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Adequacy of damped dynamics to represent the electron-phonon interaction in solids
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Time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic
excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping
power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy
compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction
strength determined in this way is very similar to the linear response calculation and experimental measurements.
This approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified
framework to perform classical molecular dynamics of ion-solid interaction with ab initio type nonadiabatic
terms in a wide range of energies.
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I. INTRODUCTION

The Born-Oppenheimer approximation (BOA) [1] is the
keystone to describe ionic motion in condensed matter. This
approximation, in which ions move classically under the forces
derived from the electronic ground-state energy, proved to
be useful to describe nuclear stopping power for low-energy
ions in solids, Sn. However, for ion energies approaching the
Fermi velocity of electrons in the target, electronic loses, or
nonadiabatic effects, become increasingly relevant. The rate
of energy transfer to electrons can be cast in the form of
an electronic stopping power Se that, together with Sn, are
the two mechanisms of energy dissipation for energetic ions
colliding with a target material. As part of the BOA, Sn and
Se are customarily assumed to be independent of each other;
however, in the presence of nonadiabatic energy exchanges,
actual materials’ response is beyond the BOA.

For projectile velocities below the target Fermi velocity, Sn

and Se are both relevant, creating a complex nonequilibrium
situation that can be studied with a diversity of theoretical ap-
proaches. To a large extent, computational studies of radiation
damage have ignored the dynamic response of the electrons to
such perturbation; the majority has been done within the BOA,
or with classical potentials, ignoring electron dynamics. From
the early days, authors noticed the necessity to go beyond this
approximation, ranging from collision cascades [2–11] and
rapid shocks [12] to current-induced forces [13].

In addition to the phenomena related to stopping power
(Sn and Se), the electron-phonon (e-ph) interaction is also
important, since it is responsible for the return to thermal
equilibrium between the nuclear and electronic subsystems.
In this work the expression electron-phonon interaction refers
to both, the interaction of electrons with well-defined col-
lective ionic motion excitations characterized by wave and
polarization vectors, and the local picture of ions moving
individually. Hybrid models combine different aspects of the
problem in an ad hoc manner; these include two-temperature
models (TTM) [2,3], phenomenological stopping based in
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the local density [4], collective excitations in a Coulomb
explosion [5–8], and thermal spike approaches [2,3,9,10].
In general, these approaches consider a classical “electronic
thermal” field evolving via heat transport equations, and
coupled to ions via Langevin dynamics [11].

In the state-of-the-art implementations of classical molec-
ular dynamics (MD) with two temperatures, such as
Duffy’s [11,14–16], a viscous damping term (βv) and a random
force (ξ ) are added to the Newton equations of motion of
each ion: F = −βv + ξ (t), where β is a piecewise function
known in two limits: (i) β = βSe + βe-ph for v0 < v < vF and
(ii) β = βe-ph for v < v0 [17], where v0 is a threshold velocity
related to a cutoff kinetic energy chosen arbitrarily in the
range of ∼10–100 eV. The parameters βSe and βe-ph have
different values, since they are considered as being originated
in different physical processes. For example, the authors of
Ref. [18] assume “that the e–ph coupling process is not
initiated until 0.3 ps after the initiation of the collision process,
as the lattice temperature is ill-defined before this. Until this
time of the simulation only the electron stopping mechanism
is active, while there is a time-frame when both the electronic
stopping and e–ph interaction mechanisms are active.”

As examples of this way of approaching the problem, we
mention the works of Sand et al. on damage of W [19] using
τSe = m/βSe = 1 ps for the electronic stopping (with m the
mass of the ions) and no e-ph term; of Zarkadoula et al. on
Fe [18], who used a value of τSe = 1 ps for stopping power
and τSe-ph = 1.54 ps for the e-ph regime; and of Zhurkin and
Kolesnikov in a study of cluster impacts on metals [20], who
used τe-ph = 1 ps for Ni and τe-ph = 1.7 ps for Al. Caro and
Victoria and Proennecke et al. considered 3.4 < τe-ph < 10 ps
and 0.27 < τSe < 2.5 ps for Cu [4,21]. It can be concluded
that in the literature there is a diversity of values but always
τSe > τe-ph by a factor between ∼1.5 and ∼10.

The aim of this work is to show that the electronic stopping
power has a complex dependence on both the ion velocity and
the local electronic density, which are both related to the local
electronic density of states (LDOS). For a projectile to lose
energy to target electrons two conditions are required, first that
target electrons have to be where the projectile is and second
that there have to filled states where electrons can be taken from
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and empty states they can fill in; both conditions are related
to the structure of the LDOS. The projectile velocity provides
an energy scale around the Fermi energy, similar to thermal
energy kBT , which determines what electrons participate in the
nonadiabatic process. It is known that for the uniform electron
gas the stopping power is linear in velocity for projectile
velocities less than the Fermi velocity, Se = βv, and that β has
a complex density dependence [22,23], but for more realistic
density of states the situation changes, as has recently been
shown for the case of protons and He in Au [24].

Besides the velocity dependence, the reason that makes βSe

and βe-ph different is the local electronic density (ρ) of the
target, which an energetic particle can explore in different
energy domains: a particle undergoing electronic stopping
is an energetic particle that visits many regions in a solid,
with different electronic density, while a particle moving in
a phononlike mode, i.e., with meV of energy, visits regions
close to their equilibrium lattice positions, where the electronic
density of the host matrix has a minimum. By making explicit
the β dependence on ρ we describe here the e-ph interaction
as a special case of electronic stopping process at very low
energies. By comparing the strength of the so determined
e-ph coupling to fully quantum-mechanical treatments, we
assess the validity of the Langevin equation to represent this
nonadiabatic phenomenon. The main approximation we make
is the assumption of classical motion for the ions at thermal
energies, which is presumably valid for kinetic energies above
the Debye temperature.

It is important to mention that this local-density dependence
of the damping term representing the electronic stopping
power was proposed by us years ago [4], but the high
degree of empiricism in the functional form proposed for this
dependence prevented it from being adopted as a standard
approximation. Here we give the initial steps towards a
functional form with ab initio type accuracy.

Additionally, within the framework of time-dependent
tight-binding theory, Race et al. [17] reported results pro-
viding evidence that, for tight-binding molecular-dynamics
simulations, the strength of the coupling depends on the
electronic density at the crystalline location of the moving ion,
giving support to this work in that the stopping mechanisms
appearing in time-dependent electronic structure calculations
could account for both Se and e-ph interaction.

II. METHOD: NONADIABATIC CALCULATION

Using time-dependent density functional theory (TD-
DFT) [25] to follow the energy transfer from (classical) ions
to (quantum) electrons we analyze the ability of the proposed
technique to calculate both the electronic stopping of an ener-
getic projectile traveling along a channeling direction and the
the e-ph interaction parameter for the case of a single represen-
tative vibrational mode, the Einstein oscillator. Both types of
simulations were performed on a supercell with 108 Ni atoms
(�-only sampling) on a fcc lattice with a lattice parameter
of 3.52 Å. Norm-conserving pseudopotentials and an energy
cutoff of 150 Ry for a plane-wave basis were used. The calcula-
tions included semicore states, were nonmagnetic, and used the
adiabatic LDA exchange-correlation (XC) potential. For de-
tails on the implementation of TD-DFT in QBOX, see Ref. [26].

Previous work by Pruneda et al. and by others on nonadia-
batic dynamics in insulators [27], and of Correa and coworkers
on H in Al [28,29], proved that TD-DFT gives accurate results
for Se at high (i.e., E � 1 eV) energies. By accurate we mean
in good agreement with the SRIM database, considered to be the
standard reference for this property [30,31]. For one particular
case studied in this work, namely, a Ni projectile into a Ni
target at an energy of 1.5 MeV, SRIM reports a stopping
of 148.2 eV/Å while our calculations for the center of a
〈100〉 channel give 42.5 eV/Å. This discrepancy can easily be
removed by taking into consideration that experimental values
represent averages of actual trajectories and, as discussed in
Refs. [29,32], either running off-center channel simulations or
random direction trajectories, bring the results into excellent
agreement with SRIM.

In this work, we evaluate the electronic stopping for an atom
in two different environments: (i) an energetic projectile in
channeling conditions and (ii) an atom vibrating with thermal
energies around its equilibrium position. We determine a scalar
β for both cases, and relate it to the local density seen by the
moving atom, which we assume is the main characteristic that
distinguishes between the two environments. To this end we
first evaluated the time evolution of the total electronic energy
of a system composed of a Ni projectile traveling along the
center of a 〈100〉 channel in the Ni fcc crystal. Details of these
calculations will be published elsewhere; here we show in
Fig. 1 the general aspect of these curves.

For the case of an atom vibrating with thermal energies
around its equilibrium position, we aim at calculating the
stopping power at much lower velocities, corresponding to
energies in the meV region. We then face the time-scale
limitations imposed by the computational cost of TD-DFT. We
adopt then the following strategy: to determine if the sample
size (number of electrons in the supercell calculations) is large
enough in the sense that the small gaps appearing between
the electronic eigenvalues are not affecting the results of the
calculation, we propagate the projectile in a uniform electron
gas, jellium, with the same parameters used to represent Ni in
the DFT calculations, meaning the same XC functional, cutoff,

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5 3

E
ne

rg
y 

[a
. u

.]

Projectile Position [a0]

v =10 a.u.
v = 5 a.u.
v = 3 a.u.
v = 2 a.u.
v = 1 a.u.

FIG. 1. (Color online) Total energy vs position of the Ni projec-
tile across the 〈100〉 channel in a fcc Ni at different velocities (from
1.5 to 150 MeV). We obtained the electronic stopping power from
the slope of these curves, after an initial transient.
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box size, etc. The ground state of a jellium with electron density

in the range we want to study (0–1.5 e/Å
3
) is constructed

with a single additional Ni atom. In the time-dependent
simulation the Ni ion is then moved at constant velocity. The
energy-versus-time curves show a behavior similar to that of
the crystalline target, including the transient and excitation of
charge oscillations that it originates, but without the periodic
oscillations due to the crystalline structure [29].

Comparing the losses corresponding to Ni traveling into
crystalline Ni at the center of the 〈100〉 channel with those
of Ni traveling in jellium we conclude that, on average, Ni
travels in the fcc Ni channel producing the same dissipation
as if in a homogeneous medium of electronic density ρ =
0.75 e/Å

3
. For a velocity of 1 a.u. (1.5 MeV for Ni) the

dissipation in the channel is 45 eV/Å, and β (in Se = βv)

is 2.06 × 10−3 eV ps/Å
2
. This friction can be expressed in

time units, as τ = m/β, which measures the characteristic
relaxation time for excess energy in the ionic system decaying
into the electronic system; the relaxation time is 3.5 ps.

We use then jellium to explore the low-velocity regime
because it lacks crystalline structure, which implies the need
of much shorter trajectories to extract the slope representing
the losses, and we can therefore determine the stopping for
velocities over several orders of magnitude. Figure 2 shows

Se for a Ni projectile in jellium at a density ρ = 1.5 e/Å
3

over four orders of magnitude of velocity, or equivalently
eight orders of magnitude in energy, from 1.5 MeV (in the
electronic stopping power regime) down to 15 meV (in the
thermal phonon energy regime). The known linear dependence
on the velocity is clearly confirmed (in the range of densities
of interest), implying Se = β(ρ)v. While the result shown in
Fig. 2, namely, that Se is proportional to velocity for v < vF

in a uniform electron gas, is known, this figure validates the
computational approach regarding sample size and emphasizes
the fact that the concept of electronic stopping is valid even at
thermal energies. It justifies the use of high-velocity results to
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FIG. 2. (Color online) Electronic stopping Se corresponding to

Ni in jellium at metallic electron densities (ρ = 1.5 e/Å
3
) for

different velocities covering eight orders of magnitude in kinetic
energy, from 1.5 MeV (in the electronic stopping power regime) to
15 meV (corresponding to typical thermal phonon energies). The
slope 1 indicates a stopping linearly proportional to velocity.

study low-velocity dissipation, provided a proper treatment of
the DOS at EF for real materials is given. Going to even lower
velocities in jellium should still give a linear relation, down to
some limit where the discrete structure of the density of states
due to the finite sample size would introduce departures from
linearity, similar to those reported for insulators [27].

While jellium gives a stopping proportional to velocity, it
is only an approximation to real materials and in particular
to Ni, in the sense that it neglects the detailed structure of
the electronic density of states (DOS) close to the Fermi
energy (EF), which translates into a velocity dependence to the
coupling. We come back to this point at the Discussion section.

III. RESULTS: CONNECTION BETWEEN ELECTRONIC
STOPPING POWER AND ELECTRON-

PHONON COUPLING

To analyze next the connection between an energetic ion
traveling along a channel and an Einstein oscillator, we study
the electronic density at different locations in a Ni crystal.
Figure 3 shows ρ(x) along two trajectories, one along the
center of a 〈100〉 channel, where ρ(x) varies between 0.23

and 0.3 e/Å
3
, and the other also along the 〈100〉 direction but

across the perfect lattice sites, i.e., across the nuclei of Ni
atoms. We have included in this trajectory a vacancy in the
position a0 = 2, to evaluate the density of Ni at a vacant site
because we will picture an Einstein oscillator as a “projectile”
moving around a vacant site. The figure also displays as vertical
shadowed areas the size of the atom cores as given by the cutoff
radius of the pseudopotential for 2p electrons.

Two conclusions emerge from Fig. 3. One is that the density

at the center of the channel (∼0.23–0.30 e/Å
3
), is similar but

smaller than the equivalent jellium density giving the same

stopping, ρ = 0.75 e/Å
3

as discussed earlier. It implies that
for a nonhomogeneous system, such as a crystal lattice, not
only the density at the location of the nucleus of the projectile
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FIG. 3. (Color online) Electronic density in a fcc Ni target along
two directions, the 〈100〉 channeling direction at its center, and along
a 〈100〉 direction going across four atoms at positions zero, one, three,
and four a0, with a0 the lattice parameter, and a vacancy at position
2a0. Note the factor of almost 10 between electronic density in the
channel and at the vacant site.
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is relevant, but also the density around that position. That is,
the finite size of the projectile atom with its bound electrons
samples regions of the target around its trajectory in a way that
on average crystalline Ni stops a Ni ion traveling along the

center of the channel as homogeneous jellium at ∼0.75 e/Å
3

density does. The second conclusion is that at a vacant site
the electronic density is approximately ten times smaller than
at the center of a channel. This fact, together with the order-
of-magnitude difference in ion velocities at thermal energies,
is precisely what will give rise to a different stopping for
energetic projectiles than for atoms vibrating thermally around
their lattice sites.

To establish the connections between Se and e-ph inter-
action, we analyze now the energy dissipation of a Ni ion
moving in a Ni crystal in a trajectory along a 〈100〉 direction
passing on top of a perfect lattice site that is vacant, at two
different constant velocities, namely, v = 0.1 and 0.05 a.u.,
corresponding to 15 and 3.75 keV, respectively. Phonon
energies would require this study to be done at two orders of
magnitude lower velocities, something that is computationally
very demanding. To recover the dissipation under the real
oscillatory dynamics, we will use the results for β obtained at
v = 0.05 a.u. and plug it into the actual equation of motion of
the damped harmonic oscillator at an amplitude corresponding
to room temperature.

Figure 4 shows the potential energy for the BOA together
with the energy according to TD-DFT for the atom moving
from x = −1.1 to 1.1 Å, measured from the perfect crystal
position where the vacancy sits, for the case v = 0.1 a.u. The
ion in TD-DFT was set into motion at a distance from the
vacancy larger than |−1.1| Å, in order to reach that position
well after the transient has disappeared. For visualization
purposes, both curves have been vertically shifted to have equal
value at x = −1.1 Å. Finally Fig. 4 also shows the difference
between the two curves, i.e., the dissipated energy, whose
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FIG. 4. (Color online) Energy vs position for an atom moving
from left to right at constant velocity of v = 0.1 a.u. across its
equilibrium position in the lattice at x = 0 according to both the Born-
Oppenheimer approximation (dashed green curve), and nonadiabatic
TD-DFT (solid-red curve). For visualization purposes, energy values
have been made to coincide at x = −1.1 Å. The losses are given by
the derivative of the curve representing the energy difference between
the two approximations (dotted blue curve).

slope is the stopping power or, in this interpretation, the e-ph
interaction. As it is apparent, the slope of the curve, i.e., βv,
is not constant but position dependent, reflecting the fact that
β is a function of the density. The curves for v = 0.05 a.u. are
slightly different, giving a larger β.

From the curvature of the BO curve in Fig. 4 we determine
the equation of motion of the Einstein oscillator by extract-
ing Hooke’s constant κ of the parabolic potential, getting

κ = 13.076 eV/Å
2
. This constant determines an oscillation

frequency of 7.379 THz, or a period T0 = 0.136 ps. This value
is to be compared with the maximum phonon frequency in
Ni, which is ∼9 THz [33], reminding us that the Einstein
oscillator is generally in the upper side of the phonon spectrum.
From the slope of the energy difference between the adiabatic
and nonadiabatic calculation reported in Fig. 4 we extract the
instantaneous β as a function of position x; from the curves
in Fig. 3 we obtain the density as a function of position. We
can then represent β as a function of density; these functions
at the two velocities considered are shown in Fig. 5. For the
small variations of density considered here corresponding to
displacements compatible with room-temperature excitations,
the function β(ρ) is linear in density.

This result, namely, that β is different at different velocities,
clearly shows that the damping is not simply proportional to
the velocity at low velocities as is the case for jellium, Fig. 2.
This velocity dependence is similar to the case reported in
Ref. [24] for Au. Interesting to note is the fact that the velocity
dependence for Ni is just the opposite to that of Au; while in Au
the coupling decreases for low velocity, in Ni it increases. The
reasons for that are to be found in the structure of the DOS
close to the Fermi level: while in Au increasing the width
around EF increases the number of electrons involved, in Ni
it is the opposite because the Fermi level sits on a high and
narrow peak. For details see Figs. 4(d) and 5(d) in Ref. [34].

The motion of a damped harmonic oscillator of mass m and
damping β is exponentially attenuated with a characteristic
time τA = 2m/β, while the energy decays with τE = m/β. We
find τE = 12.7 ps for β determined at v = 0.1 a.u. and τE =
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FIG. 5. (Color online) Instantaneous stopping power coeffici-
ent β vs local electronic density at the location of the projectile
for a Ni atom moving along the 〈100〉 direction in Ni across a vacant
site at 0.1 (green dashed curve) and 0.05 (red solid curve) a.u. of
velocity.

144309-4



ADEQUACY OF DAMPED DYNAMICS TO REPRESENT THE . . . PHYSICAL REVIEW B 92, 144309 (2015)

4.4 ps for v = 0.05 a.u. We can expect that if β is calculated
for lower velocities the characteristic relaxation time will be
even smaller.

How does this value compare with the relaxation time for
a 1.5-MeV (v = 1-a.u.) Ni particle traveling at the center of
a 〈100〉 channel in fcc Ni? To make this comparison we will
assume that for velocities between 0.1 and 1 a.u. the linear
dependence of stopping with velocity is valid, which is not
the case for velocities below 0.1 a.u., as we just discussed.
Under this assumption, the relaxation time in a channel,
namely, 3.5 ps, is 4.5 times shorter that the relaxation time
around a vacancy. In terms of β for a particle traveling in

a channel, β(ρ = 0.25 e/Å
3
) = 2.06 × 10−3 eV ps/Å

2
, while

for an atom traveling around its equilibrium position β(ρ =
0.03 e/Å

3
) = 4.57 × 10−4 eV ps/Å

2
. In short, a variation of

the host electronic density by a factor of ∼9 produces a
variation of the strength of the coupling by a factor of ∼4.5.

This result partially solves the difficulty presented in the
Introduction about the use of a piecewise function for β.
However the precise relation between β and ρ at all densities,
which is of relevance for practical implementations of TTM
in classical MD simulations, requires also a dependence on
velocity and/or on the structure of the DOS around EF, a
complex problem that still needs to be solved and is beyond
the purpose of this paper.

IV. COMPARISON WITH THE PERTURBATIVE
APPROACH

Finally, how does the e-ph relaxation time from TD-DFT
compare with the value obtained using standard Bloch-
Boltzmann-Peierls expression [35] describing the rates of
change of electron and phonon distribution due to electron-
phonon collision? In such approximation, the electron energy
dissipation caused by the difference in electron and lattice tem-
peratures is described by the theory developed by Allen [36]:

ce
dTe

dt
= −π�kBλ〈ω2〉N (EF)(Te − Tl) = −g(Te − Tl) (1)

where ce is the electronic specific-heat capacity, 〈ω2〉 is the
average value of phonon frequency, N (EF) is the electronic
density of states (DOS) per spin at Fermi energy, λ is the
coupling constant, and Te and Tl are electron and lattice
temperatures, respectively.

The rigid muffin-tin potential approach (RMTA) proposed
by Gaspari and Gyorffy [37] significantly simplifies the
calculation of λ. It was used to calculate the Hopfield parameter
η = λ/(m〈ω2〉), where m is atomic mass. Thus, the zero-
temperature expression for the e-ph coupling is defined as

g = π�kBηN (EF)/m. (2)

The electronic scattering phase shifts and electronic density
of states, N (EF), needed to calculate η, are obtained from the
atomic sphere approximation of the Korringa-Kohn-Rostoker
(KKR) [38,39] calculation. Within RMTA the spherically
averaged part of the Hopfield parameter is equal (in Rydberg
units) to

η = 2N (EF)
∑

�

(� + 1)M2
�,�+1

f�

2� + 1

f�+1

2� + 3
, (3)

where f� is a relative partial DOS,

f� = N�(EF)

N (EF)
, (4)

and M�,�+1 is the electron-phonon matrix element

M�,�+1 =
∫ S

0
R�

dV

dr
R�+1r

2dr, (5)

where the gradient of the one-electron potential V (r) and the
radial solution of the Schrödinger equation, R� and R�+1,
were used. M�,�+1 can be written [37] in terms of the phase
shifts δ� or in terms of logarithmic derivatives of D� = rR′

�/R�

evaluated at the boundary of the atomic sphere [40–42]:

M�,�+1 = −φ�(EF)φ�+1(EF){[D�(EF) − �]

× [D�+1(EF) + � + 2] + [EF − V (S)]S2}, (6)

where φ�(EF) is the amplitude of the � partial wave.
Since both η and g are proportional to N (EF), the resulting

value strongly depends on the magnetic ordering in the

material, namely, η = 2.6 eV/Å
2

for nonmagnetic Ni and

η = 2.1 eV/Å
2

for the magnetic one. This difference is mainly
caused by much higher N (EF) for nonmagnetic Ni compared
to the magnetic one. The corresponding coupling values, g,
are equal to 14.9 × 1017 and 9.6 × 1017 W/m3 K. According
to Lin et al. [34], the highest value of g, 10.5 × 1017 W/m3 K,
is measured in transient thermoreflectance experiments [43].
The electron temperature in this experiment does not
exceed 100 K. The phonon relaxation is obtained using the
expression τph = cl/g, where cl is the lattice specific-heat
capacity. The resulting phonon relaxation times at temperature
equal to 300 K are 3.1 ps for nonmagnetic Ni and 4.8 ps
for the magnetic one, where the temperature dependence
was included following the approach proposed by Wang
et al. [44]. This approach allows us to include scattering of
phonons on electrons away from the Fermi surface. Following
Wang et al. and Lin et al. [34] the temperature-dependent
electron-phonon coupling was calculated using

g(Te) = π�kB
η

M
N (EF)

∫ ∞

−∞
dE

[
N (E)

N (EF)

]2[
− ∂f

∂E

]
, (7)

where − ∂f

∂E
is the derivative of the equilibrium Fermi

distribution function. At low electronic temperatures, Te,
this function reduces to a delta function, and the expression
for g reduces to Eq. (2). Figure 6 shows the calculated
g(Te) together with available experimental data obtained in
transient thermoreflectance experiments [43] and pump-probe
transmission experiments [45] and deduced from the
two-temperature model for surface melting [46] (see detailed
discussion in the paper by Lin et al. [34]). The calculated
dependence is in very reasonable agreement with experiment.

V. DISCUSSION

The e-ph interaction represented in terms of a relaxation
time has then been calculated with two different approaches,
namely, in a semiclassical way, as the low-velocity limit
of electronic stopping, producing a value for an Einstein
oscillator of τ = 12.7 ps for β calculated at v = 0.1 a.u and
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FIG. 6. (Color online) Calculated (red line) and experimental
(blue dots) electron-phonon coupling as a function of electron
temperature. The data point at “a” is from Ref. [43], at “b” is from
Ref. [45], and at “c” is from Ref. [46]. Also shown are the points
calculated as stopping power, with an instantaneous stopping power
coefficient β determined with a projectile traveling at v = 0.05 a.u.
of velocity (point d), and at v = 0.1 a.u. (point e). For details see text.

τ = 4.4 ps for β calculated at v = 0.05 a.u, and as given by
linear-response theory, producing a value of τ = 3.5 ps at
0 K. The similarity of these results is surprising if we consider
how different the two approaches are. To mention some,
the e-ph interaction seen as an electronic stopping process
uses Ehrenfest dynamics, which is known to misrepresent
some dissipation channels [47]. Also, our calculation is for
an Einstein mode, a highly localized superposition of all
normal modes, while the quantum-mechanical calculation
involves a thermal population of phonons. In addition, the
quantum-mechanical calculation is very sensitive to the
electronic DOS at the Fermi level, a usual source of numerical
inaccuracy. However, the main assumption is the velocity
proportionality of the stopping, as represented in Fig. 2 for
jellium: the βs used for the calculation of the attenuation of
an Einstein oscillator were obtained at v = 0.1 and 0.05 a.u.,
while the velocity of an atom moving in the phonon regime is
in the range of v ∼ 0.0001 a.u., implying that an even larger
value of β may be found if the velocity is further reduced.

In a recent paper, Zeb et al. showed that, for protons on Au,
where the Fermi level is in the s band close to the upper limit
of the d band, the experimentally reported nonlinear behavior
of stopping power versus velocity (lower slope of the stopping
at lower velocities) is due to a gradual crossover as excitations
tail into the d electron spectrum [24]. Using a similar argument
for our case of Ni in Ni, we find a justification for the opposite
behavior, namely, an increase in the slope of the stopping
as the velocity decreases, as shown in Fig. 6. Our calculated
dependence of the e-ph coupling on electronic temperature in
Ni, as well as the work by Lin et al. [34], show a strong negative
dependence in the temperature regime relevant for high-energy
laser pulses, i.e., electronic temperatures up to 104 K. As the
electronic temperature increases, electrons in a window of
width kBT around EF start to participate in the coupling and
since in Ni the N (EF) is very high and decreases at both sides of
EF the coupling has a strong negative temperature dependence.

The e-ph interaction seen as a stopping process can be
analyzed with the same argument, namely, the electrons that

participate in the stopping are those around EF with a width
that increases with projectile velocity. Using a semiclassical
argument we see that for a given projectile velocity v electrons
in a range EF ± 2�kFv become relevant for the nonadiabatic
energy exchange. Therefore a meaningful comparison between
electronic stopping and e-ph coupling can be made when v ∼
kBT /(2�kF ), with T the electronic temperature. So, for exam-
ple, an electronic temperature of 5000 K corresponds, in this
analogy, to a projectile velocity of 0.011 a.u. (counting ten va-
lence electrons per nickel ion) or 0.006 a.u. (two s electrons per
nickel ion). This argument is a good candidate to explain why
the e-ph and stopping power calculations agree when both the-
ories are compared at the appropriate limits, i.e., when both ap-
proaches effectively probe the same range of DOS around EF.

At high electronic temperature (or in the presence of defects
affecting the band structure) the exact value of N (EF) of
the perfect crystal becomes less relevant, and is replaced by
an average in the range EF ± kBT . In fact, for disordered
alloys, liquid phase, or high temperature, we expect that the
semiclassical stopping method to the two-temperature model
could become a practical and accurate approach.

VI. CONCLUSION

In summary, using TD-DFT we simulated an oscillatory
ion motion with thermal energies subject to the damping
created by electronic excitations, as well as an energetic ion
traveling in a channel direction in a crystal. We interpreted both
damping processes as being two aspects of the same physical
phenomenon, differentiated only by the density of the target
that the moving particle is able to explore at different energy
ranges. This connection between the two processes is not new
in molecular physics: Several years ago a similar assumption
was made by Persson and Hellsing [48,49] to explain the
attenuation of oscillating molecules or adatoms on the surface
of a metal. In this paper we give a full quantitative evaluation
of the process for a metal with ab initio accuracy. Finally, in
a recent paper by Mason [50] an explicit form is given for
the damping coefficient in terms of a damping tensor derived
from a tight-binding model, adding more complexity to our
simple scalar damping term. Still Mason’s model considers Sn

and Se as distinct phenomena acting at different energy scales.
Perhaps a combination of both approaches may give the most
complete description on nonadiabatic phenomena in solids.

The classical trajectory is not only a technical shortcut
but also makes the connection with state-of-the-art molecular-
dynamics simulations. The proposition presented in this paper
of calculating the e-ph interaction as a particular case of an
electronic stopping process provides a simple solution to the
empiricism present today in molecular-dynamics simulations
of nonadiabatic processes in energetic ion-solid interactions,
by attributing the differences in value of the damping coef-
ficient β at different ion energies to the different values of
the host electronic density found by moving particles when in
the high-energy regime or in the thermal energy regimes. A
practical implementation of this approach in a MD simulation
would require an on-the-fly determination of the electronic
density, obtained, for example, by superposition of spherical
atomic densities (as it is currently feasible in the embedded
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atom method), and a precise functional form relating β to ρ as
obtained with the presented method.
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