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Quantum criticality at the Anderson transition: A typical medium theory perspective
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We present a complete analytical and numerical solution of the typical medium theory (TMT) for the Anderson
metal-insulator transition. This approach self-consistently calculates the typical amplitude of the electronic wave
functions, thus representing the conceptually simplest order-parameter theory for the Anderson transition. We
identify all possible universality classes for the critical behavior, which can be found within such a mean-field
approach. This provides insights into how interaction-induced renormalizations of the disorder potential may
produce qualitative modifications of the critical behavior. We also formulate a simplified description of the
leading critical behavior, thus obtaining an effective Landau theory for Anderson localization.
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I. INTRODUCTION

Many physical systems display puzzling features, which
are often associated with the metal-insulator transition (MIT)
[1]. Although the important roles of both the Anderson [2]
(disorder-driven) and the Mott [3] (interaction-driven) routes
to localization have been long appreciated, formulating a
simple order-parameter theory describing their interplay has
remained a challenge. Important advances have been achieved,
over the last 20 years, with the development of dynamical mean
field theory (DMFT) [4] methods, which provided new insights
into how such an order-parameter theory can be constructed.
Although the original DMFT formulation adequately describes
many features of strongly correlated electron systems, it
proved unable to capture Anderson localization effects, which
cannot be neglected in the presence of sufficiently strong
disorder [5].

To overcome these limitations, DMFT was extended to
describe spatially nonuniform systems in approaches some-
times called statistical DMFT [5–16] (some authors call
the same approach real-space DMFT [17–19]). Here, the
local DMFT order parameters (i.e., the appropriate local
self-energies) are self-consistently calculated at each lattice
site for a given realization of disorder in a fashion similar
to the Thouless-Anderson-Palmer (TAP) theory [20] for spin
glasses. These efforts immediately produced a wealth of new
information, revealing phenomena such as disorder-driven
non-Fermi-liquid behavior [5] and the emergence of electronic
Griffiths phases [1,12] in the vicinity of the MIT. Despite
these advances, progress has remained slow, primarily because
such approaches typically require very large scale numerical
computations.

The missing key point in all these formulations was the lack
of an appropriate local order parameter, which is capable of
recognizing Anderson localization. A hint on how to overcome
this difficulty was first provided in the seminal work by
Anderson [2], who emphasized that the typical (i.e., geo-
metrically averaged) local density of states (TDOS) vanishes
at the transition, in contrast to its algebraically averaged
counterpart. This idea was later confirmed by large-scale
computational studies [21] of the wave-function amplitude
statistics, which suggested that this quantity should play the
role of an appropriate order parameter for this problem.

A self-consistent calculation of TDOS was recently for-
mulated, dubbed typical medium theory (TMT) [22], which

can be regarded as the conceptually simplest order-parameter
approach for Anderson localization. This method uses the
same “cavity-field” construction as in standard DMFT meth-
ods [4] and represents an elegant and effective approach to treat
both the correlation and the localization effects on the same
footing. Following its discovery in 2003, TMT was quickly
applied to various problems with both interactions and disorder
[16,23–27], providing useful new information which would
be difficult to obtain with alternative methods. The numerical
solution of TMT equations has been obtained for both the
(noninteracting) Anderson [22,28] and the Mott-Anderson
[23–27] transitions. However, deeper understanding of what
one can generally expect from TMT approaches would require
a complete analytical solution for the critical behavior, which
has not been available so far.

Further motivation for our work is found in recent experi-
ments that were able to visualize the electronic wave function
near the metal-insulator transition via scanning tunneling
microscopy on Ga1−xMnxAs [29]. This work highlighted the
crucial importance of the long-range Coulomb interaction
and confirmed the early theoretical prediction of Efros and
Shklovskii (ES) [30,31] that Coulomb interactions lead to the
formation of a pseudogap within the insulating phase. Within
the ES picture, the gap opening is produced by the electrostatic
shifts of the (random) site energies, resulting in a significantly
renormalized probability distribution for the effective random
potential seen by the electrons. While the ES mechanism is
by now well documented by both theoretical and experimental
studies on the insulating side of the MIT [32], its precise role
for the critical region has remained elusive. At minimum, one
should investigate the effects of such a pseudogap opening in
the form of the distribution function for disorder and its role
at the Anderson transition.

In this paper, we address and clearly answer the following
physical questions: (1) What types of quantum criticality
can be found for the noninteracting Anderson localization
transition within the TMT scheme, and how does the result
depend on the model-dependent details of the band structure
(e.g., particle-hole symmetry)? (2) How is the critical behavior
modified in cases where the renormalized disorder distribution
assumes a pseudogap form predicted by the ES theory?
We accomplish this by first presenting a detailed numerical
solution of the TMT equation for several cases of relevance.
We then obtain a full analytical solution of the TMT equation,
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describing the leading critical behavior, which is in complete
agreement with the numerics and includes the emergence of
logarithmic corrections to scaling. This insight is shown to
provide a new perspective and a simple physical understanding
of several puzzling features of the critical behavior previously
observed in both numerical studies and in experiments.

The rest of the paper is organized as follows. In Sec. II
we present the general formulation of typical medium the-
ory and provide some illustrative examples of relevance to
experiments. We show that two distinct types of critical
behavior can be found within TMT and investigate their main
features. A general strategy to analytically solve the critical
behavior within TMT is discussed in Sec. III based on an
expansion in powers of order parameter (TDOS). We explain
why a simple solution can be obtained only in the special
case of particle-hole symmetry, which already provides a
classification of possible types of quantum criticality within
TMT. We further investigate how it is affected by the form of
distribution of random site energies. In Sec. IV we present a
detailed analytical solution for the leading critical behavior in
the absence of particle-hole symmetry by reducing the problem
to a closed-form solution of an appropriate Fredholm integral
equation. We show that particle-hole asymmetry leads to the
emergence of logarithmic corrections to scaling, leading to
a (mild) modification of the critical behavior at the mobility
edge away from the band center. Finally, based on our full
understanding of the mathematical structure of the theory, we
present a simplified Landau theory for Anderson localization
in Sec. V. This approximation ignores the relatively mild
logarithmic corrections but is still shown to capture all the
important qualitative trends of the full TMT solution and to
reproduce most of the qualitative features observed in the
large-scale numerics, as well as in some experiments.

II. MODEL AND NUMERICAL SOLUTION
OF TMT EQUATIONS

The general strategy in formulating a local order-parameter
theory such as TMT follows the “cavity” method typically
used in dynamical mean field theory approaches [4]. Here,
the dynamics of an electron on a given site can be obtained
by integrating out all the other sites and replacing its envi-
ronment by an appropriately averaged “effective medium”
characterized by a local self-energy �(ω). This method can
be utilized to self-consistently calculate any desired local
quantity, and in the following we briefly review its application
to TMT of Anderson localization [22,28]. For simplicity,
we concentrate on a single-band tight-binding model of
noninteracting electrons with random site energies εi with a
given distribution P (εi); the Hamiltonian of this system can
be written as

H =
∑
〈ij〉,σ

tij c
†
iσ cjσ +

∑
i,σ

εic
†
iσ ciσ . (1)

Here, c
†
iσ and ciσ are the electron creation and annihilation

operators, respectively, and tij are the intersite hopping
elements. The local (retarded) Green’s function corresponding
to site i can be written as

Gii(ω,εi) = [ω + iη − εi − �(ω)]−1, (2)

where the “cavity field” �(ω) represents the effective medium,
i.e., available electronic states to which an electron can hop
from a given lattice site. It is defined by incorporating the local
self-energy �(ω) as

�(ω) = �0[ω − �(ω)], (3)

where �0(ω) is the “bare” (corresponding to zero disorder)
cavity field [4]. It can be obtained from the bare lattice Green’s
function through the relation

�0(ω) = ω − 1

G0(ω)
, (4)

and the bare lattice Green’s function

G0(ω) =
∫ +∞

−∞
dω′ ν0(ω′)

ω + iη − ω′ (5)

is given by the Hilbert transform of the bare density of states
ν0(ω) (DOS), which specifies the electronic band structure
for a given lattice. The corresponding local density of states
(LDOS) is given by the imaginary part of the local Green’s
function:

ρi(ω,εi) = − 1

π
ImGii(ω,εi). (6)

Within the effective-medium approximation we consider,
this local quantity displays site-to-site fluctuations. Due to
its dependence on the local site energy εi , it reflects the
spatial fluctuations of the local wave-function amplitudes
ρi ∼ |ψi |2. To properly define the effective medium, one has
to perform an appropriate spatial average in order to close the
self-consistency loop. The simplest choice is to consider its
algebraic average (ADOS)

ρavg(ω) =
∫

dεiP (εi)ρi(ω,εi) (7)

as the appropriate order parameter, and this leads to the well-
known coherent-potential approximation (CPA) [33], which
unfortunately fails to capture Anderson localization.

In the presence of strong disorder, however, LDOS displays
strong spatial fluctuations and is very broadly distributed. As
a result, its typical (i.e., most probable) value is ill represented
[2] by the algebraic average ρavg(ω). Since the average density
of states can remain finite throughout the insulating phase
(even in the atomic limit) as well as in the metallic phase,
it cannot distinguish between the phases. Therefore, within
TMT, we introduce thetypical value of the local density of
states as an appropriate order parameter. The statistic of
LDOS reflects the degree of localization of quantum wave
functions, and its typical value (TDOS) is known [21] to be
well represented by the geometric average

ρtyp(ω) = exp

[∫
dεiP (εi) ln ρi(ω,εi)

]
. (8)

Indeed, large-scale computational studies, as well as the avail-
able analytical results in d = 2 + ε dimensions, demonstrated
that TDOS vanishes in a power-law fashion at the critical point
and also displays the appropriate finite-size scaling behavior
(for reviews see Refs. [21,34]). These results strongly suggest
[21] that TDOS should be chosen as an appropriate local order
parameter; its self-consistent calculation can be viewed as

144202-2



QUANTUM CRITICALITY AT THE ANDERSON . . . PHYSICAL REVIEW B 92, 144202 (2015)

the conceptually simplest order-parameter theory of Anderson
localization. In order to obey causality, the corresponding
typical Green’s function is defined [22,28] by performing the
Hilbert transform

Gtyp(ω) =
∫ ∞

−∞
dω′ ρtyp(ω′)

ω + iη − ω′ . (9)

Note that Gtyp(ω) has to be defined on the real frequency
axis because it is computed where LDOS is defined as a
positive-definite quantity and has a well-defined geometric
average. Finally, we close the self-consistency loop by setting
the Green’s functions of the effective medium to be equal to
that corresponding to the local order parameter [22,28],

Gtyp(ω) ≡ G0[ω − �(ω)]. (10)

From this self-consistency condition and Eq. (4), we obtain
the following equation which determines the self-energy of
the system:

Gtyp(ω) = [ω + iη − �(ω + iη) − �(ω + iη)]−1. (11)

It is important to emphasize that our procedure defined
by TMT self-consistent equations (2)–(11) is not specific to
the problem at hand; the same strategy is used in any mean-
field (DMFT-like) theory characterized by a local self-energy
[4]. The only requirement specific to TMT is the choice of
the typical (geometrically averaged) LDOS as the local order
parameter. In other words, the only crucial difference between
CPA and TMT is the fact that TMT utilizes the appropriate
order parameter for Anderson localization.

This set of TMT self-consistent equations can be solved
numerically for any specific lattice model or any form of
the random site energy distribution. However, as in any other
mean-field formulation, only a limited number of qualitatively
distinct types of critical behavior (i.e., universality classes) can
arise, and in the following we discuss two distinct situations
that we have found within TMT. Previous work mostly focused
on models with continuous (e.g., uniform) distributions of site
energies, and even some analytical results were obtain in this
case [22].

In the following, we present the results obtained numer-
ically by solving the TMT equations for semicircular DOS
which is given by ν0(ω) = 2

√
1 − ω2/π . Here and in the rest

of the paper, all energies are expressed in units of the half
bandwidth. As an example, we consider the uniform model
where the distribution of random site energies is continuous
and is given by Puniform(εi) ≡ 1

W
over the interval −W

2 � εi �
W
2 . We display the resulting behavior for this model [22] in

Fig. 1, showing the evolution of ρtyp(ω) as disorder increases.
The extended states are identified by the frequency range where
ρtyp > 0, which is seen to shrink and eventually disappear at
a critical disorder W = Wc, where the entire band localizes.
The metallic phase is separated from the Anderson insulator
insulating phase by the mobility-edge trajectory ω = ωc(W ),
corresponding to TDOS vanishing.

The situation is qualitatively different if the disorder
distribution has a gap or a pseudogap, so that P (ε) vanishes at
one energy or in an entire energy interval. This situation can
arise for discrete (e.g., binary) distributions of disorder, which
can be found in alloys. A similar situation can also arise in the
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FIG. 1. (Color online) Evolution of the order parameter ρtyp(ω)
with increasing disorder for uniform model: (top) ρtyp(ω) for several
values of the disorder strength. (bottom) The phase diagram in the
ω-W plane, where the mobility edge (black dashed line) separates
the extended states (ρtyp > 0) from the localized states (ρtyp = 0) and
ρtyp is color coded.

presence of electron-electron interactions, which we briefly
discuss in the following. Here, the effective disorder potential
(i.e., the renormalized random potential) seen by quasiparticles
can be significantly modified by interaction effects, especially
in presence of long-rangeCoulomb interactions, which leads
to the formation of the soft Coulomb gap (pseudogap) at the
Fermi energy. This behavior, which was recently brought to
light by scanning tunneling microscopy (STM) experiments
[29] on Ga1−xMnxAs, was discussed in the well-known
theoretical work of ES [30–32]. These authors argued that the
key effect of the long-range Coulomb interactions is to provide
strong renormalizations of the electronic on-site energies due
to the fluctuating electrostatic potential produced by distant
charges. Therefore the renormalized site energy ε̃i is given by

ε̃i = εi + e2
∑

j

nj

Rij

, (12)
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where ε̃i is the renormalized site energy, nj = 0,1 is the
occupation number of a given lattice site j , e is the electron
charge, and Rij is the distance between sites i and j .

According to the ES theory, the main result of the Coulomb
interactions is to produce a renormalized distribution of
disorder, which (in spatial dimension d) assumes a low-energy
pseudogap form (vanishes in power-law fashion),

P (ε̃) ∼ ε̃ d−1, (13)

where the renormalized energy ε̃i is measured with respect to
the Fermi energy. In other words, the renormalized distribution
function vanishes at the Fermi energy, i.e., P (0) = 0, a
situation which, as we shall see, leads to qualitatively different
critical behavior of TDOS within TMT. The ES result was
derived using a classical electrostatic model, which should
be sufficient deep in the Anderson-localized phase. Closer
to the MIT, the precise form of P (ε̃) may be affected by
quantum fluctuations, as argued in Ref. [35], and it may
need to be self-consistently calculated in order to accurately
capture the interplay of Anderson localization and the effects
of the Coulomb interactions. Such a calculation may be
possible within the framework of a DMFT-like formulation
by combining TMT with the EDMFT approach to Coulomb
correlations [36], but this rather complicated analysis is left as
a challenge for future work.

In this paper, we limit our attention to analyzing, within
TMT, the consequences of having such a pseudogap form
for the disorder distribution function. As an illustration, we
consider a model distribution of random site energies which
assumes a pseudogap form expected from the ES picture in
three dimensions:

Ppseudo(ε̃i) ≡ 1(
W
6

)3√
2π

ε̃2
i exp

(
− ε̃2

i

2
(

W
6

)2

)
, (14)

which we will refer to as the pseudogap model [37] in the
following text. We solved the TMT equations for this model of
disorder, and the results for ρtyp(ω) and ρavg(ω) are presented in
Figs. 2 and 3. As disorder increases, the TDOS order parameter
displays the most pronounced decrease precisely at the Fermi
energy (here chosen at ω = 0); the corresponding electronic
state is the one to first localize at the critical disorder strength
Wc1 = 2.07. As disorder increases further, there emerges a
finite “mobility gap” around the Fermi energy, where our
TDOS order parameter ρtyp vanishes at |ω| < ωc(W ), and all
the electronic states within this region become localized. At
even larger disorder W = Wc2 the entire band localizes. The
trajectories of the corresponding mobility edges [shown by a
dashed black line in Fig. 2(b)] display the same nonmonotonic
behavior as found in the recent large-scale numerical study of
the localization transition in Coulomb glasses [38].

For comparison with experiments, we also computed the
algebraically averaged local density of states, i.e., ADOS,
which shows very different behavior. ADOS at the Fermi
energy (ω = 0) is found to vanish at precisely the same critical
disorder W = Wc1 for localization [29], but it remains finite
at all other energies (|ω| > 0) within the localized phase, as
shown in Fig. 3(b). Since we found that TDOS vanishes for
W > Wc1 and |ω| < ωc(W ) in Fig. 3(a), our numerical results
immediately reveal that, within the entire localized phase,
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FIG. 2. (Color online) Evolution of the order parameter ρtyp(ω)
with increasing disorder for pseudogap model: (top) ρtyp(ω) for
several disorder strength. (bottom) The phase diagram in the ω-W
plane. The electronic states near the Fermi energy (ω = 0) are
localized before the rest of the band would be localized.

ADOS assumes a power-law low-energy form,

ρavg(ω) ∼ ω2. (15)

In order to analytically understand this result, note that from
Eq. (7), ADOS can be expressed as

ρavg(ω) = 1

π

∫
dεP (ε)

�′′(ω)

[ω − ε − �′(ω)]2 + �′′(ω)2
. (16)

At W > Wc1 the imaginary part of the cavity field also vanishes
at the region |ω| < ωc(W ) since it behaves as �′′ ∼ ρtyp (See
the Appendix). As can be proven straightforwardly and is also
shown numerically, the real part of the cavity field is a linear
function as �′(ω) = Aω, with A being a finite constant, and
we find

ρavg(ω) = 1

π
lim

�′′→0

{∫
dεP (ε)

�′′

[(1 − A)ω − ε]2 + �′′2

}

= P [(1 − A)ω] ∼ P (ω) ∼ ω2,
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FIG. 3. (Color online) The evolution of the (a) typical and (b)
average density of states for pseudogap model.

in agreement with ES theory. We mention that the leading
ADOS critical behavior on the metallic side and that at W =
Wc are identical to that of TDOS, which again can directly be
seen from Eq. (16).

Our results thus provide a qualitative picture of pseudogap
formation of ρavg(ω), which is centered at ω = 0 both at the
critical point (W = Wc1) and in the entire insulating phase
(W > Wc1). This result [also shown in Fig. 3(b)] is consistent
with large-scale exact diagonalization results [38] and the
available experimental findings [29,35].

The emergence of qualitatively different critical behaviors
for the two distinct models of disorder is even more clearly
seen by examining our order parameter ρtyp at the center of the
band (ω = 0). Figure 4(a) shows that for the pseudogap model
ρtyp vanishes as the square root of distance from transition, viz.,
ρtyp ∼ (Wc1 − W )

1
2 , while for the uniform model [Fig. 4(b)]

we find linear behavior, viz., ρtyp ∼ (Wc − W ). In order to
try and understand the origin of these differences, in Sec. III
we analytically recover the same critical behaviors at the
band center (ω = 0). Although this result gives us insight
into the important differences between the two models, away
from the band center this behavior cannot be explained in a
simple way. This fact has been identified in previous work
[28]; it has so far remained ill understood, and clarifying
this issue is the subject of our complete analytical solution in
Sec. IV.
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FIG. 4. (Color online) Critical behavior of TDOS as a function
of disorder strength W at half filling (ω = 0) for (a) the pseudogap
model and (b) the uniform model of random site energies.

III. ANALYTICAL SOLUTION: THE LANDAU EXPANSION

It is well known that the Anderson transition is a second-
order phase transition, where the order parameter ρtyp(ω)
vanishes continuously as the transition is approached, as also
confirmed by our numerical solution of the TMT equations.
Using the fact that ρtyp(ω) is infinitesimally small in the close
vicinity of the transition, we can proceed as in deriving any
Landau theory by directly expanding the TMT equations in
the powers of the order parameter. For the sake of simplicity
in notation we define

ρtyp(ω) ≡ ϕ(ω). (17)

The Anderson transition is found along the critical (mobility-
edge) line on the phase diagram, defined by the expression

ϕ[ωc(W )] = 0, (18)

as shown by a black dashed line in Figs. 1(b) and 2(b).
In order to obtain the solution as the transition is ap-

proached, we start with the general expression for TDOS, as
given by Eqs. (8), (6), and (2), which can be rewritten as

πϕ(ω) = �′′(ω)g(�′′(ω),�′(ω)), (19)
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where

g(�′′(ω),�′(ω)) ≡ exp

(
−

∫
dεP (ε)

× log{[ω − ε − �′(ω)]2 + �′′(ω)2}
)

.

To proceed, we note that near the mobility edge, where
ϕ 
 1, the imaginary part of the cavity field is also small
(�′′ 
 1) since to leading order [22]

�′′ = Cπϕ, (20)

where C = ∫
dω′ω′2ν0(ω′) and ν0(ω) is a bare density of states

(see the Appendix). In contrast, �′(ωc) generally remains
finite. Indeed, we checked numerically that all qualitative
features of the critical behavior do not depend on the specific
choice of band structure [22], which only modifies the precise
value of the prefactor C in Eq. (20), and other nonuniversal
quantities. We can therefore expand the right-hand side of
Eq. (19) in terms of ϕ ∼ �′′, giving us a Landau-type
expansion of the form

1

C
= [a(ω) + b(ω)ϕ + d(ω)ϕ2 + · · · ]. (21)

Here,

a(ω) ≡ exp

{
−2

∫
P (ε)dε log | ω − ε − �′(ω) |

}
, (22)

b(ω) = −2π2a(ω)P [ω − �′(ω)], (23)

d(ω) = a(ω){ηπ2 + 2π4P [ω − �′(ω)]2}, (24)

and

η = lim
�′′→0

{∫
dεP (ε)

{�′′2 − [ω − ε − �′(ω)]2}
{[ω − ε − �′(ω)]2 + �′′2}2

}
, (25)

where η remains finite for the models we examined.

A. General critical behavior

As in any Landau theory, we can now directly obtain the
critical behavior of the order parameter ϕ(ω) in terms of the
coefficients in the expansion. For simplicity, consider a simple
model band structure with semicircular DOS where C = 1 and
solve Eq. (21) for the order parameter ϕ(ω). For the generic
model (e.g., uniform distribution of disorder) where b(ωc) �= 0,
the leading critical behavior of typical density of states takes
the form

ϕ(ω) =
1 − 1

a(ω)

2π2P [ω − �′(ω)]
. (26)

In contrast, whenever b(ωc) = 0 (e.g., the pseudogap
model), we find

ϕ(ω) =
(

1
a(ω) − 1

ηπ2

) 1
2

. (27)

At first glance, it seems that the critical behavior can be
obtained easily given the cavity field, which is the functional

of order parameter ϕ(ω), as �(ω) = F [ϕ(ω)]. However, the
analytical solution is very complicated because the real part
of the cavity field �′(ω) is an unknown function of ω which
is linked to imaginary part �′′(ω) by the Hilbert transform.
Thus, it is impossible to solve these equations analytically over
a broad frequency range. As it has been shown numerically,
we claim that this unknown function is finite near the mobility
edge (ω ≈ ωc). In order to obtain the leading critical behavior
of order parameter at transition, in the expression containing
P (ω), we can replace

P [ω − �′(ω)] ≈ P [ωc − �′(ωc)]. (28)

However, in other terms, e.g., in the expression for a(ω)
[Eq. (22)], one needs to retain the full frequency dependence,
which proves to assume a sufficiently singular form to
contribute to leading order (see below). As a result, the
critical behavior becomes a more complicated form, as we
shall see from the full analytical solution of Eq. (21) close
to the mobility edge. The specific form of the analytical
solution is provided in Sec. IV for the two different classes
of random distributions (uniform and pseudogap-Gaussian),
and it successfully has been compared with numerical results.

B. Critical behavior at half filling

Here, we explore the exact functional form of the order
parameter close to the transition, focusing on half filling, where
�′(0) = 0. In this case, there is no need to perform the Hilbert
transform, so all Landau coefficients can be evaluated in closed
form as

a(0) = exp

{
−2

∫
P (ε)dε log |ε|

}
≡ a (29)

and

b(0) = −2π2P (0). (30)

Our Landau-like expansion now takes the simple form

1 = a{1 − 2π2P (0)ϕ + [ηπ2 + 2π4P (0)2]ϕ2 + · · · }. (31)

Note that here the value of P (0) plays an important role,
and this is what causes two different forms of criticality for the
generic model where P (0) �= 0 and for the pseudogap model
where P (0) = 0. For the generic case, the TDOS vanishes
linearly at the transition

ϕ ∼ (W − Wc), (32)

while for models with P (0) = 0, the critical behavior assumes
a square-root form,

ϕ ∼ (W − Wc1)
1
2 . (33)

We emphasize that the parameter η remains finite at the
transition and can be directly calculated for any specific
form for P (ε) from Eq. (25). The condition a = 1 directly
gives us the critical value of disorder; for example, for
the considered pseudogap model we obtain Wc1 = 2.07, in
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excellent agreement with numerical results shown in Figs. 4(a)
and 4(b).

IV. FREDHOLM INTEGRAL EQUATION
AND GENERAL SOLUTION

Here, we obtain the full analytical solution for the critical
behavior, valid even away from particle-hole symmetry and
for an arbitrary model of disorder.

A. Analytical solution for a “generic model” with b(ωc) �= 0

The critical behavior of our TDOS order parameter is given
by Eq. (26), where it is expressed in terms of (the yet unknown)
function �′(ω). Note, however, that [see Eq. (20)] in the critical
region ϕ(ω) ∼ �′′(ω) is linked through the Hilbert transform
to �′(ω) since

�′(ω) = H [�′′(ω)]. (34)

Both quantities therefore need to be self-consistently calcu-
lated, as we do in the following. To do this, we express all
expressions in terms of �′′(ω); for simplicity we focus on the
semicircular band structure model where C = 1, and we write

�′′(ω) =
(

1 − 1

a(ω)

)
1

2πP [ω − �′(ω)]
. (35)

Using Eq. (28), to leading order we find

�′′(ω) ≈ δa(ω)
1

2πP [ωc − �′(ωc)]
, (36)

where δa(ω) ≡ (1 − 1
a(ω) ) can be directly computed as a

variation of a(ω) from Eq. (22), giving

δa(ω) ≈ 2
∫

dεP (ε)
1

ω − ε − �′(ωc)
[δω − δ�′(ω)]. (37)

Here, δω ≡ |ω − ωc| and δ�′(ω) ≡ �′(ω) − �′(ωc). Using
Eq. (36), we get the following integral equation linking �′(ω)
and �′′(ω):

�′′(ω) = �0[δω − δ�′(ω)]. (38)

Here, �0 is a finite number, given by

�0 = 1

πP [ωc − �′(ωc)]

∫
dε

P (ε)

ωc − ε − �′(ωc)
. (39)

This result is valid for any (generic) model of disorder
with P [ωc − �′(ωc)] �= 0. More explicitly, Eq. (38) can be
rewritten as

�′′(ω) − �0

π

∫ ∞

−∞
dω′ �

′′(ω′)
ω′ − ω

= �0[δω − �′(ωc)]. (40)

Integral equation (40) can be recognized as the Fredholm
integral equation (FIE), which assumes the form

y(x) − λ

∫ ∞

−∞
dt

y(t)

t − x
= f (x). (41)

By comparing Eqs. (40) and (41) it can be seen that in our
case y(x) = �′′(ω), λ = �0

π
, and f (x) = �0[δω − �′(ωc)].

For completeness, we outline in the following the standard
reasoning used in solving the FIE. It uses the fact that the
Hilbert transform is a linear operator, with the additional

property of being “idempotent,” i.e., obeying and H 2 = −1;
this immediately gives us a hint on how to solve it in closed
form. We first apply the Hilbert transform on Eq. (41), and we
write

1

π

∫ ∞

−∞
dt

y(t)

t − x
+ λπy(x) = H [f (x)]. (42)

Next, we use Eqs. (41) and (42) to eliminate [39] the term
with the integral and express y(x) entirely in terms of f (x),
giving

y(x) = 1

1 + π2λ2

{
f (x) + λ

∫ ∞

−∞

f (t)dt

t − x

}
. (43)

Applying this solution to Eq. (40), we find

�′′(ω) = �0

1 + �2
0

δω + �2
0

1 + �2
0

h

(
δω

ω0

)
. (44)

Here, h( δω
ω0

) = H [1 − ω′
ω0

] is the Hilbert transform of (1 − ω′
ω0

)
over the range where the (leading order, linear) approximation
in Eq. (38) is valid, and it can be written as follows with ω0

being the cutoff of the limited frequency range:

h

(
δω

ω0

)
= 1

π

⎧⎨
⎩log

∣∣∣∣∣
1 + δω

ω0

1 − δω
ω0

∣∣∣∣∣ + δω

ω0
log

∣∣∣∣∣∣
(

δω
ω0

)2 − 1(
δω
ω0

)2

∣∣∣∣∣∣
⎫⎬
⎭. (45)

As mentioned before, this solution does not depend on the
form of the disorder distribution function, other than through

the value of the parameters �0

1+�2
0

and �2
0

1+�2
0
. As ω → ωc, these

quantities can be estimated simply as �0

1+�2
0

∼ ωc − �′(ωc)

and �2
0

1+�2
0

∼ 1. This condition can be satisfied for both the

pseudogap and the uniform model close to the mobility edge.
Therefore, in this limit, from Eqs. (44) and (45) we find

�′′(ω) ∼ ϕ(ω) ∼
(

ωc−�′(ωc) + 2

πω0

)
δω − 2

π

δω

ω0
log

δω

ω0
.

(46)

Remarkably, we identified logarithmic corrections to the
(linear) scaling behavior near the Anderson metal-insulator
transition, obtained with TMT theory. As we show in Sec. V,
these nonanalytic corrections, however, are sufficiently mild
to allow for a simplified theory to be formulated by neglecting
them, without sacrificing the main quantitative prediction of
full TMT.

B. Analytical solution at the emergence of the pseudogap

Here, we obtain the critical behavior of ρtyp(ω) as the
pseudogap opens at W = Wc1. In this case the form of the
disorder distribution prohibits us from using Eq. (26) because
b(ωc) = 0; we need to retain the terms to second order in �′′
in the expansion of Eq. (21). Therefore, from Eqs. (27) and
(25) the imaginary part of the cavity field is expressed as

�′′(ω)2(
Wc1

6

)2 =
(

1 − 1

a(ω)

)
= δa(ω). (47)

144202-7



MAHMOUDIAN, TANG, AND DOBROSAVLJEVIĆ PHYSICAL REVIEW B 92, 144202 (2015)

Since we are interested in the behavior of the system at W =
Wc1, we directly evaluate Eq. (37) as

δa(ω) ≈ 2[ω − �′(ω)]
∫

dεP (ε)
1

ω − �′(ω) − ε

≈ 2

(
6

Wc1

)2

[ω − �′(ω)]2.

Here, ω − �′(ω) is small near the mobility edge (ωc = 0).
Therefore, the same integral equation as Eq. (38) can be written
here in the following form:

�′′(ω) −
√

2

π

∫ ∞

−∞
dω′ �

′′(ω′)
ω′ − ω

= f (ω), (48)

where f (ω) = √
2ω. Equation (48) has a corresponding

solution which is given by

�′′(ω) =
√

2

1 + 2π2
ω + 2

1 + 2π2
h

(
ω

ω0

)
. (49)

Therefore, the critical behavior of TDOS, at critical disorder
W = Wc1 where the gap opens, can be written as

�′′(ω) ∼ ϕ(ω) ∼
(

2

πω0
+

√
2

1 + 2π2

)
ω

− 2

1 + 2π2

ω

ω0
log

ω

ω0
. (50)

The full analytical solution of TMT equations again
provides evidence for the emergence of logarithmic correction
to scaling, even at the critical point W = Wc1. Our numerical
result in Fig. 2(a) confirms that our TDOS order parameter is
assumed to have the same qualitative behavior at W = Wc1, as
has also been found near finite mobility edges with ωc �= 0 at
general W for both the generic and the pseudogap models.

C. Numerical tests of the logarithmic corrections

Here, we show numerically that the mild logarithmic
correction can be ignored far enough away from the critical
point without changing the main qualitative features of our
TMT results. For example, the critical form of TDOS at
W = Wc1 for the pseudogap model takes the form

ρc(ω) ∼ ϕ(ω) ∼ a1ω − a2ω log
ω

ω0
. (51)

To test this prediction, we directly plot our full numerical
solution for ρtyp(ω)/ω at W = Wc1 as a function of log(ω).
The results, as shown in Fig. 5, fully support our analytical
prediction for logarithmic corrections to scaling.

Note, however, that if our result is examined only in a
limited frequency interval, it can be represented as a power-
law function, with an effective exponent β(ω) being a weak
function of frequency.

To confirm this idea, we calculate β(ω) both using our
analytical results and also using the full numerical solution of
the TMT equations. From our analytical solution, we can write

ρc(ω) ≈ a1ω

(
1 − a2

a1
log

ω

ω0

)
= a1ω

β(ω), (52)

-7 -6 -5 -4 -3 -2
Log(ω)

1

1.5

2

2.5

3

(ρ
ty

p/ω
)

data
Linear-fit

FIG. 5. (Color online) The behavior of TDOS for the pseudogap
model for W = Wc1 on s semilogarithmic scale for small 0 < ω <

0.1.

where

β(ω) = 1 + log

(
1 − a2

a1
log ω + a2

a1
log ω0

)
log ω

. (53)

As we can see from Fig. 6, this analytical prediction is found
to be in excellent quantitative agreement with the numerics.
Within both methods, the effective exponent β(ω) remains
close to 1 in the entire critical region, therefore displaying
moderate deviation from the linear behavior found if the
logarithmic corrections are ignored. We conclude that the
mild logarithmic corrections we found near the mobility edges
can be neglected if we are not interested in the exact values
for the critical exponents, which are generally dimensionality
dependent and cannot be expected to be accurately predicted
by a mean-field approach such as TMT. This notion leads us to
develop an effective (simplified) Landau theory for Anderson
localization which neglects such logarithmic corrections,
preserving most qualitative trends found within TMT.

-0.1 -0.05 0 0.05 0.1
ω

0

0.5

1

β(
ω

)

β(Approximate form)
βNumerics

FIG. 6. (Color online) The behavior of effective exponent at the
critical disorder W = Wc1.
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V. SIMPLIFIED LANDAU THEORY

In this section, we argue how the mean-field solution of
TMT equations can be simplified because we are not extremely
close to the critical point, where mean-field theories such as
TMT cannot be accurate in any case. Since we are interested
in the qualitative behavior of the order parameter and other
physical observables across the phase diagram and not only
very close to the critical point, this approximation is justified
and useful in predicting general trends. We have already seen
that the only essential difference found within TMT compared
to any mean-field theory is the emergence of mild logarithmic
corrections to scaling. Ignoring them therefore provides us
with a simplified formulation, where the equation of state,
i.e., the self-consistency condition for the order parameter,
assumes simply a polynomial form as in any ordinary Landau
theory. In the following, we formulate such a simplified Landau
theory and show that it captures the main qualitative trends
while preserving the key difference between the two classes
of models of disorder we examine.

A. Analytical prediction of the effective Landau theory

As we have seen from Eq. (21), our TMT order parameter
satisfied a Landau-type equation of state of polynomial form,

r(ω,W ) + u1(ω)ϕ(ω) + u2(ω)ϕ2(ω) + · · · = 0. (54)

To test these ideas, we use our numerical results for the TMT
order parameter and fit them to a polynomial form,

ϕ(ω) ∼
√

r(ω,W ). (55)

These results reproduce our previous results at half filling
(ω = 0), where r(0,W ) ∼ (Wc − W ), as well as the general
trends for the approach to mobility edges elsewhere in the
phase diagram.

B. Numerical fitting of the effective Landau coefficients
for the pseudogap model

To test these ideas, we apply our effective Landau theory to
the pseudogap model (u1 = 0) close to the critical point. To do
this, we note that according to Eq. (54), in this case, to leading
order,

r(ω,W ) ∼ ρ2
typ(ω,W ), (56)

and we can directly obtain the functional form of r(ω,W )
from our numerical solution of the TMT equation. According
to our Landau theory assumption, we expect it to be a
smooth (analytic) function of frequency and thus to assume
the polynomial form

r(ω,W ) ∼ B0 + B2ω
2 − B4ω

4 + · · · . (57)

In the following, we calculate these coefficients numerically,
as shown in Figs. 7 and 8. The coefficient B0 vanishes linearly
at the transition, consistent with previous results [see the inset
in Fig. 4(a)]. As can be seen in Fig. 8, the coefficients B2 and
B4 depend on W but display very weak dependence on the
distance to the transition. As a final test, we show in Fig. 9 the
behavior of TDOS, which is obtained using both our simplified
version of TMT (simplified Landau theory) and the exact TMT
solution. The numerical results indicate very similar behavior

0 0.05 0.1 0.15 0.2
(Wc1-W)

0

0.005

0.01

0.015

0.02

0.025

0.03

B
0

FIG. 7. (Color online) The behavior of the coefficient B0 as a
function of (Wc1 − W ) close to the transition.

0 0.05 0.1 0.15 0.2
(Wc1-W)

0.5

1

1.5

B4/10
2B2

FIG. 8. (Color online) The Landau coefficient 2B2 and B4
10 display

only weak disorder dependence as the transition is approached.

-0.2 -0.1 0 0.1 0.2
ω

0.05

0.1

0.15

0.2

ρ ty
p2 (ω

)

W=1.92 (Exact TMT)
W=1.92 (Simple TMT)
W=1.95 (Exact TMT)
W=1.95 (Simple TMT)
W=1.98 (Exact TMT)
W=1.98 (Simple TMT)
W=2.01 (Exact TMT)
W=2.01 (Simple TMT)

FIG. 9. (Color online) Comparison between the exact numerical
TMT solution and the approximate solution, which is calculated
within simplified Landau theory.
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of the order parameter within two different approaches. These
results confirm the validity of our simplified Landau theory in
capturing the main trends obtained from the exact solution of
the TMT equations.

VI. CONCLUSIONS

In summary, we carried out a detailed TMT study of the
critical behavior for the Anderson metal-insulator transition
both analytically and numerically. Although the exact TMT
theory gives us nonanalytic critical behavior, we showed
that the offending logarithmic corrections to scaling are not
very significant if we are not too close to the transition.
Given the fact that mean-field theories are generally not
reliable very close to phase transitions, our results demonstrate
that for practical purposes these subtle issues can safely be
ignored, allowing us to formulate a much simpler Landau-like
formulation for Anderson localization. Such a mean-field
formulation cannot hope to capture the exact values of the
relevant critical exponents, but like any Landau theory, it still
can provide very useful guidance for general trends for various
phase transitions, including the general topology of the phase
diagrams.

In this work we also demonstrated that, within TMT, two
different universality classes for the critical behavior may
exist, depending on the qualitative form of disorder. We
explored the opening of a soft pseudogap in the single-particle
density of states near the Fermi energy, which is shown to
emerge when the (renormalized) disorder is chosen to have a
form appropriate for electrons interacting through long-range
Coulomb interactions. In relevant cases, our results are found
to be in excellent agreement with recent large-scale exact
diagonalization results [38], as well as with recent experiments
[29]. Moreover, recently developed cluster refinements of
TMT demonstrated [40–42] that significant corrections to
(single-site) TMT are found only very close to the Anderson
transition. All these findings provide further evidence that
TMT represents a flexible and practically useful tool for
successfully describing the main qualitative trends for physical
observables in the vicinity of disorder-driven metal-insulator
transitions.
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APPENDIX: EXPRESSION FOR THE CAVITY FUNCTION
FOR GENERAL BAND-STRUCTURE MODELS

For simplicity, we focus on the band center (ω = 0), where
all quantities we self-consistently calculate (Green’s functions,
cavity field, self-energies) are purely imaginary. In this case,
there exists a simple relation between the typical Green’s
function, the self-energy, and the typical density of states,
given by the expressions

Gtyp = −πρtyp (A1)
and

� = −� − 1

πρtyp
. (A2)

In order to close the self-consistent loop, we use Eq. (5),
which contains information on the form of the electronic band
structure through the form of the bare (disorder-fee) density
of states,

Gtyp(ω) =
∫

dω′ ν0(ω′)
ω − ω′ − �

. (A3)

We expand the right-hand side of Eq. (A3) in terms of 1
�

,
which remains small as we approach the transition, and we
write

Gtyp = − 1

�
−

(
1

�

)3 ∫
dω′ω′2ν0

(
ω′) + O

(
1

�

)5

. (A4)

From Eqs. (A1) and (A2) and keeping the leading terms in
Eq. (A4), we can obtain the general expression for cavity field
as follows:

� = Cπρtyp + O
(
ρ2

typ

)
, (A5)

where

C =
∫

dω′ω′2ν0(ω′). (A6)

This result shows how the coefficient C can be directly
calculated at half filling for any band-structure model. A
similar relation is valid even away from half filling (as
we also confirmed with detailed numerical work), but the
specific numerical value depends on the relevant nonuniversal
parameters. Therefore, as in other DMFT-like theories, to
capture the qualitative aspect of the critical behavior, it is
sufficient to consider the simple semicircular model density of
states where C = 1 for any filling and value of disorder.
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