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Analytical treatment of near-field electromagnetic heat transfer at the nanoscale
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Near-field thermal transfer between material bodies is generally obtained by numerical calculation methods.
We present simple close-form analytic results for heat transfer between planar structures, derived by explicitly
relating the heat transfer to the dispersion relations of the coupled systems. In the conventional case of heat
transfer between SiC slabs, the closed-form analytic results agree excellently with numerical simulations. In the
case where two graphene sheets are separated by a distance d , our theory shows that the heat transfer scales
as 1/d , rather than 1/d2 as in the conventional cases, due to the unique dispersion relation of two-dimensional
plasmons.
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I. INTRODUCTION

There has been a large body of theoretical works on
near-field electromagnetic heat transfer in the nanoscale
[1–23], both due to fundamental interests since the transfer
can significantly exceed the far field limit [24–31] and
also due to the potential for practical applications such
as energy conversion [32,33], cooling [34], and nanoscale
imaging [35–37]. However, most of these papers have used
numerical simulations, while the analytic understanding has
been lacking. This is true even for the simplest case between
two parallel surfaces separated by a spacing d in vacuum.
By considering the maximum number of wave channels
available in vacuum and utilizing conceptual tools such as
quantum information theory [38] or mesoscopic quantum
transport [39], a number of authors have derived an upper
limit for heat conductance [38–43], which diverges as 1/d2,
as d approaches nanoscale, in consistency with the numerical
simulations [2,33]. However, these derived upper limits are
orders of magnitude larger than the actual heat conductance.
To our knowledge, there has not been any analytic derivation
showing the 1/d2 dependency of heat transfer in realistic
materials. In addition, since most of these analytic treatments
have focused on the property of vacuum [38,39], the role of
the material properties is not transparent in these treatments,
in spite of the numerical observations of the prominent role
that surface waves play.

In this paper, we present a fully analytic theory that provides
simple close-form formulas for the heat transfer between two
surfaces separated by vacuum with a distance d. The key
advancement here is to establish a quantitative link between the
heat transfer and the dispersion relations of the coupled surface
waves. Our general formula of the quantitative link [Eq. (19)
in this paper] is applicable for both the three-dimensional (3D)
and the two-dimensional (2D) systems supporting plasmon or
phonon polaritons. In the case of thermal transfer between two
SiC regions, the resulting formula [Eq. (24)] excellently agrees
with numerical results. With the same approach, we have also
considered the near-field transfer between two graphene layers
and shown analytically that the 2D plasmon in graphene gives
rise to a 1/d behavior in the thermal transfer [Eq. (33)], as
opposed to the 1/d2 behavior in typical systems supporting
3D plasmon or phonon polaritons. Thus, we predict that

2D plasmon will have a distinctively different signature in
near-field heat transfer as compared to 3D surface plasmon
systems.

This paper is organized as follows. In Sec. II, we present
the configurations, a brief review of the fluctuational electro-
dynamics, and an upper limit of heat transfer. We present our
formalism in Sec. III and compare analytical and numerical
results in Sec. IV. This paper is then concluded in Sec. V.

II. CONFIGURATIONS AND NUMERICAL
CALCULATION METHOD

A. Configurations

We start by considering the thermal transfer between
parallel surfaces of identical bodies with temperatures T and
T + δT through a vacuum gap. Here, we select the SiC plates
and graphene layers as typical 3D and 2D systems supporting
phonon or plasmon polaritons as shown in Figs. 1(a) and 1(b).

In the SiC case, the permittivity of SiC is expressed as

ε(ω) = ε∞

[
1 + ωLO

2 − ωTO
2

ωTO
2 − ω2 − iγmω

]
, (1)

where ωLO = 969 cm−1, ωTO = 793 cm−1, γm = 4.76 cm−1,
and ε∞ = 6.7 [2].

In the graphene case, the optical conductivity of graphene,
including both the Drude and interband contributions, is
expressed as

σ = i
2e2kBT

π�2(ω + iγm)
ln

{
2cosh

[
μ

2kBT

]}
+ e2

4�

[
G

(
�ω

2

)

+ i
4�ω

π

∫ ∞

0

G(ξ ) − G
(

�ω
2

)
(�ω)2 − 4ξ 2

dξ

]
, (2)

where G(ξ ) = sinh ξ

kB T

cosh μ

kB T
+cosh ξ

kB T

[44]. We assume a damping rate

of γm = 1013 rad/s, and a chemical potential of μ = 0.3 eV for
graphene [8–10].

B. Fluctuational electrodynamics

We consider the limit of a small gap size d, such that the
evanescent waves dominantly contribute to the heat transfer.
Using the fluctuational electrodynamics formalism, the heat
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FIG. 1. Configurations of parallel surfaces of identical material
bodies with temperatures T and T + δT . (a) Silicon carbide plates.
(b) Graphene layers.

transfer coefficient is derived as [33]

h = ∂

∂T

∫ +∞

k0

βdβ

2π

∫ +∞

0

dω

2π

4{Im[r(ω,β)]}2e−2κ0d

|1 − r(ω,β)2e−2κ0d |2
�(ω,T ),

(3)

where r(ω,β) is the Fresnel reflection coefficient of the
evanescent waves at the body-vacuum interface, �(ω,T ) =

�ω

e�ω/(kB T )−1
is the mean thermal energy of a single optical mode,

� and kB are the reduced Planck constant and the Boltzmann
constant, respectively, and β is the wavenumber component
parallel to the interface. The normal wavenumber in vacuum

has the form of κ0 =
√

β2 − k2
0 (k0 < β), where k0 is the free

space wavenumber. To arrive at Eq. (3), we have assumed
that only the p polarization contributes significantly to the
heat transfer since the near-field heat transfer for the systems
we consider in this paper is dominated by surface-polariton
excitations, which are p-polarized waves. Also, this formula
is applicable in the classical regime and does not apply when
the separation between the bodies is at a single nanometer
scale, and hence quantum mechanical effects need to be taken
into account [45–47].

The normalized exchange function Z(ω,β) ≡
4{Im[r(ω,β)]}2e−2κ0d

|1−r(ω,β)2e−2κ0d |2 in the integrand characterizes the contribution

at a frequency ω and wavenumber β. One can rigorously
prove that 0 � Z � 1. The normalized exchange function
Z is multiplied by �(ω,T ) for the absolute amount of heat
transfer.

For the SiC case, the Fresnel reflection coefficient of the
evanescent p polarization at the plate-vacuum interface is
given by [33]

r(ω,β) = ε(ω)κ0 − κ

ε(ω)κ0 + κ
, (4)

where κ =
√

β2 − εk2
0. For the graphene case, the reflection

coefficient of the evanescent p polarization at the graphene-
vacuum interface is given by [8]

r(ω,β) = 1

1 − i 2ε0ω

σκ0

. (5)

The heat transfer coefficients for the SiC and the graphene
cases are numerically obtained by substituting Eqs. (1), (4)
and Eqs. (2), (5), respectively, into Eq. (3).

In Eq. (3), the heat transfer is treated as a summation of
independent channels indexed by the lateral wavenumber β,
and therefore, we define as

h =
∫ +∞

k0

βdβ

2π
hs(β), (6)

where channel heat transfer coefficient

hs(β) = ∂

∂T

∫ +∞

0

dω

2π

4{Im[r(ω,β)]}2e−2κ0d

|1 − r(ω,β)2e−2κ0d |2
�(ω,T ). (7)

The channel heat transfer coefficients for the SiC and
the graphene cases are numerically obtained by substituting
Eqs. (1), (4) and Eqs. (2), (5), respectively, into Eq. (7).

C. Upper limit of heat transfer

Equation (3) has been used as the starting point for analytic
treatment of near-field heat transfer in Refs. [38,40–42]. To
analytically evaluate Eq. (3), Refs. [38,40–42] made two
assumptions: (1) only channels with β � βc = π

d
contribute;

(2) for each contributing channel, one assumes Z(ω,β) = 1
for all frequencies. With these two assumptions, the integral
in Eq. (3) can be evaluated as

hu = π2k2
BT

24�d2
, (8)

which defines an upper limit hu of heat transfer between two
planar bodies separated by a distance d. This result has been
quite influential in the study of near-field heat transfer.

To motivate our own theoretical work here, however, it
is instructive to compare Eq. (8) to numerical simulation
of a realistic material case: heat transfer between identical
SiC plates. The heat transfer coefficient, obtained numerically
using the method outlined in the section above, is plotted as a
function of the gap size d in Fig. 2(a) as the pink dots. We see
that the heat transfer coefficient has the 1/d2 dependency, but
its value is below Eq. (8) [green dashed curve in Fig. 2(a)] by
several orders of magnitude. Therefore, while Eq. (8) indeed is
an appropriate upper bound, one cannot use Eq. (8) to account
for heat transfer in realistic materials.

The discrepancy between Eq. (8) and the numerical simu-
lation can be understood by plotting the normalized exchange
function Z(ω,β) as shown in Fig. 2(b). Unlike the assumption
made for Eq. (8), where Z = 1 for all ω and β with β � βc,
(i.e. Z = 1 for the entire ω-β phase space to the left of the
green dashed line in Fig. 2(b), Z(ω,β) for realistic materials
reaches near unity [white-color regions in Fig. 2(b)] only in the
vicinity of the dispersion relation of the plate-plate structure,
which is described by [14,33]

(
ε(ω)

κ
+ 1

κ0

)2

eκ0d −
(

ε(ω)

κ
− 1

κ0

)2

e−κ0d = 0. (9)

Equation (9) is solved with a real β and complex ω [48], and
the real part of ω is plotted as the pink solid line in Fig. 2(b).
Away from the dispersion relation Z(ω,β) is essentially zero
[black-color regions in Fig. 2(b)]. Therefore, it is not surprising
that Eq. (8) vastly overestimates the strength of heat exchange
in realistic materials.
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FIG. 2. (Color online) (a) Distance dependency of the heat trans-
fer coefficient between identical silicon carbide plates at T = 300 K
[blue solid line: analytic theory, Eq. (24); pink dots: fluctuational
electrodynamics, Eqs. (1), (3), and (4)]. (b) Normalized exchange

function Z(ω,β) ≡ 4{Im[r(ω,β)]}2e−2κ0d

|1−r(ω,β)2e−2κ0d |2
at d = 10 nm. Z(ω,β) varies

from 0 to 1 [as represented by regions with colors varying from
black to white in (b)] in the ω-β phase space. The dispersion curve
(pink solid line) is obtained from Eq. (9). For each figure, the green
dashed line represents an upper limit based on Eq. (8) in (a) and
the cutoff wavenumber βc = π

d
in (b). (c) Mean thermal energy of a

single optical mode as a function of frequency in the frequency range
near the surface phonon-polariton frequency of SiC.

III. FORMALISM

In order to obtain a close-form analytic evaluation of
Eq. (3), one needs to establish a quantitative link between the
normalized exchange function Z and the dispersion relation
of the surface waves. Below, we illustrate our approach for
establishing such a link, first for the SiC case and then for the
graphene case.

A. SiC case

We start with the discussion of the dispersion relation. We
consider the lossless case first. Assuming that a single interface
supports a single surface wave mode with a dispersion relation
of ωs , we then have

r(ωs,β) = ∞. (10)

In other words, the surface wave mode of a single interface
is a pole of the reflection coefficient for the evanescent wave at
the same interface [49]. With two interfaces for the structure,
as shown in Fig. 1, the surface wave modes at the two interfaces
then couple, resulting in two modes as described by dispersion
relations ωH and ωL, respectively. In terms of the reflection
coefficients then, we need to have

r(ωH ,β) = − 1

e−βd
, (11)

r(ωL,β) = 1

e−βd
, (12)

such that the evanescent wave going through a round trip
between the two surfaces maintains its amplitude.

A single SiC-vacuum interface supports a surface phonon

resonance at ε(ωs) = −1 with ωs =
√

ε∞ω2
LO+ω2

TO
ε∞+1 [14] in the

lossless case. In addition, from the dispersion relation of the
plate-plate structure of Eq. (9), and considering the regime of
β � k0, we obtain the dispersion relation of the common and
the differential mode for the plate-plate structure as ωH (β) =
ωs

√
1+A1e−βd

1+A2e−βd and ωL(β) = ωs

√
1−A1e−βd

1−A2e−βd , respectively, where

A1 = ε∞ω2
LO−ω2

TO

ε∞ω2
LO+ω2

TO
and A2 = ε∞−1

ε∞+1 . One can check that ωs ,

ωH (β), and ωL(β) satisfy Eqs. (10)–(12).
Next, we consider the lossy case. In the β � k0 regime, the

reflection coefficient of Eq. (4) is approximately given by

r(ω,β) ≈ ε(ω) − 1

ε(ω) + 1
. (13)

Substituting the permittivity of SiC of Eq. (1) into Eq. (13),
we have

r(ω,β) = A2ω
2 − A1ω

2
s + iA2ωγm

ω2 − ω2
s + iωγm

, (14)

where A1 and A2 are written with ωs , ωH , and ωL

A1 = ω2
s

(
ω2

H + ω2
L

) − ω2
Hω2

L

ω2
s

(
ω2

H − ω2
L

)
e−βd

, (15)

A2 = 2ω2
s − (

ω2
H + ω2

L

)
(
ω2

H − ω2
L

)
e−βd

. (16)

Substituting Eqs. (15) and (16) into Eq. (14), we have the
reflection coefficient

r(ω,β) = −
(
ω2

s − ω2
L

)(
ω2

H − ω2
) + (

ω2
H − ω2

s

)(
ω2 − ω2

L

) − iγmω
[(

ω2
s − ω2

L

) − (
ω2

H − ω2
s

)]
(
ω2

H − ω2
L

)
(ω + ωs)

[
(ω − ωs) + iγmω

ω+ωs

]
e−βd

. (17)
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Thus, we have expressed the reflection coefficient in terms
of the dispersion relation of surface polariton modes at the
interfaces. We expect that the real part of the pole of r(ω,β)
remains very close to ωs , and the imaginary part of the pole
is equal to γm

2 [50]. Equation (17) satisfies these expectations.
In deriving Eq. (17), we only assumed κ0 ≈ κ ≈ β, which is

applicable in the small d limit where the dominant channel of
heat transfer satisfies β � k0.

We next perform the frequency integration of Eq. (3)
analytically. We substitute Eq. (17) into Eq. (3) and
in the limit of ω2

H � ( γm

2 )2 and ω2
L � ( γm

2 )2, we
obtain

h ≈ ∂

∂T

∫ +∞

k0

βdβ

2π

∫ +∞

0

dω

2π

(
ω2

H − ω2
L

)2
γ 2

mω2�(ω,T )[
ω − (

ωL + i
γm

2

)][
ω − (

ωL − i
γm

2

)][
ω − (−ωL + i

γm

2

)][
ω − (−ωL − i

γm

2

)]

× 1[
ω − (

ωH + i
γm

2

)][
ω − (

ωH − i
γm

2

)][
ω − (−ωH + i

γm

2

)][
ω − (−ωH − i

γm

2

)] . (18)

Then we perform a contour integration in the complex ω

plane. Four poles, ω = ±ωL + iγm

2 and ω = ±ωH + iγm

2 in
the upper half of the complex plane, which correspond to the
surface polariton resonances of the system, have dominant
contribution, whereas the contributions from a set of poles on
the imaginary axis arising from the term �(ω,T ) are very
weak. Including only the poles from the surface polariton
resonance, which is justified as long as the linewidth of the
resonance of the system is significantly less than kBT (i.e.
heat transfer dominantly occurs through the resonance), we
have

h ≈ ∂

∂T

∫ +∞

k0

βdβ

2π

γm

4

×
(
ω2

H − ω2
L

)2
[�(ωH ,T ) + �(ωL,T )][

(ωH − ωL)2 + γ 2
m

][
(ωH + ωL)2 + γ 2

m

] , (19)

where we have used
∫ +∞

0
dω
2π

Z(ω,β)�(ω,T ) = ( 1
2 )

∫ +∞
−∞

dω
2π

Z(ω,β)�(ω,T ) and �(−ωL + iγm

2 ,T ) ≈ �(ωL + iγm

2 ,

T ) ≈ �(ωL,T ) and �(−ωH + iγm

2 ,T ) ≈ �(ωH + iγm

2 ,T ) ≈
�(ωH ,T ). Equation (19) provides an explicit connection
between the heat transfer coefficient and the surface wave dis-
persion relations of the individual and the coupled interfaces.

Equation (19) can be simplified in the limit of small d, since
in this limit, the dominant contributions are from channels
with β � k0. For these β’s, we have �(ωH ,T ) ≈ �(ωL,T ) ≈
�(ωs,T ), as seen in Fig. 2(c), and then obtain

h ≈ ∂

∂T

∫ +∞

k0

βdβ

2π

γm

2

×
(
ω2

H − ω2
L

)2
�(ωs,T )[

(ωH − ωL)2 + γ 2
m

][
(ωH + ωL)2 + γ 2

m

]

= ∂

∂T

∫ +∞

k0

βdβ

2π

γm

2

(ωH −ωL)2(ωH +ωL)2

γ 2
m[2(ω2

H +ω2
L)+γ 2

m]
�(ωs,T )

1 + (ωH −ωL)2(ωH +ωL)2

γ 2
m[2(ω2

H +ω2
L)+γ 2

m]

. (20)

In (ωH + ωL)2 ≈ 2(ω2
H + ω2

L) � γ 2
m, Eq. (20) is approxi-

mately written as

h ≈ ∂

∂T

∫ +∞

k0

βdβ

2π

γm

2

(
ωH −ωL

γm

)2
�(ωs,T )

1 + (
ωH −ωL

γm

)2 . (21)

Moreover, using the dispersion relation of ωH , ωL, and ωs

as described above, we have ωH (β,d) − ωL(β,d) = 2γme−βd

Im[ε(ωs )] ,

where Im[ε(ωs)] = ωs(ε∞ + 1)2[ε∞(ω2
LO − ω2

TO)]−1γm [14].
Therefore, Eq. (21) becomes

h ≈ ∂

∂T

∫ +∞

k0

βdβ

2π

γm

2

⎛
⎝

{
2e−βd

Im[ε(ωs )]

}2

1 + {
2e−βd

Im[ε(ωs )]

}2

⎞
⎠�(ωs,T ). (22)

The term in the large parenthesis in Eq. (22) decreases with
increasing β. We approximate this term as 1 − H (β − βc),
where the H function is the Heaviside step function, and βc is
defined as

βc =
(

1

d

)
ln

{
1 + 2

Im[ε(ωs)]

}
. (23)

Here, we have used the approximation
∫ ∞

0
(Be−x )2

[1+(Be−x )2]
xdx ≈∫ ln(1+B)

0 xdx (B > 0). Note that, in the case of low loss
materials, Im[ε(ωs )]

2 � 1, Eq. (23) has the same form of the
cutoff wavenumber derived in Ref. [39] using the theory of
mesoscopic transport. The heat transfer coefficient is finally
derived from Eqs. (22) and (23)

h ≈ ∂

∂T

∫ βc

k0

βdβ

2π

γm

2
�(ωs,T )

≈ ∂

∂T
�(ωs,T )

γm

8πd2

(
ln

{
1 + 2

Im[ε(ωs)]

})2

. (24)

We see in Eq. (24) that the heat transfer coefficient h has
the well-known 1/d2 dependency [2,33].

B. Graphene case

The derivation above directly relates the behaviors of
heat transfer to the dispersion property of surface phonon-
polaritons. The 2D plasmon on a graphene sheet exhibits
a very different dispersion relation [51,52] as compared to
that of the surface phonon-polariton on a 3D medium. While
previous papers have numerically considered heat transfer
between graphene sheets [8–10], [the configuration is shown
in Fig. 1(b)], there has not been any analytic treatment, to our
knowledge. Here, we show that the same analytic approach that
has been developed for SiC as shown above can be adopted to
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generate insights into heat transfer between graphene sheets
as well.

The dispersion characteristics of the single and double
graphene layers are given by [8]

2

κ0
+ i

σ

ε0ω
= 0, (25)

(
2

κ0
+ i

σ

ε0ω

)2

eκ0d +
(

σ

ε0ω

)2

e−κ0d = 0. (26)

In the heat transfer, the Drude contribution is dominant. In
the β � k0 regime, using the lossless Drude model σ = ie2μ

π�2ω
,

the plasmon of a single graphene layer then has the dispersion

ωs(β) =
√

e2μβ

2πε0�2 as obtained from Eq. (25). The coupled
graphene layers have a common and a differential mode with
dispersion relations ωH (β) = ωs(β)

√
1 + e−βd and ωL(β) =

ωs(β)
√

1 − e−βd , respectively, as obtained from Eq. (26). One
can explicitly check that the dispersions of ωs(β), ωH (β), and
ωL(β) satisfy Eqs. (10)–(12). Following the same procedure
that led to Eq. (17), we have the reflection coefficient for the
graphene case as follows. In the β � k0 regime, the reflection
coefficient of Eq. (5) is approximately given by

r(ω,β) ≈ 1

1 − i 2ε0ω

σβ

. (27)

The Drude contribution is dominant in the heat transfer.
With our choice of chemical potential μ = 0.3 eV, we have
eμ/(2kBT ) � e−μ/(2kBT ), and the optical conductivity in Eq. (2)
is approximately given by

σ ≈ i
e2μ

π�2(ω + iγm)
= i

2ε0ω
2
s

(ω + iγm)β
. (28)

Substituting Eq. (28) into Eq. (27), the reflection coefficient
is expressed as

r(ω,β) = − ω2
s

ω2 − ω2
s + iγmω

. (29)

In addition, ωs is written with ωH and ωL

ω2
s = ω2

H − ω2
L

2e−βd
. (30)

From Eqs. (29) and (30), we have the reflection coefficient
of the graphene case as

r(ω,β) = − ω2
H − ω2

L

2(ω + ωs)
[
(ω − ωs) + iγmω

(ω+ωs )

]
e−βd

. (31)

One can rigorously prove that Eq. (31) is a form of Eq. (17)
since the relationship between ωs(β), ωH (β), and ωL(β) in
the graphene case is the same as that in the SiC case with the
replacement of A1 = 1 and A2 = 0. Thus, substituting Eq. (31)
into Eq. (3), we obtain exactly the same form as in Eq. (19).
Equation (19) is therefore applicable for both the SiC and the
graphene cases.

To further simplify Eq. (19), we note that, for graphene,
we have (ωH − ωL)2 � (γm)2 and (ωH + ωL)2 � (γm)2, and
moreover �(ωL,T ) � �(ωH ,T ) [as will be confirmed later
when we discuss the numerical results in Fig. 8(c)]. Therefore,

Eq. (19) is simplified as

h ≈ ∂

∂T

∫ +∞

k0

βdβ

2π

γm

4
�(ωL,T ). (32)

As the gap size d approaches the nanoscale, βd � 1,

ωL(β) ≈ β

√
e2μd

2πε0�2 . We then perform the β integration in
Eq. (32) to obtain the heat transfer coefficient as

h = γmε0k
3
BT 2C1

4e2μd
, (33)

where C1 = ∫ ∞
0

x3ex

(ex−1)2 dx = 7.212. Equation (33) indicates
that the heat transfer has the 1/d dependency on the gap size
for the graphene case.

IV. COMPARISON OF THEORY
TO NUMERICAL RESULTS

In this section, we compare the main analytical results
as derived in the previous section, i.e. Eqs. (24) and (33),
to numerical simulations. The theoretical results excellently
agree with numerical simulations. We also provide a para-
metric study of the heat transfer as a function of damping
rate and temperature and show that the numerical results are
well accounted by our analytic theory. In addition, we provide
numerical results for various spectral heat transfer coefficients,
which confirm various approximations made in the analytic
derivations above.

A. SiC case

We plot Eq. (24) for the heat transfer coefficient of the SiC
plate-plate structure as a function of the distance as the blue
solid line in Fig. 2(a). Equation (24) excellently agrees with
the numerical result. Since the numerical evaluation of Eq. (3)
gives results that have been validated experimentally [27–30],
our Eq. (24) here should be directly applicable to the plate-plate
experiments as well.

We plot the channel heat transfer hs as a function of β in
Fig. 3. The numerical result is obtained from Eqs. (1), (4),
and (7), and the analytical result is obtained from Eqs. (6)

and (22) (i.e. hs(β) = ∂
∂T

γm

2

{ 2e−βd

Im[ε(ωs )] }
2

1+{ 2e−βd

Im[ε(ωs )] }
2 �(ωs,T )). We see that

hs is almost constant up to β = 200 μm−1 and then decreases
as β increases. The dominant channel wavenumber is βd =
2.15
d

that is obtained from ( ∂
∂β

)βhs = 0 in Eq. (22). The inset
of Fig. 3 shows the spectral heat flux of the dominant channel
at βd . We see that strong heat transfer occurs around ωs . There
are two maxima in the heat transfer at ωH and ωL, respectively,
where Z(ω,β) reaches near unity. The analytical results (blue
solid lines) agree with the numerical results (pink dots) in
Fig. 3. The discrepancy between the analytical and numerical
results in the channel heat transfer is seen in the small β

range. The discrepancy arises from the assumption of β � k0

in the analytical calculations. That discrepancy of hs has little
influence on the heat transfer coefficient since the heat transfer
results from a β integration of βhs .

Substituting ωs , ωH , and ωL into Eq. (17), we obtain
the reflection coefficient. Using the reflection coefficient and
Eq. (3), we obtain the spectrum of the heat transfer and plot it
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FIG. 3. (Color online) Channel heat transfer as a function of the
wavenumber at d = 10 nm in the SiC case. The cutoff wavenumber
based on Eq. (23) is βc = 281 μm−1. The inset shows the spectrum
of the dominant channel at βd = 215 μm−1 [blue solid lines: analytic
theory, Eqs. (6) and (22) for hs and Eqs. (7) and (17) for hs

ω
in the

inset; pink dots: fluctuational electrodynamics, Eqs. (1), (4), and (7)].

as the blue solid line in Fig. 4. We see the excellent agreement
between the analytical result and the numerical result (pink
dots), where the spectrum is sharply peaked. Therefore, we
have verified that the resonance feature of surface waves is
well characterized in our formalism.

Equation (24) shows that there exists an optimal ma-
terial loss rate γm that maximizes the heat transfer as a
result of two competing trends. We note that Im[ε(ωs)] =
ωs(ε∞ + 1)2[ε∞(ω2

LO − ω2
TO)]−1γm. As γm increases, the in-

creased material loss leads to an increase in the strength of
the fluctuating current source, which however, is offset by
the reduction of the cutoff wavenumber βc. The maximum
heat transfer occurs at Im[ε(ωs)] ≈ 0.5, which is obtained
by setting ∂h

∂γm
= 0 in Eq. (22). Such a dependency on γm

is consistent with the numerical calculation in Ref. [23]. The

FIG. 4. (Color online) Spectrum of the heat transfer at d = 10 nm
in the SiC case [blue solid line: analytic theory, Eqs. (3) and (17); pink
dots: fluctuational electrodynamics, Eqs. (1), (3), and (4)]. The green
dashed line represents an upper limit that is obtained from Eq. (3)
with Z(ω,β) = 1 for channels β � βc = π

d
.

FIG. 5. (Color online) Heat transfer of Eq. (24) (blue solid line)
as a function of the material damping rate γm. Parameters are the
same as the case of Fig. 2 except for γm, where the distance is set
at d = 10 nm. The fluctuational electrodynamics result [Eqs. (1), (3),
and (4)] is presented by the pink dots.

heat transfer between parallel plates is calculated by Eq. (24)
as the material damping rate γm is varied, and is plotted as the
blue solid line in Fig. 5. We have used the same parameters as
the case of Fig. 2 except for γm. We see that the heat transfer
is maximized at Im[ε(ωs)] ≈ 0.5 due to the two competing
trends of γm in Eq. (24). Equation (24) agrees well with the
numerical result (pink dots).

In addition, we see in Eq. (24) that the dependency on
the temperature is characterized by the mean thermal energy
of a single mode �(ωs,T ) at the surface phonon-polariton
frequency ωs , due to the dominant heat transfer at such
resonant frequency. Therefore, Eq. (24) (blue solid line) agrees
well with the numerical result (pink dots) in the heat transfer
behavior as a function of the temperature T (Fig. 6).

The analytic theory is not limited to SiC or materials
supporting phonon polaritons. When the permittivity of a

FIG. 6. (Color online) Heat transfer of Eq. (24) (blue solid line)
as a function of the temperature T in the SiC case. Parameters are
the same as the case of Fig. 2 except for T, where the distance is set
at d = 10 nm. The fluctuational electrodynamics result [Eqs. (1), (3),
and (4)] is presented by the pink dots. The inset shows the ratio of
the analytical result to the numerical result.
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FIG. 7. (Color online) Spectrum of the heat transfer between
heavily doped silicon plates at d = 10 nm. The material parameters
are set to be ε∞ = 11.7, ωp = ωLO

√
ε∞ = 1.08 × 1015 rad/s, γm =

9.34 × 1013 rad/s, and ωTO = 0 [10] in Eq. (1) [blue solid line:
analytic theory, Eqs. (3), and (17); pink dots: fluctuational electro-
dynamics, Eqs. (1), (3), and (4)]. The green dashed line represents
an upper limit that is obtained from Eq. (3) with Z(ω,β) = 1 for
channels β � βc = π

d
.

material is characterized by a Drude model, such as heavily
doped semiconductors, the analytic theory is also applicable.
One only needs to make the replacement of ωp = ωLO

√
ε∞ and

ωTO = 0 in Eq. (1). Figure 7 shows the spectral heat transfer
between heavily doped silicon plates. Material parameters
in Eq. (1) are presented in the caption of Fig. 7 when the
doping level is 1020 cm−3 [10]. We have verified the excellent
agreement between Eq. (24) (blue solid line) and the numerical
result (pink dots) for the heavily doped silicon case.

B. Graphene case

We plot the prediction of Eq. (33) for the heat transfer
coefficient between graphene layers as a function of the
distance as the blue solid line in Fig. 8(a). The analytical
result agrees excellently with the numerical result (pink dots)
obtained from Eqs. (2), (3), and (5), especially when the gap
size d is in the deep subwavelength regime. The discrepancy
between the analytic and numerical results is seen with
the increase of d. The discrepancy mainly stems from the
approximation of ωL, i.e., as d increases, the approximate

form of ωL(β) ≈ β

√
e2μd

2πε0�2 deviates from the exact form of

ωL(β) = ωs(β)
√

1 − e−βd . Also, in obtaining the analytical
results, the dispersion relation of the graphene plasmon
[Fig. 8(b)] is obtained assuming the free electron contribution.
The contribution from the interband transition is small, as we
see in the numerical results shown in Fig. 8(a).

As we can see from the derivation in Sec. III B, the 1/d

behavior of the heat transfer arises from the ωL ∝ β
√

d

dependency in the dispersion relation of the coupled graphene
sheet. Such a dependency is a direct consequence of the
nature of 2D plasmons [51,52]. Examining Eq. (32), since
the Planck distribution �(ωL,T ) decreases as a function of
ωL, the ωL ∝ β

√
d dependency results in a wave vector space

cutoff βc ∝ 1/
√

d, which leads to the 1/d dependency of the

FIG. 8. (Color online) (a) Distance dependency of the heat trans-
fer coefficient between identical graphene layers with a μ = 0.3 eV
chemical potential at a room temperature T = 300 K [blue solid line:
analytical theory, Eq. (33); pink dots: fluctuational electrodynamics,
Eqs. (2), (3), and (5); black dashed-dotted line: fluctuational elec-
trodynamics considering the Drude contribution]. (b) Normalized
exchange function Z(ω,β) at d = 10 nm. The dispersion curve (pink
solid line) is obtained from Eq. (26). For each figure, the green dashed
line represents an upper limit based on Eq. (8) in (a) and the cutoff
wavenumber βc = π

d
in (b). (c) Mean thermal energy of a single

optical mode as a function of frequency in the frequency range where
a graphene layer supports 2D plasmon.

heat transfer. Such a cutoff behavior is distinctly different
from the βc ∝ 1/d behavior for the SiC case and indicates that
near-field heat transfer in 2D plasmon systems is qualitatively
different from its 3D counterparts.

The channel heat transfer hs is obtained by using Eqs. (6)

and (19) {i.e. hs(β) = ∂
∂T

γm

4
(ω2

H −ω2
L)

2
[�(ωH ,T )+�(ωL,T )]

[(ωH −ωL)2+γ 2
m][(ωH +ωL)2+γ 2

m]
} and

plotted as a function of β in Fig. 9. We see that the analytical
result (blue solid line) agrees excellently with the numerical
result (pink dots). The analytical result is decomposed into
the contributions of the two poles of ωH (black dashed-dotted
line) and ωL (red dashed line). We see that the heat transfer

144307-7



HIDEO IIZUKA AND SHANHUI FAN PHYSICAL REVIEW B 92, 144307 (2015)

FIG. 9. (Color online) Channel heat transfer as a function of the
wavenumber at d = 10 nm in the graphene case. The blue solid line
represents the analytic result based on Eqs. (6) and (19). The analytic
result is decomposed into the contributions of the two poles of ωH

(black dashed-dotted line) and ωL (red dashed line), respectively. The
pink dots represent the fluctuational electrodynamics result obtained
by using Eqs. (2), (5), and (7). The inset shows the spectrum of the
dominant channel at βd = 23 μm−1 [blue solid line: analytic theory,
Eqs. (7) and (31); pink dots: fluctuational electrodynamics].

dominantly occurs through ωL, and thus, we have verified the
assumption of �(ωL,T ) � �(ωH ,T ) in Eq. (32).

Substituting ωs , ωH , and ωL into Eq. (31), we obtain
the reflection coefficient. From the reflection coefficient and
Eq. (3), we obtain the spectrum of the heat transfer and plot
it as the blue solid line in Fig. 10. The heat transfer occurs
in the wide spectrum. The analytical result agrees well with
the numerical result (pink dots). The contribution from the
interband transition is small, as we see in the comparison of
the analytical and numerical results of Fig. 10.

FIG. 10. (Color online) Spectrum of the heat transfer at d =
10 nm in the graphene case [blue solid line: analytic theory, Eqs. (3)
and (31); pink dots: fluctuational electrodynamics, Eqs. (2), (3),
and (5)]. The green dashed line represents an upper limit that is
obtained from Eq. (3) with Z(ω,β) = 1 for channels β � βc = π

d
.

V. CONCLUSION

We have presented a fully analytic theory for near-field ther-
mal transfer via the nanoscale gap. A quantitative link between
the heat transfer and the dispersion relations of the individual
and the coupled surface waves has enabled us to have closed-
form expressions of heat transfer coefficients. Our analysis has
excellently captured the heat transfer behaviors for realistic
materials such as SiC and graphene. Moreover, our results
have revealed that 2D plasmons have a distinctive signature of
1/d dependency in near-field heat transfer at the nanoscale.
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