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Influence of pulse width and detuning on coherent phonon generation
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We investigated the coherent phonon generation mechanism by irradiation of an ultrashort pulse with a simple
two-level model. Our derived formulation shows that both impulsive stimulated Raman scattering (ISRS) and
impulsive absorption (IA) simultaneously occur, and phonon wave packets are generated in the electronic ground
and excited states by ISRS and IA, respectively. We identify the dominant process from the amplitude of the
phonon oscillation. For short pulse widths, ISRS is very small and becomes larger as the pulse width increases.
We also show that the initial phase is dependent on the pulse width and the detuning.
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I. INTRODUCTION

Coherent phonons are widely used to study phonon dy-
namics for a wide variety of materials such as semimetals
[1–5], semiconductors [6–13], superconductors [14–17], and
topological insulators [18–21], with pump-probe-type time-
resolved reflectivity measurements. An ultrashort pump pulse
coherently excites optical phonons which oscillate in phase and
modulate the electric susceptibility. The probe pulse monitors
this modulation via a change in the reflectivity [22]. Thus, we
directly measured the time evolution of the optical phonons
using the pump-probe experiment. Note that we cannot mea-
sure the time evolution using conventional frequency-domain
spectroscopy because of the time resolution.

Coherent optical phonons are generated by an ultrashort
pulse via photon-electron and electron-phonon coupling. The
well-known mechanisms for coherent phonon generation are
impulsive stimulated Raman scattering (ISRS) [23] and impul-
sive absorption (IA) under the displacement potential [2,24]
for transparent and opaque regions, respectively. However,
past theoretical analyses [25–29] deal with the two processes
separately and show that the phonon oscillation can be
fitted using sine and cosine functions for the ISRS and IA,
respectively. Also, several experiments showed that the phonon
oscillation often shifted from the sine or cosine oscillations
and its phase was dependent on the materials and phonon
modes [4,20,30]. Thus, the generation mechanism for coherent
phonons is still controversial, especially for the opaque
region where both the light absorption and Raman processes
coexist.

The objective of this paper is to determine the genera-
tion mechanism of coherent optical phonons by evaluating
the contribution of both ISRS and IA based on a simple
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quantum-mechanical model. We derive the time evolution
of the electron-phonon coupled state by solving the time-
dependent Schrödinger equation with density matrices using a
two-level model for both processes. The quantum-mechanical
calculation of the phonon dynamics in the weak-coupling limit
of the electron-phonon coupling makes it possible to compare
the amplitudes and phases of the phonon oscillation for each
process quantitatively as a function of the pulse width and the
detuning. It was shown that under the resonant condition the
IA process is dominant for coherent phonon generation and
the oscillation can be described by a cosine function. When
the optical pulse width increases, the contribution of the ISRS
process increases, and the phonon oscillation deviates from the
cosine function. Also, the initial phase of the coherent phonons
changes at a long pulse excitation because the contribution
of the ISRS increases. As the detuning of the excitation
wavelength becomes large, the amplitude of the coherent
phonons in the IA process decreases rapidly, and the ISRS
process becomes dominant.

II. MODEL AND FORMULATION

We consider a two-level system for the electronic state and a
harmonic oscillator for the optical phonon at � point (�k = 0).
Although this is a crude model for bulk semiconductors, it
describes the essential features of the generation of coherent
phonons [13]. It was remarked that this model can be applied
to molecular vibrational spectroscopy [31–33]. The creation
and annihilation operators of the LO phonon at the � point
with energy �ω are denoted by b† and b, respectively. It
was assumed that the excited states are coupled with the LO
phonon mode through the deformation potential interaction
with the dimensionless coupling constant α(>0). We have
approximated the interactions by neglecting the �k dependence
of the coupling constant and have assumed that the rigid-band
shift is because of the deformation potential interaction. In
the bulk crystal, the Huang-Rhys factor α2 is considered to be

1098-0121/2015/92(14)/144304(7) 144304-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.144304


NAKAMURA, SHIKANO, AND KAYANUMA PHYSICAL REVIEW B 92, 144304 (2015)

small, α2 � 1. The Hamiltonian H0 is given by

H0 = Hg|g〉〈g| + (ε + He)|e〉〈e|, (1)

Hg = �ωb†b, (2)

He = �ωb†b + α�ω(b† + b), (3)

where Hg and He are phonon Hamiltonians for the electronic
ground |g〉 and excited |e〉 states, respectively. Using the
rotating-wave approximation, the interaction between the
pump pulse and the electronic state is given by

HI (t) = μE0f (t)(e−i�t |e〉〈g| + ei�t |g〉〈e|), (4)

where μ is the transition dipole moment, � is the central
frequency of the pulse, and E0f (t) is the envelope of the
pulse [34]. It is noted that these conditions are for a Fourier-
transform-limited pulse.

The time evolution of the electron-phonon coupled state
was obtained by solving the time-dependent Schrödinger
equation:

i�
d

dt
|ψ(t)〉 = {H0 + HI (t)}|ψ(t)〉, (5)

which gives

|ψ(t)〉 = exp

(
− i

�
H0t

)
exp+

(
− i

�

∫ t

−∞
H̃I (t ′)dt ′

)

×|ψ(−∞)〉, (6)

with

H̃I (t ′) = exp

(
i

�
H0t

′
)

HI (t ′) exp

(
− i

�
H0t

′
)

, (7)

where |ψ(−∞)〉 is the wave function for the initial state at t =
−∞ and exp+ is the time-ordered exponential. Here, H̃I (t ′) is
given by

H̃I (t) = μE0f (t) exp

[
i

�
(ε − �� + He)t

]
|e〉〈g|

× exp

(
− i

�
Hgt

)
+ c.c. (8)

The density matrix of the electronic and phonon states is given
by ρ(t) ≡ |ψ(t)〉〈ψ(t)|. The μ2 term of the density matrix
ρ(2)(t) is

ρ(2)(t) =
(

μE0

�

)2

exp

(
− i

�
H0t

)
F (t)|g,0〉〈g,0|F †(t)

× exp

(
i

�
H0t

)
−

(
μE0

�

)2

exp

(
− i

�
H0t

)

×G(t)|g,0〉〈g,0| exp

(
i

�
H0t

)
−

(
μE0

�

)2

× exp

(
− i

�
H0t

)
|g,0〉〈g,0|G†(t) exp

(
i

�
H0t

)
,

(9)

FIG. 1. Double-sided Feynman diagrams representing the pho-
toinduced processes: (a) IA and (b) and (c) ISRS. The left and
right lines represent the ket and the bra, respectively. The wavy lines
represent the photons. Time runs vertically from the bottom to the
top.

where the initial state is the electronic ground state and the
zero-phonon state |g,0〉 and F (t) and G(t) are given by

F (t) =
∫ t

−∞
dt ′f (t ′)A†(t ′)B(t ′)|e〉〈g|, (10)

G(t) =
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′f (t ′)f (t ′′)B†(t ′)

×A(t ′ − t ′′)B(t ′′)|g〉〈g|. (11)

Both A(t) and B(t) are phonon propagators given by

A(t) = exp

[
− i

�
(ε − �� + He)t

]
, (12)

B(t) = exp

(
− i

�
Hgt

)
. (13)

Each term on the right-hand side of Eq. (9) corresponds to
the process described by the double-sided Feynman diagrams
[Figs. 1(a)–1(c)]. The first term corresponds to IA [Fig. 1(a)],
and the second and third terms correspond to ISRS. Hereafter,
each term on the right side of Eq. (9) for ρ(2)(t) is abbreviated
to ρ(2)

a (t), ρ
(2)
b (t), and ρ(2)

c (t), respectively. It should be
emphasized that these three processes occur equivalently in
quantum mechanics but have different signs in the three terms
in Eq. (9).

The density matrix ρ(2)
a (t) has only the component

〈e|ρ(2)
a (t)|e〉, which corresponds to the IA process, where the

phonon oscillates on the adiabatic potential of the excited state
after optical absorption. However, the density matrix ρ

(2)
b (t) has

only a nonzero matrix element, 〈g|ρ(2)
b (t)|g〉, and the coherent

phonons are generated in the electronic ground state. The
density matrix ρ(2)

c (t) is the Hermitian conjugate to ρ
(2)
b (t).

These two processes represent ISRS, in which the phonon
oscillates on the ground-state adiabatic potential. The coherent
phonon dynamics can be investigated by calculating the
mean value of the phonon coordinate 〈Q(t)〉 = Tr{Qρ(2)(t)},
where Q ≡ √

�/2ω(b + b†) and Tr indicates that the trace
should be taken over the electronic and phonon variables. The
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displacement of each process is separated as follows:

〈Q(t)〉 = 〈QA(t)〉 + 〈QR(t)〉, (14)

where

〈QA(t)〉 = Tr
{
Qρ(2)

a (t)
}
, (15)

and

〈QR(t)〉 = Tr
{
Qρ

(2)
b (t)

} + Tr
{
Qρ(2)

c (t)
}
. (16)

The expressions for the density matrices are easily calcu-
lated in our model. For the IA process, we find

〈e|ρ(2)
a (t)|e〉 =

(
μE0

�

)2

|ϕ(t)〉〈ϕ(t)|, (17)

where |ϕ(t)〉 is the phonon wave function given by

|ϕ(t)〉 =
∫ t

−∞
dt ′f (t ′) exp

[
− i

�
(ε − �� + He)(t − t ′)

]
|0〉

=
∫ t

−∞
dt ′f (t ′)U †(α)|αe−iω(t−t ′)〉e− i

�
(ε−��−α2

�ω)(t−t ′).

(18)

Here, the shift operator U (β) is defined for an arbitrary
complex parameter β by U (β) ≡ exp[βb† − β∗b], and the
coherent state |β〉 is given by |β〉 = U (β)|0〉. Then, we obtain

〈QA(t)〉 = α

(
μE0

�

)2
√

�

2ω

∫ t

−∞
dt ′

∫ t

−∞
dt ′′f (t ′)f (t ′′)

×(e−iω(t−t ′) + eiω(t−t ′′) − 2)

× exp[−α2{1 + iω(t ′ − t ′′) − eiω(t ′−t ′′)}]
×ei(ε−��)(t ′−t ′′)/�. (19)

For ISRS, we can write

〈g|ρ(2)
b (t)|g〉 = −

(
μE0

�

)2

|χ (t)〉〈0|, (20)

where |χ (t)〉 is given by

|χ (t)〉 =
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′f (t ′)f (t ′′) exp

[
− i

�
Hg(t − t ′)

]

× exp

[
− i

�
(ε − �� + He)(t ′ − t ′′)

]
|0〉

=
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′f (t ′)f (t ′′)U †(αe−iω(t−t ′))

× |αe−iω(t−t ′′)〉e−i(ε−�−α2
�ω)(t ′−t ′′)/�. (21)

The mean value of QR(t) for the ISRS process is then given
by

〈QR(t)〉 = α

(
μE0

�

)2
√

�

2ω

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′f (t ′)f (t ′′)

×(e−iω(t−t ′) − e−iω(t−t ′′))

× exp[−α2{1 − iω(t ′ − t ′′) − e−iω(t ′−t ′′)}]
×e−i(ε−��)(t ′−t ′′)/� + c.c. (22)

Formulas (19) and (22) are general expressions for the
expectation values of the phonon coordinate in IA and ISRS,
respectively.

III. RESULTS AND DISCUSSION

Let us assume that the pulse-envelope function f (t) is a
real quantity localized in the region |t | � σ around t = 0
with the normalization condition

∫ ∞
−∞ f (t)dt = 1. As a typical

example, we set the Gaussian function to be

f (t) = 1√
πσ

exp(−t2/σ 2). (23)

In what follows, (μE0/�)2 ≡ 1.

A. Resonant condition

In this section, we focus our attention on the case of resonant
excitation with weak electron-phonon coupling. Setting ε −
�� = 0 and neglecting the terms of α2 order, we simplify the
expressions to give

〈QA(t)〉 = α

√
�

2ω

∫ t

−∞
dt ′

∫ t

−∞
dt ′′f (t ′)f (t ′′)

×[cos ω(t − t ′) + cos ω(t − t ′′) − 2], (24)

〈QR(t)〉 = 2α

√
�

2ω

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′f (t ′)f (t ′′)

×[cos ω(t − t ′) − cos ω(t − t ′′)]. (25)

We discuss the general features of 〈QA(t)〉 and 〈QR〉 based
on formulas (24) and (25). First, let us discuss the behavior of
〈QA(t)〉. It is obvious from Eq. (24) that QA(t) � 0 since the
phonon oscillates on the excited-state potential energy curve,
as shown schematically in Fig. 2. In the case of the Gaussian
pulse (23) and for t � σ , the integral is approximately
carried out by extending the upper limit to ∞, and we find
the cosine-like oscillation around the new equilibrium point
−Q0(≡ −2α

√
�/2ω) in the excited state,

〈QA(t)〉 = Q0
(
e−σ 2ω2/4 cos ωt − 1

)
. (26)

In the short pulse limit σω → 0, this reduces to

〈QA(t)〉 = Q0(cos ωt − 1), (27)

which is in agreement with the coherent state. In the long
pulse limit, σω � 1, however, the oscillation disappears, and
〈QA(t)〉 changes gradually during the pulse duration from
zero to the new equilibrium of the lowest vibrational state
〈Q0〉 in the excited state. Thus, Eq. (26) clearly shows the
changeover of the phonon dynamics induced by the electronic
excitation, from the sudden transition limit σω → 0 to the
adiabatic change limit σω → ∞.

In the ISRS process described by 〈QR(t)〉, the oscillation
is induced by the sudden occurrence of momentum because of
the excitation and the deexcitation in the impulsive stimulated
Raman process. Therefore, its motion is sinelike. In the case
of the resonant excitation, 〈QR(t)〉 is calculated as follows.

For the time t after the passage of the optical pulse, t � σ ,
the time-ordered integral in Eq. (25) can be evaluated by
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FIG. 2. (Color online) Schematic illustration of the IA and ISRS
processes on the adiabatic potential curves for the electronic ground
and excited states. The horizontal small arrows indicate the direction
of the initial motion of the phonon in the electronic excited and ground
states.

extending the upper limit of the integral to infinity:

〈QR(t)〉 = Q0e
−iωt

∫ ∞

−∞
dt ′

∫ t ′

−∞
dt ′′f (t ′)f (t ′′)(eiωt ′ − eiωt ′′ )

+ c.c. (28)

Using new variables s ≡ (t ′ + t ′′)/2 and u ≡ t ′ − t ′′, we find

〈QR(t)〉 = Q0
2ie−iωt

πσ 2

∫ ∞

−∞
ds

∫ ∞

0
du

× exp

[
− 2

σ 2
s2 − 1

2σ 2
u2

]
eiωs sin

[
ω

2
u

]
+ c.c.

= A sin ωt. (29)

The useful formulas [35] are included with the coefficient A

given by

A ≡ Q0
4√
π

e−σ 2ω2/4
∫ σω/2

√
2

0
et2

dt. (30)

Equation (29) tells us that the phonon oscillation is induced by
the impulsive generation of momentum because the excitation
and the deexcitation occur through ISRS. Therefore, its motion
is sinelike. This also indicates that the amplitude of the
oscillation A takes a maximum value at an intermediate value
of the pulse width σ because A → 0 both in the limits σ → 0
(δ-function pulse) and σ → ∞. In other words, it needs a
finite duration in the electronic excited state for the phonon to
get momentum. Since the coefficient A must be positive, the
phonon wave packet begins to move in the direction opposite to
〈QA(t)〉. This counterintuitive phenomenon can be understood
as follows. In the process of ISRS described by Figs. 1(b)
and 1(c), the phonon wave function in the excited state gives
a contribution that is the negative of the ground state. This is
explicitly shown by the negative signs of the ρ

(2)
b (t) and ρ(2)

c (t)
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FIG. 3. (Color online) Time evolution of the mean value of the
atomic displacement with pulse width (FWHM) of 0.1T (red), 0.55T

(green), and 0.9T (blue) for the vibrational period T of the phonon:
(a) the dotted curves represent 〈QR(t)〉, (b) the solid curves represent
〈QA(t)〉, and (c) the solid curves represent 〈Q(t)〉.

in Eq. (9). In other words, a hole is created in the ground-state
wave function of the phonon [32,36] by ISRS as shown in
Fig. 2, so that the expectation value 〈QA(t)〉 moves in the
opposite direction to that in the IA process.

In Figs. 3(a) and 3(b), the numerical results of the
dependence of the pulse width on 〈QA(t)〉 (solid lines) and
〈QR(t)〉 (dashed lines) are shown as a function of the delay time
for the Gaussian pulses. The vibrational period of the coherent
phonons was set to be T [37]. For 〈QA(t)〉, the approximate
formula (26) agrees with the exact results in the region of
time after the passage of the pulse. Violent oscillations of the
coherent phonons change to a gradual adaptation of a new
equilibrium as the pulse width becomes large.

However, for 〈QR(t)〉, there is an optimum value of the
pulse width that maximizes the amplitude of the oscillation. To
discriminate experimentally between 〈QA(t)〉 and 〈QR(t)〉, it
is necessary to use the electronic state-selective measurement
of the coherent phonons. However, in the commonly used
transient reflectivity or transmissivity measurements, the
electronic states are not identified. One can get information
only on the total value 〈Q(t)〉 ≡ 〈QA(t)〉 + 〈QR(t)〉, which is
also shown in Fig. 3(c). 〈Q(t)〉 shows an oscillation with the
frequency ω, which is almost cosinelike at short pulse widths
such as 0.1T . As the pulse width increases, the contribution
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FIG. 4. (Color online) The dependence of the pulse width on the
amplitude of the oscillation part of the phonons for 〈QA(t)〉 (red) and
〈QR(t)〉 (blue). T is the vibrational period of the phonons.

from the ISRS process increases, and the initial phase of the
oscillation changes.

In Fig. 4, the amplitudes of the oscillation are plotted
for IA (red line) and ISRS (blue line) as a function of the
pulse width (FWHM). The dominant process changes from
IA to ISRS around a pulse width of 0.55T . This phenomenon
may be experimentally observed from the initial phase of the
phonon oscillation by experiments that precisely control the
pulse width and frequency chirping.

B. Detuning effect

The detuning from the resonant condition was studied for
�E ≡ ε − �� > 0 by evaluating Eqs. (19) and (22). It is
worth noting that the 〈QA(t)〉 is also described analytically
for t � σ by

〈QA(t)〉 = Q0e
−σ 2ξ 2/2

(
e−σ 2(ω2+2ξω)/4 cos ωt − 1

)
, (31)

with ξ ≡ (ε − ��)/�.
However, 〈QR(t)〉 can be calculated using

〈QR(t)〉 = 1√
2π

e−σ 2ω2/8e−iωt

∫ ∞

0
due−u2/2σ 2

×(eiωu/2 − e−iωu/2)e−iξu + c.c. (32)

For general values of the detuning ξ , the above integral yields
a complex value, so that the phase of the oscillation of 〈QR(t)〉
changes gradually as the detuning becomes large. We evaluated
the initial phase in the limit of large detuning ξσ � 1 using∫ ∞

0
due−u2/2σ 2−iηu

=
√

π

2
σe−σ 2η2/2 − i

√
2σe−σ 2η2/2

∫ ση/
√

2

0
et2

dt, (33)

with the positive constant η. It is obvious that the real part
becomes negligible when compared with the imaginary part
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FIG. 5. (Color online) The time evolution of the mean value
of the phonon coordinate with detuning �E of 0�ω (red: no
detuning), 3�ω (green), 5�ω (blue), and 10�ω (purple). (a) The dotted
curves represent 〈QR(t)〉, (b) the solid curves represent 〈QA(t)〉, and
(c) the solid curves represent 〈Q(t)〉. T is the vibrational period of
the phonons. The pulse width was set to 0.1T .

in the limit ση � 1. Therefore, in the case of large detuning,
we can neglect the real part and obtain

〈QR(t)〉 = B sin ωt, (34)
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FIG. 6. (Color online) The detuning dependence of the amplitude
of the oscillation of the phonons for 〈QA(t)〉 (red) and 〈QR(t)〉 (blue).
The pulse width was set to 0.1T .
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where

B ≡ Q0
2√
π

e−σ 2ω2/8

{
D

(
ξ + ω

2

)
− D

(
ξ − ω

2

)}
(35)

and

D(x) ≡ e−σ 2x2/2
∫ σx/

√
2

0
et2

dt. (36)

In the limit of large detuning, the asymptotic form of D(x)
can be obtained from the inverse power-series expansion:

D(x) ∼ a1x
−1 + a2x

−2 + · · · . (37)

Inserting the above expression into the differential equation,
dD(x)/dx = −σ 2xD(x) + σ/

√
2, we find to the lowest-order

term

D(x) � 1√
2σx

(38)

and

B � −Q0

√
2

π
e−σ 2ω2/8 ω

σξ 2
, (39)

where we have used the approximation

D

(
ξ + ω

2

)
− D

(
ξ − ω

2

)
� dD

dξ
ω. (40)

Therefore, we find B < 0 in the limit of large detuning. The
initial phase of the sinelike oscillation in ISRS changes by π as
the detuning changes from zero to large values. Equation (39)
is the general form for the dependence of the amplitude of the
coherent phonon oscillation on the detuning ξ and pulse width
σ in the case of pumping in the transparent region.

Figure 5 shows the numerical results of the time evolution
of the atomic displacements 〈QA(t)〉, 〈QR(t)〉, and 〈Q(t)〉 with
a pulse width of 0.1T . The center position of the atom around
which 〈QA(t)〉 oscillates approaches zero as �E increases.
〈QR(t)〉 starts to move in the same direction as 〈QA(t)〉 at large
detuning, as alluded to before. Figure 6 shows the amplitude
of the oscillation of the phonons. The oscillation amplitudes
of both 〈QA(t)〉 and 〈QR(t)〉 decrease as �E increases. For
large detuning, the oscillation amplitude of 〈QR(t)〉 becomes
larger than that of 〈QA(t)〉 since no light absorption occurs, and
the dominant coherent phonon generation process is subject
to the ISRS mechanism. Both of the numerical values of the
oscillation amplitude for 〈QA(t)〉 and 〈QR(t)〉 agree with the
analytical formulas, namely, Eq. (31) for 〈QA(t)〉 and Eq. (29)
for 〈QR(t)〉, where ξ = 0, and Eq. (34), where ξ � ω.

IV. CONCLUSION

In this work, we investigated the generation mechanisms of
coherent optical phonons using a simplified two-level model

with resonant excitation conditions. The quantum-mechanical
calculations indicate that both the optical phonons in the
electronic excited |e〉 and ground |g〉 states are excited via
impulsive absorption and stimulated Raman scattering by
irradiation of the femtosecond pulse at resonance. In the
short-pulse limit, only the optical phonon in the excited
state is driven to the coherent state, but the phonons are
not excited in the electronic ground state. As the pulse
width increased, the amplitude of |e〉 decreased, while that of
|g〉 increased. The mean value of the atomic displacement,
〈QA〉 and 〈QR〉, started to move in opposite directions in
|e〉 and |g〉, respectively. In the long-pulse limit, both of
the amplitudes of 〈QA〉 and 〈QR〉 tended to zero. In the
intermediate conditions, one should consider the superposition
of the IA and ISRS processes, although IA is generally
dominant. Our proposed model shows that both well-known
coherent phonon mechanisms, IA and ISRS, occur depending
on the pulse length and the detuning. The initial phase of the
phonon oscillation in the case of resonant excitation changed
depending on the pump pulse width because of competition
between the IA and ISRS mechanisms. This indicates that care
must be taken in making generation-mechanism arguments
based on the initial phase.

In the present work, only the symmetric mode of the
phonons was considered. The model can be easily extended
to also include asymmetric Raman modes, which rotate the
polarization of the incident photons [38]. Also, in the usual
optical detection of coherent phonons, atomic displacements
are detected indirectly through the modulation of the electric
susceptibility. The extension of the present study to include
these processes will be shown in a forthcoming paper.
Further, extension of the present model can be also applied
to the coherent control [5,13,39] of the lattice vibrations and
electron-phonon coupled system by a pair of optical pulses
with a well-defined phase. Finally, the environmental effects
on the electronic and the phonon (vibrational) states is to be
considered [40]. It is important to analyze these effects to
determine the lifetime and the decoherence mechanism of the
coherent phonons.
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