωu1, and ωu2 modes, three kinds of the triply
degenerate ESR modes, which are shown by dashed lines in
Fig. 3, are derived from the 16-sublattice model. The weak
signals observed near ω+ probably come from these ESR
modes. It should be mentioned that these weak ESR signals are
not due to the splitting of ω+ mode by the magnetic anisotropy,
because the deviation of the resonance field of the ω+ mode
from the paramagnetic resonance line is estimated to be about
HA ∼ 2SD/gμB ∼ 0.36 T, whereas the deviations of the weak
ESR signals from the paramagnetic resonance field are more
than 3 T. For a better reproduction of the ESR modes from
these weak signals, we should take into account the second
nearest-neighbor exchange interaction, which is neglected in
this analysis.

From our analysis in the 1/2-plateau phase, the evaluated
exchange constants are J1/kB = 10.7 K and J2/kB = 6.08 K.
In the case of the 4-sublattice ferrimagnetic structure, in which
all the tetrahedra are distorted in the same direction with
the R3̄m symmetry, the ωu1 and ωu2 modes are degenerate,
and no ESR modes other than ω+, ω−, and ωu are derived
from the calculation. It should be mentioned that the magnetic
dipole transition for the ESR modes other than ω+ and ω−
are forbidden in principle because the precession motion of
the transverse components against the external magnetic field
of each sublattice cancel each other. We suspect the electric
dipole transition is the origin of the finite signal intensity of
these forbidden ESR modes. In the 1/2-plateau phase, the
lattice distortion with P 4332 symmetry breaks the inversion
symmetry on the Cr3+ sites. In such a case, the Cr3+ spin
can induce electric polarization via a spin-dependent metal-
ligand hybridization [38–40], and consequently the magnon
excitation possibly causes some oscillation of the electric
dipole moment, which couples to the electric component of
electromagnetic wave as in the case of Ba2CoGe2O7 [39–41].
On the other hand, we could not find the ESR signal from the
ω− mode, although we measured the ESR spectra in magnetic
fields of up to 53 T in the frequency region above 584 GHz. The
inability to experimentally detect the ω− mode in CdCr2O4

is considered to be due to its weak signal intensity, which
results from its larger exchange interaction compared to the
one in HgCr2O4. As mentioned in Ref. [26], if the small J3
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FIG. 6. (Color online) Exchange constants of the nearest-
neighbor interactions in CdCr2O4. Closed circles are those evaluated
from the analysis of the experimental results. Dashed curves are the
results of the calculation based on the magnetoelastic theory. Vertical
dashed lines are Hc1, Hc2, Hc3, and Hs.

is neglected, the ratio of the intensity of ω− to that of ω+ is
roughly |D/2J1|2. Thus a large J1 in CdCr2O4 results in a weak
signal of ω−. By using D/kB = 0.16 K and J1/kB = 10.7 K,
this value is evaluated to be |D/2J1|2 ∼ 5.6 × 10−4, indicating
that ω− is hardly observable in our ESR system. The exchange
constants J1 and J2 evaluated from our analysis are plotted in
Fig. 6. Our analysis suggests the large inequality among the
nearest-neighbor exchange interactions is caused by the lattice
distortion, and a modification in the exchange constants occurs
due to the field-induced transition to the 1/2-plateau phase. In
the next subsection, the exchange constants evaluated from the
above analysis and the magnetization curve in CdCr2O4 are
examined by a theory that takes into account the spin-lattice
coupling.

B. Analysis within the frames of the magnetoelastic theory

As described in Appendix C, according to the magnetoelas-
tic theory proposed by Penc et al. [16,28], an effective Hamil-
tonian for a single tetrahedron embedded on the pyrochlore
lattice is given as

Heff = 2J
(√

6�A1 − bA1�
2
A1

− bE�2
E − bT2�

2
T2

) − 4HM,

(1)

where J is the exchange constant when the system has no spin
correlation, �R’s are functions expressed by scalar products
of neighboring spins, as shown in Appendix C, and bR is given
as

bR = JαR
2/KR. (2)

Here, the subscripts R = A1, E, and T2 represent the normal
modes of vibration in a tetrahedron with a Td symme-
try [9,10,16,28]. Specifically, the A1 mode uniformly stretches
or contracts the tetrahedron, the E modes cause tetragonal and
orthorhombic distortions, and the T2 modes equally stretch
and contract two opposing bonds. In Eq. (2), αR is the
strength of the spin lattice coupling and KR is the elastic

coupling constant for R (R = A1, E, or T2) mode. Penc et al.
mentioned that if J , bA1 , bE, and bT2 are determined, then
the magnetic structure of the classical ground state can be
uniquely determined at arbitrary strength of the magnetic field
by minimizing Eq. (1), when one restricts the analysis to the
4-sublattice model with crystal momentum q = 0 [16]. From
this resulting magnetic structure, the magnetization per site,
M = gμB(Sz

1 + Sz
2 + Sz

3 + Sz
4)/4, is obtained. Moreover, from

this theory the change in the exchange interaction during the
magnetization process can also be calculated, as described in
our previous paper [42]. By substituting Eq. (2) to Eq. (1), the
exchange interactions Ji,j between the nearest-neighbor spins
Si and Sj are derived as

J1,2 = J

{
1 − 2bA1√

6
�A1 − 2bE√

3
�E,1 + 2bT2√

2
�T2,3

}
, (3)

J1,3 =J

{
1− 2bA1√

6
�A1 +

2bE√
3

�E,1 − bE�E,2 + 2bT2√
2

�T2,3

}
,

(4)

J1,4 =J

{
1− 2bA1√

6
�A1 +

bE√
3
�E,1+bE�E,2 + 2bT2√

2
�T2,1

}
,

(5)

J2,3 =J

{
1− 2bA1√

6
�A1 +

bE√
3
�E,1+bE�E,2 − 2bT2√

2
�T2,1

}
,

(6)

J2,4 =J

{
1− 2bA1√

6
�A1 +

bE√
3
�E,1−bE�E,2 − 2bT2√

2
�T2,2

}
,

(7)

J3,4 = J

{
1 − 2bA1√

6
�A1 − 2bE√

3
�E,1 − 2bT2√

2
�T2,2

}
. (8)

Importantly, these equations suggest the exchange interactions
Ji,j depend on scalar products of neighboring spins, which are
determined by the magnetic structure. Therefore, a modifi-
cation in the magnetic structure causes the variation of the
exchange interaction, as indicated by our experiments.

The dashed curves in Figs. 1 and 6 are theoretical results,
calculated based on the above magnetoelastic theory. The
parameters used for the calculations are J = 8.2 K, bA1S

2 =
0.05, bES2 = 0.1, bT2S

2 = 0.14, g = 1.97, and J3 = 1.05 K.
The calculated values of J1 and J2 in Fig. 6 correspond to
J1,3 and J3,4, respectively. For H < Hc1, we assume an
8-sublattice Néel-type magnetic structure, in which the two
up and two down spins on a tetrahedron shown in Fig. 4
cant towards the external field. In the 1/2-plateau phase, the
16-sublattice ferrimagnetic structure with P 4332 symmetry is
assumed. For the 8-sublattice structure, the classical energy,
calculated from Eq. (1), is the same for the each tetrahedral
unit. In other words, the energies of the tetrahedra composed of
S1, S2, S3, and S4 and of S5, S6, S7, and S8, shown in Fig. 4, are
identical. A similar situation also applies to the 16-sublattice
ferrimagnetic structure, where four kinds of tetrahedral units
are included. In addition to the Hamiltonian in Eq. (1), J3 is
taken into account as a molecular field for the calculation of
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TABLE I. Parameters of CdCr2O4 and HgCr2O4 (from
Refs. [26,37]).

Sample J1/J2 (Hc3 − Hc1)/Hs bA1S
2 bES2 bT2S

2 J/kB J3/kB

CdCr2O4 1.8 0.53 0.05 0.1 0.14 8.2 1.05
HgCr2O4 2.4 0.67 0.05 0.16 0.21 4.25

the classical energy. The transition field Hc1 is calculated as a
field at which the ferrimagnetic phase becomes more stable
than the Néel-type ordered phase. Then, the ferrimagnetic
phase changes to the canted ferrimagnetic phase, in which
the spins are smoothly canted from the collinear structure
at Hc2, and finally the saturation of the magnetization is
achieved. The calculated results agree reasonably well with
the experimental results for both the magnetization curve
and the exchange constants, as shown in Figs. 1 and 6. The
theoretical curves in Fig. 6 indicate the difference between the
exchange constants J1 and J2 gradually diminishes as the field
is increased above Hc2. Such behavior, which comes from a
gradual release of the lattice distortion, was experimentally
suggested in HgCr2O4 [33]. The largest value of bT2 among
collection of bR’s, which causes the larger inequality between
J1 and J2 in the 1/2-plateau phase than for H < Hc1

region, indicates the nearest-neighbor exchange interaction
in CdCr2O4 is susceptible to a T2-type lattice distortion.
This result is similar to the case of HgCr2O4 [33], and the
values of the parameters for CdCr2O4 and HgCr2O4 [33,42]
are shown in Table I. The ratio J1/J2 in the 1/2-plateau
phase, tabulated in Table I, indicates the relative change in
the nearest-neighbor exchange interaction due to the lattice
distortion for HgCr2O4 is larger than that for CdCr2O4. This
outcome is consistent with the experimental result that the
3:1 magnetic structure in HgCr2O4 is relatively more stable
than that in CdCr2O4, as indicated from the larger value
of (Hc3 − Hc1)/Hs for HgCr2O4. Here, Hc3 is the magnetic
field at which the canted ferrimagnetic phase ends, and Hs

is the field where the transition to the fully polarized phase
experimentally occurs [24,31]. In the theoretical calculation,
the larger change in the nearest-neighbor exchange interaction
requires larger bE and bT2 for HgCr2O4. As given in Eq. (2), bR

depends on the ratio of the spin lattice coupling constant αR

and the elastic coupling constant KR . Therefore, our analysis
indicates HgCr2O4 possesses a stronger spin-lattice coupling
or softer crystal lattice than CdCr2O4. In addition, our study
shows that magnetoelastic theory works well to reproduce the
overall features of the high field experimental results in both
CdCr2O4 and HgCr2O4.

However, the classical calculation based on this theory
cannot explain the unexpected phase prior to the satura-
tion of the magnetization, indicated from the experiments
[21–24,31,42–44]. Our classical calculations based on the
magnetoelastic theory suggest a jump of the magnetization due
to the first order transition from the 3:1 canted phase to the fully
polarized phase. On the other hand, the magnetization curve
experimentally observed in CdCr2O4 only shows a kink at Hc3,
where the 3:1 canted phase is considered to end, followed by
a gradual increase up to the saturation field Hs, suggesting
existence of another phase between these two phases [24].

This behavior is similar to that observed in HgCr2O4 [31,42],
and such an unexpected phase was also reported for ZnCr2O4

from experiments in ultrahigh magnetic fields [22,23]. As
a candidate of this unexpected phase, a spin nematic state
was recently discussed [24]. It has been conjectured that a
quantum condensed phase of two magnon bound pairs, which
results in the spin nematic ordered state, can be stable near
the saturation field in frustrated magnets [45–48]. A new
magnetic phase, recently found near the saturation field of the
frustrated S = 1/2 chain compound LiCuVO4, was proposed
to be such a spin nematic state [49]. For a deeper understanding
of the unexpected phase in ACr2O4, a more detailed theoretical
treatment, which takes into account quantum effects, is desired.

IV. CONCLUSION

High field ESR and magnetization measurements of the
chromium spinel oxide CdCr2O4 were performed. From the
analyses of the spin wave dispersion and our high field
experimental results, we succeeded in evaluating the exchange
constants in the ordered phase in zero magnetic field and
those in the 1/2-plateau phase. The analyses showed the
exchange interaction values become unequal between the
nearest-neighbor spins with parallel and antiparallel align-
ments. This behavior arises from the spin Jahn-Teller transition
that stabilizes the ordered magnetic structure. The difference
among the nearest-neighbor exchange constants in the 1/2-
plateau phase is larger than that in the ordered phase in
zero field. This result indicates the spin system couples more
strongly with the T2-type vibration mode. By comparing with
our previous results, it turned out that relative change in the
exchange constants of HgCr2O4 is larger than that of CdCr2O4.
We showed that the magnetoelastic theory agrees well with the
high field experimental results in both HgCr2O4 and CdCr2O4,
except for the behaviors just below the saturation fields.
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APPENDIX A

The spin wave frequencies are obtained by solving the
equation of motion, which is expressed as follows:

�(∂ Sl(r i)/∂t) = [Sl(r i) × H(r i)], (A1)

where Sl(r i) is a spin on the lth sublattice located at r i, H(r i) is
an effective field acting on the Sl(r i), which is derived from dif-
ferentiation of the assumed Hamiltonian H(r i) = ∂H/∂ Sl(r i).
Here, H expresses Heisenberg exchange interactions between
the nearest- and the third nearest-neighbor spins on the
pyrochlore lattice. r i is placed at the pyrochlore lattice with no
distortion, and the lattice constants are defined as unity. The
equilibrium directions of the spins are defined to be parallel
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or antiparallel to the z axis. Assuming precession motion for the xy components, the following equations for the spin on the
sublattice 1–4 are obtained:

�ω�S1 = 2S(2J1 − J2 + 2J3)�S1 + SJ1
{
ei(kx−ky )/4�S2 + ei(−kx+ky )/4�S2 + ei(−kx+kz)/4�S3 + ei(−ky−kz)/4�S8

}
+ SJ2

{
ei(ky+kz)/4�S4 + ei(kx−kz)/4�S7

} + 2SJ3
{
cos ((kx + ky)/2) + cos ((kx − ky)/2)

}
�S1 (A2)

+ 2SJ3
{
cos ((ky + kz)/2) + cos ((ky − kz)/2) + cos ((kx + kz)/2) + cos ((kx − kz)/2)

}
�S5,

�ω�S2 = − 2S(2J1 − J2 + 2J3)�S2 − SJ1
{
ei(kx−ky )/4�S1 + ei(−kx+ky )/4�S1 + ei(kx+kz)/4�S4 + ei(ky−kz)/4�S7

}
− SJ2

{
ei(−ky+kz)/4�S3 + ei(−kx−kz)/4�S8

} − 2SJ3
{
cos ((kx + ky)/2) + cos ((kx − ky)/2)

}
�S2 (A3)

− 2SJ3
{
cos ((ky + kz)/2) + cos ((ky − kz)/2) + cos ((kx + kz)/2) + cos ((kx − kz)/2)

}
�S6,

�ω�S3 = − 2S(2J1 − J2 + 2J3)�S3 − SJ1
{
ei(kx−kz)/4�S1 + ei(kx+ky )/4�S4 + ei(−kx−ky )/4�S4 + ei(−ky+kz)/4�S6

}
− SJ2

{
ei(ky−kz)/4�S2 + ei(−kx+kz)/4�S5

} − 2SJ3
{
cos ((kx + ky)/2) + cos ((kx − ky)/2)

}
�S3 (A4)

− 2SJ3
{
cos ((ky + kz)/2) + cos ((ky − kz)/2) + cos ((kx + kz)/2) + cos ((kx − kz)/2)

}
�S7,

�ω�S4 =2S(2J1 − J2 + 2J3)�S4 + SJ1
{
ei(−kx−kz)/4�S2 + ei(kx+ky )/4�S3 + ei(−kx−ky )/4�S3 + ei(ky+kz)/4�S5

}
+ SJ2

{
ei(−ky−kz)/4�S1 + ei(kx+kz)/4�S6

} + 2SJ3
{
cos ((kx + ky)/2) + cos ((kx − ky)/2)

}
�S4 (A5)

+ 2SJ3
{
cos ((ky + kz)/2) + cos ((ky − kz)/2) + cos ((kx + kz)/2) + cos ((kx − kz)/2)

}
�S8.

Here, �Si is an amplitude of the precession motion of the spin on the ith sublattice. The equations for the spin on the sublattice
5–8 are given by following replacements for Eqs. (A2)–(A5): �S1 ↔ �S5, �S2 ↔ �S6, �S3 ↔ �S7, �S4 ↔ �S8, and
S → − S.

By solving the secular equation for �S1–�S8 obtained from the above equations, we can derive the the spin wave frequencies.

APPENDIX B

The theoretical ESR resonance energies in the 1/2-plateau phase with a 16-sublattice spin structure are derived from a classical
spin wave calculation. These energies correspond to the absolute values of the eigenvalues for the following matrices M̃:

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Q −A −B −B −D 0 −B 0 0 0 −D −A −D −B 0 0
A −P A A 0 D 0 A D A 0 0 A D 0 0

−B −A −Q −B −A 0 −D 0 −B −D 0 0 0 0 −D −B

−B −A −B −Q 0 −B 0 −D 0 0 −B −D 0 0 −A −D

D 0 A 0 −P A A A A 0 D 0 D 0 0 A

0 −D 0 −B −A −Q −B −B −D 0 −B 0 0 −D −A 0
−B 0 −D 0 −A −B −Q −B 0 −D 0 −A 0 −B −D 0

0 −A 0 −D −A −B −B −Q 0 −B 0 −D −B 0 0 −D

0 −D −B 0 −A −D 0 0 −Q −B −B −A 0 −D 0 −B

0 −A −D 0 0 0 −D −B −B −Q −B −A −B 0 −D 0
−D 0 0 −B −D −B 0 0 −B −B −Q −A −D 0 −A 0

A 0 0 D 0 0 A D A A A −P 0 A 0 D

−D −A 0 0 −D 0 0 −B 0 −B −D 0 −Q −B −A −B

−B −D 0 0 0 −D −B 0 −D 0 0 −A −B −Q −A −B

0 0 D A 0 A D 0 0 D A 0 A A −P A

0 0 −B −D −A 0 0 −D −B 0 0 −D −B −B −A −Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B1)

A = (J1S − gμBH )S, (B2)

B = J2S, (B3)

D = 2J3S, (B4)

P = −3J1S − 3J3S + gμBHS, (B5)

Q = J1S − 2J2S − J3S + gμBHS. (B6)
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APPENDIX C

According to the magnetoelastic theory proposed by Penc
et al. [16,28], a model Hamiltonian for a single tetrahedron
embedded on the pyrochlore lattice is given as

H′
ME = 2

√
6J�A1 − 4HM − 2J

× (
αA1�A1ρA1 + αE�E · ρE + αT2�T2 · ρT2

)
+ (

KA1ρ
2
A1

+ KEρE
2 + KT2ρT2

2
)
. (C1)

Here, J is the exchange constant when the system has no spin
correlation, αR is the strength of the spin-lattice coupling, ρR is
the amplitude of the distortion, and KR is the elastic coupling
constant for R (R = A1, E or T2) mode. �R’s are expressed

as [16,28]

⎛
⎜⎜⎜⎜⎜⎝

�A1

�E,1

�E,2

�T2,1

�T2,2

�T2,3

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
3

−1
2
√

3
−1

2
√

3
−1

2
√

3
−1

2
√

3
1√
3

0 1
2

−1
2

−1
2

1
2 0

0 0 −1√
2

1√
2

0 0

0 −1√
2

0 0 1√
2

0
−1√

2
0 0 0 0 1√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

S1 · S2

S1 · S3

S1 · S4

S2 · S3

S2 · S4

S3 · S4

⎞
⎟⎟⎟⎟⎟⎠
,

(C2)

where Si (i = 1–4) is a spin on a vertex of the tetrahedron.
From the equilibrium conditions ∂H′

ME/∂ρR = 0, the energy
minima are given by following equation:

ρR = (αRJ/KR)�R. (C3)

By substituting this equation into Eq. (C1), an effective
Hamiltonian [16,28], given as Eq. (1), and the exchange
interactions [42], given as Eqs. (3)–(8), are derived.
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