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General framework for acoustic emission during plastic deformation

Jagadish Kumar,1 Ritupan Sarmah,2 and G. Ananthakrishna3

1Department of Physics, Utkal University, Bhubaneswar 751004, India
2Department of Physics, Tezpur University, Tezpur-784028, India

3Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
(Received 23 April 2015; revised manuscript received 13 August 2015; published 20 October 2015)

Despite the long history, so far there is no general theoretical framework for calculating the acoustic emission
spectrum accompanying any plastic deformation. We set up a discrete wave equation with plastic strain rate
as a source term and include the Rayleigh-dissipation function to represent dissipation accompanying acoustic
emission. We devise a method of bridging the widely separated time scales of plastic deformation and elastic
degrees of freedom. While this equation is applicable to any type of plastic deformation, it should be supplemented
by evolution equations for the dislocation microstructure for calculating the plastic strain rate. The efficacy of the
framework is illustrated by considering three distinct cases of plastic deformation. The first one is the acoustic
emission during a typical continuous yield exhibiting a smooth stress-strain curve. We first construct an appropriate
set of evolution equations for two types of dislocation densities and then show that the shape of the model
stress-strain curve and accompanying acoustic emission spectrum match very well with experimental results.
The second and the third are the more complex cases of the Portevin-Le Chatelier bands and the Lüders band. These
two cases are dealt with in the context of the Ananthakrishna model since the model predicts the three types of
the Portevin-Le Chatelier bands and also Lüders-like bands. Our results show that for the type-C bands where the
serration amplitude is large, the acoustic emission spectrum consists of well-separated bursts of acoustic emission.
At higher strain rates of hopping type-B bands, the burst-type acoustic emission spectrum tends to overlap, forming
a nearly continuous background with some sharp acoustic emission bursts. The latter can be identified with the
nucleation of new bands. The acoustic emission spectrum associated with the continuously propagating type-A
band is continuous. These predictions are consistent with experimental results. More importantly, our study
shows that the low-amplitude continuous acoustic emission spectrum seen in both the type-B and type-A band
regimes is directly correlated to small-amplitude serrations induced by propagating bands. The acoustic emission
spectrum of the Lüders-like band matches with recent experiments as well. In all of these cases, acoustic emission
signals are burstlike, reflecting the intermittent character of dislocation-mediated plastic flow.
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I. INTRODUCTION

Two striking features of acoustic emission are its intermit-
tent character and its occurrence in a surprisingly large variety
of systems, ranging from geological scales to laboratory scales.
A good example from the geological scale is the acoustic emis-
sion (AE) during volcanic activity [1]. Varied laboratory scale
examples such as AE from crack nucleation and propagation in
fracture of solids [2–4], thermal cycling of martensites [5–7],
peeling of an adhesive tape [8–11], and collective dislocation
motion [12–14] can be cited. Clearly, while the sources that
lead to AE signals in such widely different situations are
necessarily different, they are generally attributed to the release
of stored elastic energy in the system. Further, the AE spectrum
in all of these cases is intermittent, a feature reflective of
the underlying jerky motion of the sources generating the
AE signals. The phenomenon has been effectively used as
a nondestructive tool in locating the sources and mechanisms
generating the AE signals [15]. The method involves recording
the arrival times of a wave at multiple transducers which,
in turn, determines the distances of the AE source from the
transducers. This procedure is akin to that adopted in fracture
studies on rock samples [2,13]. This method has been used to
explain the power-law distribution of the amplitudes of the AE
signals in the deformation studies of ice samples [12,13].

Considerable insight into the intermittent character of
dislocation-mediated plastic deformation has come from
acoustic emission measurements [12,13,15]. Indeed, such AE

studies carried out for over five decades have established
specific correlations between the nature of the AE signals
and the stress-strain curves for different situations [16–24].
However, there is lack of clarity as to why such distinct
correlations exist [16–22,25]. For instance, even early studies
on the AE spectrum for the smooth homogeneous yield
phenomenon showed an intermittent AE spectrum [16].
Improved techniques confirm the pulselike character of the
AE events. The general shape of the AE spectrum for this case
exhibits a peak just beyond the elastic regime decaying for
larger strains [16,19]. Since the stress-strain (σ − ε) curves
remain smooth, the pulselike acoustic emission signals are
attributed to the intrinsic intermittent motion of dislocations.
Then, the smooth σ − ε curves are interpreted as resulting
from the averaging process of the dislocation activity in
the sample. Indeed, the intermittent character of dislocation
motion at the microscopic level is reflected in the strong stress
fluctuations seen in nanometer-sized samples that are not seen
in macroscopic samples [26].

In contrast, the nature of the AE spectrum is qualitatively
different for the case of discontinuous flows where the stress-
strain curves display stress serrations. For example, studies of
the Portevin-Le Chatelier (PLC) effect, a kind of propagative
instability, have established specific types of correlations be-
tween the AE spectrum and the different types of deformation
bands and the associated stress-strain curves [17,20–22,25].
Similar correlations exist for the Lüders band [21–24], another

1098-0121/2015/92(14)/144109(11) 144109-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.144109


JAGADISH KUMAR, RITUPAN SARMAH, AND G. ANANTHAKRISHNA PHYSICAL REVIEW B 92, 144109 (2015)

type of propagative instability [27]. Furthermore, the AE
spectrum for the Lüders band [27] is different from that for the
three types of PLC bands [28,29]. In these cases of propagative
instabilities, collective dislocation processes govern the nature
of the bands and the associated stress-strain curves. Thus,
there is a necessity to simultaneously describe the collective
behavior of dislocations and the wave equation that captures
the inertial time scale.

Early theoretical attempts to explain AE during plastic
deformation were based on the AE response of individual dis-
location mechanisms such as the Frank-Reed source [30–32].
However, such methods are clearly unsuitable while following
the AE signals during the entire course of deformation since
the AE sources themselves evolve as dislocations multiply
and interact with each other. Clearly, the AE spectrum from
collective dislocation phenomena such as the PLC effect
and Lüders band cannot be explained as a superposition of
individual dislocation contributions.

The purpose of the present paper is to set up a general
mathematical framework for describing the acoustic emission
for any type of plastic deformation. Devising such a the-
ory involves developing a method for dealing with widely
separated time scales of plastic deformation and the inertial
time scale, and a method for describing collective effects
of dislocations manifested in the PLC effect and Lüders
bands [28,33–37]. In a preliminary short communication, we
outlined a way of dealing with both dislocation dynamics
and elastic degrees of freedom specifically applicable to the
PLC instability [14]. Our present approach involves several
mathematical steps such as (a) including a dissipative term
representing the acoustic energy, (b) using the plastic strain
rate as a source term in the wave equation for the elastic degrees
of freedom, (c) setting up evolution equations for dislocation
microstructure, and (d) imposing mutually compatible bound-
ary conditions on both the wave equation and the evolution
equations for the dislocation microstructure. As we shall show,
point (d) requires describing the wave equation at a discrete
level.

Consider the functional form for the dissipated acoustic
energy in terms of a relevant “state variable” that also
evolves as deformation proceeds. To be applicable to any
plastic deformation, we require the functional form for the
dissipated AE energy to be independent of the nature of
the deformation process or the evolving microstructure, but
such that it could be coupled to the evolution equations for
the dislocation microstructure. Indeed, an expression for the
dissipated acoustic energy was introduced while modeling
the power-law distribution of AE signals during thermal
cycling of martensites [6,7]. The idea was that, to a leading
order, dissipated acoustic energy could be represented by the
Rayleigh-dissipation function [38]. This choice proved quite
successful in explaining the AE spectrum in a number of
situations, including the power-law distribution of the AE
signals during martensite transformation [6,7], peeling of an
adhesive tape [10,11], and crack propagation [4]. However, in
these cases, only elastic or viscoelastic degrees of freedom
having similar order time scales had to be described. In
contrast, plastic deformation is more complicated since it
requires describing widely separated time scales of plastic
deformation and inertial time scale.

The efficacy of the framework is illustrated for three cases.
First is the acoustic emission during a continuous yield,
second is during the PLC bands, and the third is during
the Lüders band. For the first case, we set up a dislocation
dynamical model that uses two types of dislocation densities
to predict the smooth stress-strain curve and also the general
shape of the AE spectrum and its burstlike character. For
the second and third cases, we use the Ananthakrishna (AK)
model for the PLC effect [39] since it predicts the most
generic features of the PLC effect including the three band
types [33,34,36,37,39] and also Lüders-like bands [37]. The
AE bursts for the uncorrelated type-C bands are well separated
as the type-C stress drops. For the hopping type-B bands, the
AE bursts overlap, forming low-amplitude nearly continuous
background AE signals. More importantly, we find sharp
bursts of AE superposed on the low-level continuous AE
background that can be unambiguously identified with the
nucleation of new bands. For the type-A propagating band,
we find a continuous AE spectrum. All of these features are
consistent with the experimental AE spectrum [20–22]. For
the Lüders band, the nature of the AE spectrum predicted is
again consistent with recent experiments [21–23].

II. A GENERAL FRAMEWORK FOR ACOUSTIC
EMISSION DURING PLASTIC DEFORMATION

We begin by constructing a wave equation that includes the
contribution from dissipated acoustic energy. For the sake of
simplicity, we work in one dimension. The physical mecha-
nism attributed to the generation of AE signals during plastic
deformation can be broadly termed “dislocation multiplication
mechanisms” such as the Frank-Reed source, the abrupt
unpinning of dislocations from pinning points, or from solute
atmosphere as in the case of the PLC effect. These mechanisms
set off local elastic disturbances. There are dissipative forces
that tend to oppose the growth of the elastic disturbances
so that mechanical equilibrium is restored. We represent the
dissipative energy [4,6,7,10,11] by the Rayleigh-dissipation

function [38] given by RAE = η

2

∫
[ ∂ε̇e(y)

∂y
]
2
dy. Here, η is the

damping coefficient. Noting that RAE ∝ ε̇2
e (t), we interpret

RAE as the acoustic energy that is dissipated during the abrupt
motion of dislocations [4,6].

We now set up the wave equation for the elastic strain
εe for a one-dimensional crystal. The Lagrangian consists of

the kinetic energy of the crystal T = ρ

2

∫
[ ∂εe(y)

∂t
]
2
dy with ρ

referring to the density of the material, the strain energy Vloc =
μ

2

∫
[ ∂εe(y)

∂y
]
2
dy with μ referring to the elastic constant, and the

gradient energy Vgrad = D
4

∫
[ ∂2εe(y)

∂y2 ]
2
dy where D is the strain

gradient coefficient. Vgrad makes the sound wave dispersive,
a term that is particularly important when localized transient
waves are generated. This term may be regarded as the next
dominant term (to the strain energy) in the Ginzburg-Landau
expansion of the free energy. Then, using the Lagrangian L =
T − Vloc − Vgrad in the Lagrange equations of motion,

d

dt

[
δL

δε̇e(y)

]
− δL

δεe(y)
+ δR

δε̇e(y)
= 0, (1)
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we have

ρ
∂2εe

∂t2
= μ

∂2εe

∂y2
+ η

∂2ε̇e

∂y2
− D

∂4εe

∂y4
. (2)

Equation (2) describes sound waves in the absence of dislo-
cations. However, during plastic flow, transient elastic waves
(or acoustic emission) are triggered by the abrupt motion of
dislocations, which then propagate through the elastic medium.
This can be described by including plastic strain rate as a
source term in Eq. (2). Then, the relevant (inhomogeneous)
wave equation describing the acoustic emission process takes
the form

ρ
∂2εe

∂t2
= μ

∂2εe

∂y2
− ρ

∂2εp

∂t2
+ η

∂2ε̇e

∂y2
− D

∂4εe

∂y4
. (3)

Here, c = √
μ/ρ is the velocity of sound and ε̇p(y,t) is the

plastic strain rate. Note that ε̇p(y,t) is a function of both
space and time and hence contains full information of any
heterogeneous character of the deformation (as for the PLC
effect), which has to be calculated by setting up appropriate
evolution equations for suitable types of dislocation densities.

We note here that Eq. (3) has the standard form of a partial-
differential equation with ε̇p acting as a source term. This form
excludes the possibility of transient acoustic waves (generated
by the source ε̇p itself) influencing the plastic strain rate or,
equivalently, dislocations or collective dislocation motion as
the case may be. Such an effect is, at best, a second-order
effect.

Finally, we need to specify the initial and boundary
conditions of Eq. (3). First, the constant strain rate condition
is imposed by fixing one end of the sample and applying a
traction at the other end. Second, the boundary conditions
of Eq. (3) should be consistent with those imposed on the
evolution equations for the dislocation densities, in which the
latter is determined by physically meaningful values for the
dislocation densities. Then, ε̇p(y,t) obtained near the boundary
sites need not be consistent with those imposed on Eq. (3).
Third, the machine stiffness gripping the ends of the sample
is higher than that of the sample, which is not easy to include
in Eq. (3). In fact, conventionally, the information about the
machine stiffness (for example, in the constant strain rate case)
goes only in the effective modulus of the machine and the
sample. Therefore, we start with a Lagrangian defined on a
grid of N points and derive a discrete set of wave equations.
This method allows us to make a distinction between points
well within the sample and those at the boundary where the
machine grips the sample. The method also brings clarity to
the boundary conditions.

Discrete form of the wave equation

Consider a sample of length L deformed in a constant strain
rate condition schematically represented by a spring-block
system of N points of mass m coupled to each other through
spring constant ks , as shown in Fig. 1. Then, the condition
that the sample is gripped at the ends translates into using a
different spring constant km for the end springs. Let a be the
separation between the points in the undistorted state. Then,
the local displacements from the equilibrium positions are the
dynamical variables of interest. However, since we use plastic

1 2 NN−1

m m m m

k m k kk ms s t

FIG. 1. Mechanical model for the specimen fixed at one end and
pulled at a constant strain rate at the other end.

strain rate for describing plastic deformation, we use strain
variables. Therefore, we define the strain variables εe(i) and
their time derivative ε̇e(i) for each of these points. Further, the
condition that the sample is pulled at a constant strain rate is
imposed by fixing the first point and pulling the N th point at
a constant strain rate ε̇a . Then, we can define a Lagrangian for
the system of N points. The kinetic energy T of the system is

T =
N−1∑
i=2

1

2
mε̇2

e (i). (4)

Here the overdot refers to the time derivative. The local
potential energies Vloc and Vgrad are, respectively, given by

Vloc =
N−2∑
i=2

ks

2
[εe(i + 1) − εe(i)]2 + km

2
ε2
e (2)

+ km

2
[εe(N − 1) − εe(N )]2, (5)

Vgrad =
N−2∑
i=3

D

2
[εe(i + 1) + εe(i − 1) − 2εe(i)]2

+ D

2
[εe(3) − 2εe(2)]2 + D

2
ε2
e (2) + D

2
ε2
e (N − 1)

+ D

2
[εe(N ) − 2εe(N − 1) + εe(N − 2)]2. (6)

The dissipated acoustic energy is given by

RAE = η

2

N−2∑
i=2

[ε̇e(i + 1) − ε̇e(i)]2 + η

2

[
ε̇2
e (2) + ε̇2

e (N − 1)
]
.

(7)

Then, using the Lagrange equations of motion, we get

ε̈e(1) = 0.0, (8)

ε̈e(2) = − c2

a2

[
{εe(2) − εe(3)} + km

ks

εe(2)

]
− ∂ε̇p(2,t)

∂t

− η′

a2ρ
[ε̇e(2) − ε̇e(3)] + D′

a4ρ
[εe(4) + εe(2) − 2εe(3)],

(9)

ε̈e(3) = c2

a2
[εe(4) + εe(2) − 2εe(3)] − ∂ε̇p(3,t)

∂t

+ η′

a2ρ
{ε̇e(4) + ε̇e(2) − 2ε̇e(3)}

− D′

a4ρ
{εe(5) − 4εe(4) + 5εe(3) − 2εe(2)}, (10)
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ε̈e(i) = c2

a2
{εe(i + 1) − 2εe(i) + εe(i − 1)} − ∂ε̇p(i,t)

∂t

+ η′

a2ρ
{ε̇e(i + 1) − 2ε̇e(i) + ε̇e(i − 1)}

− D′

a4ρ
[εe(i + 2) − 4εe(i + 1) + 6εe(i)

− 4εe(i − 1) + εe(i − 2)], (11)

ε̈e(N − 1) = − c2

a2

[
{εe(N − 1) − εe(N − 2)}

− km

ks

{εe(N ) − εe(N − 1)}
]

− ∂ε̇p(N − 1,t)

∂t
+ η′

a2ρ
[ε̇e(N ) + ε̇e(N − 2)

− 2ε̇e(N − 1)] − D′

a4ρ
[εe(N − 3) − 4εe(N − 2)

+ 5εe(N − 1) − 2εe(N )]. (12)

Equation (11) is valid for i = 4 to N − 1. Using ρ = m/a3 and
appropriate length factors of a, we retain the definition of c2 =
μ/ρ [see Eq. (3)] with μ = ks/a, η′ = η/a, and D′ = Da.
Note that ε̇p has been included as a source term in Eqs. (8)–
(12). Equations (8)–(12) are solved on a grid of N points
with appropriate initial and boundary conditions. The initial
conditions are

εe(1,0) = 0; εe(i,0) = 0 + ξ × εr , i = 2, . . . ,N − 1,

(13)
where εr represents the strain due to inherent defects in the
sample and ξ is a random number in the interval − 1

2 < ξ < 1
2 .

Here, we use εr ∼ 10−7. The boundary condition that the left
end is fixed and the right end is being pulled at a constant strain
rate ε̇a can be written as

εe(1,t) = 0, εe(N,t) = ε̇at ; t > 0. (14)

III. DISLOCATION DYNAMICAL MODELS
FOR PLASTIC DEFORMATION

These steps are clearly applicable to any plastic defor-
mation situation, but must be supplemented by constructing
dislocation-based models to calculate the source term ε̇p in
the wave equation. The types of dislocation densities that
must be used and the nature of the equations are dictated by the
kind of plastic deformation considered, namely the continuous
yield and the two propagative instabilities [28,33,34,36,37,39].
The dynamical approach followed here has the ability to use
experimental ε̇a , unlike in simulations where the imposed
strain rates are several orders of magnitude higher [37].
Further, we can also adopt other experimental parameters used
in experiments, for instance σy,E

∗, etc.

A. A dislocation dynamical model for a continuous
yield point phenomenon

We first construct a model that uses two types of dislocation
densities, namely, the mobile ρm and the immobile (or the

forest) density ρim that reproduces a typical smooth stress-
strain curve. Most dislocation mechanisms used are drawn
from the AK model for the PLC effect [28,33–37,39]. They
can be broadly categorized into dislocation multiplication and
transformation processes. As dislocations multiply (due to the
double cross-slip process), they interact with each other to
form dipoles and junctions [40]. They can also annihilate.
Each of these mechanisms acts as a growth or loss process for
ρm and ρim. The general form of multiplication of dislocations
can be written as θVm(σa)ρm with Vm(σa) representing the
mean velocity of dislocations. θ is the inverse of a length scale
that physically represents points from which the line length
of dislocations multiplies (see Refs. [28] and [37] for details).
Several phenomenological expressions have been suggested
for Vm(σa) [27]. Here, we use Vm(σa) = v0[ σeff

σm
]m, where

σeff = σa − hρ
1/2
im . Here, m is a velocity exponent and hρ

1/2
im is

the back stress. The parameter h = αGb, where α ∼ 0.3 is a
constant, b is the magnitude of the Burgers vector, and G is
the shear modulus. Indeed, one can rewrite the multiplication
rate as νmρm = ν0[ σeff

σm
]mρm, where ν0 = θv0. The formation

of dipoles occurs when two dislocations moving in nearby
glide planes approach a minimum distance (typically a few
nanometers) and act as a loss term to ρm. This is represented
by βρ2

m, where β has dimensions of the rate of the area
swept out by dislocations. Similarly, the annihilation of a
mobile dislocation with an immobile one is represented by
the term fβρmρim with a rate fβ, where f is a dimensionless
parameter. This term is generally small compared to other
loss terms for ρm, and therefore f � 1. Finally, dislocations
moving in different glide planes intersect each other to form
junctions. This is a loss term to ρm given by 
ρmρim.
Here, 
 is a parameter that, however, depends on the mean
separation between junctions themselves that also evolves as
deformation proceeds (i.e., ρim increases). Then, 
 ∝ 1/ρ

1/2
im

or 
 = δρ
−1/2
im . Here, δ is considered constant since the main

contribution to 
 has been absorbed. Then, the loss term for ρm

is δρmρ
1/2
im . (δ has the dimension of velocity.) This represents

the forest mechanism [40]. This acts as a gain term to ρim.
Then, the evolution equations are

∂ρm

∂t ′
= θv0ρm

[
1

σy

(
σa − hρ

1/2
im

)]m

− βρ2
m − fβρmρim

−δρmρ
1/2
im + �θv0

ρim

∂2

∂x2

[
σeff

σy

]m

ρm, (15)

∂ρim

∂t ′
= βρ2

m − fβρmρim + δρmρ
1/2
im . (16)

(We use the primed time variable for plastic strain rate
calculations.) The spatial coupling in Eq. (15) arises since
the cross slip allows dislocations to spread into neighboring
regions. The factor 1/ρim prevents dislocations from moving
into regions of high dislocation density [36].

These equations are coupled to the machine equation [41]
that enforces the constant strain rate condition,

dσa

dt ′
= E∗

[
ε̇a − b

L

∫ L

0
v0

(
σeff

σy

)m

ρmdx

]

= E∗[ε̇a − ε̇p(t ′)]. (17)
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B. The Portevin-Le Chatelier effect and Ananthakrishna model

We first summarize relevant features of the PLC ef-
fect [28,29]. The PLC instability is seen in a window of
strain rates and temperatures when samples of dilute metallic
alloys are deformed under constant strain rate conditions. It is
characterized by three types of bands and the associated stress
serrations [28,29,42–46] observed with increasing strain rate
or decreasing temperature. At the lower end of ε̇a , randomly
nucleated static type-C bands with large characteristic stress
drops are seen. The serrations are quite regular. At intermediate
ε̇a , “hopping” type-B bands are seen where a new band is
formed ahead of the previous one giving a visual impression
of a hopping character. The serrations are more irregular with
amplitudes that are smaller than that for type C. Finally, at high
ε̇a , the continuously propagating type-A bands associated with
small stress drops are found. These bands have been shown
to represent different correlated states of dislocations in the
bands [33–37].

There are a number of models that target specific features
of the PLC effect. These use local strains, strain rates, negative
strain rate sensitivity of the flow stress, activation enthalpy of
dynamic strain aging, waiting, etc. [40,47–51]. However, there
are fewer models that predict the characteristic features of the
three types of bands [34–37,50,51] required for calculating
the associated AE spectra. Here, we use the AK model since
it captures most generic features of the PLC effect, including
the three types of bands and large number of features such as
the existence of the instability within a window of strain rates,
the negative strain rate behavior of the flow stress [39,52],
the chaotic nature of stress drops at low strain rates [53],
and the power-law distribution of stress drop magnitudes
and durations [33,34,36,54–56]. In addition, the AK model
has been recently shown to predict the Lüders-like band as
well [33,34,36,37,39]. The basic idea of the model is that all
of the qualitative features of the PLC effect emerge from the
nonlinear interaction of a few collective degrees of freedom
assumed to be represented by a few dislocation densities.
The model consists of three types of densities, namely the
mobile, immobile, and dislocations with solute atoms, denoted
by ρm(x,t), ρim(x,t), and ρc(x,t) respectively. The evolution
equations for these densities in the unscaled form are

∂ρm

∂t ′
= −βρ2

m − fβρmρim − αmρm + γρim

+ θv0

[
σeff

σy

]m

ρm + �θv0

ρim

∂2

∂x2

[
σeff

σy

]m

ρm, (18)

∂ρim

∂t ′
= βρ2

m − pβρmρim − γρim + αcρc, (19)

∂ρc

∂t ′
= αmρm − αcρc. (20)

All terms in Eq. (18) except the third and fourth terms have
already been explained (see Sec. III A). The third term αmρm

in Eq. (18) refers to solutes diffusing to mobile dislocations
temporarily arrested by immobile (forest) dislocations. Thus,
αmρm is the gain term for ρc. αm is a function of the solute
concentration C at the core of dislocations, Dc is the diffusion
constant of the solute atoms, and λ is an effective attractive
distance for the solute segregation. Then, αm = Dc(T )C

λ2 . As

dislocations progressively acquire more solute atoms, they
slow down at a rate αc and eventually stop, at which point
they are considered as ρim. Thus, the loss rate αcρc in
Eq. (20) is the gain term given by Eq. (19) for ρim. For the
same reason, we consider ρim to include dislocations pinned
by solute atmosphere as well. [Note the difference in the
interpretation of ρim used in Eqs. (16) and Eq. (19).] Thus,
the loss term γρim in Eq. (19) is a gain term in Eq. (18). This
term is considered to represent the unpinning of that fraction
of immobile dislocations from the solute clouds. As in the
model for continuous yield (Sec. III A), the spatial coupling
[the sixth term in Eq. (18)] in this model arises from the
double cross-slip process that allows dislocations to move into
neighboring spatial elements. Equations (18)–(20) are coupled
to the machine equation (17) that represents the constant strain
rate deformation condition.

IV. COMPUTING ACOUSTIC EMISSION SPECTRUM
DURING PLASTIC DEFORMATION

Now we consider the basic difficulty in describing slow
plastic deformation and fast sound-wave propagation simulta-
neously. Experimental strain rates are in the range 10−6–10−2

s, while experimental AE frequencies are from KHz to MHz
that differ by almost 108–1010. This difference translates into
the difference in the time steps for integration of the dislocation
density equations (or ε̇p) and the wave equations [Eqs. (8)–
(12)]. For the sake of clarity, we use primed variable t ′ for the
dislocation density evolution equations or for plastic strain rate
ε̇p(k,t ′). Denoting the ith integration time step of ε̇p(k,t ′) (with
k referring to spatial coordinate) by δt ′i , for the time interval
between t ′i+1 < t ′ < t ′i , we need to ensure that �δt = δt ′i where
δt is the step size used for Eqs. (8)–(12) and � � 1. Then,
we should impose ∂ε̇p(k,t)

∂t
= �2 ∂ε̇p(k,t ′)

∂t ′ . � would be different
for each type of the plastic deformation cases considered since
the time step for integration for dislocation density evolution
equations depends on whether or not they are stiff. However,
for our purposes, it would be adequate to use the mean value
of �. As for the spatial part, the wave equations and the
dislocation density evolution equations are solved on the same
spatial grid of 100 points (for L = 0.05 m). Further, since
ε̇p(k,t ′) is calculated at much coarser time steps compared to
Eqs. (8)–(12), we need to use interpolated values for ε̇p(k,t ′)
in the source term. We now outline the steps used for obtaining
the AE spectrum.

Step 1. Solve Eqs. (15)–(17) [or Eqs. (18)–(20) and (17) for
the AK model] for the entire time interval and obtain ε̇p(k,t ′i )
and σa(t ′i ) using a fixed or variable time step δt ′ (as the case
may be) for i, . . . ,M and k = 1, . . . ,100.

Step 2. Start with t = 0 along with the stated initial
and boundary conditions and solve Eqs. (8)–(12) for the
interval 0 < t < t ′i corresponding to integration time step δt ′ in
Eqs. (15)–(17) [or Eqs. (18)–(20) and (17) for the AK model]
for that interval. This gives εe(k,t) for 0 < t < t ′i . Repeat
integration for successive time steps.

Step 3. The stress σe(t) obtained using εe(k,t) (and using
the elastic modulus E for the sample) would, in principle, be
different from that obtained from the machine equation (17),
particularly in the plastic regime. Note also that we need to use
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TABLE I. Parameter values used for the continuous yield model.

β (m2 s−1) δ (m s−1) f v0 (m s−1) m

8.33 × 10−14 5.4 × 10−11 10−3 10−7 10

the interpolated values of ε̇p(k,t ′i ) as an input into Eqs. (8)–
(12).

Step 4. The dissipated acoustic energy is calculated using
Eq. (7). We note here that the value of η is not known.
However, from Eq. (2) [or Eq. (3)], we see η/ρ ∼ 1, since
η/ρ � 1 corresponds to the overdamped situation and η/ρ �
1 corresponds to the underdamped case. We have used a fixed
value of η for the three cases so that the AE spectrum reflects
the relative magnitudes.

We stress that the method for calculating the AE spectrum
is approximate since Eq. (17) assumes equilibration to obtain
plastic strain rate ε̇p(k,t ′). The method is akin to adiabatic
schemes.

V. ACOUSTIC EMISSION SPECTRUM DURING
A TYPICAL YIELD

Computation of the AE spectrum requires that we solve
Eqs. (15)–(17) and use the plastic strain rate ε̇p(k,t ′) as
the source term in Eqs. (8)–(12). Therefore, we first solve
Eqs. (15)–(17) for the entire time interval to obtain ε̇p(k,t ′).

A. Numerical solution of model equations for continuous yield

We first estimate the orders of magnitudes of the model
parameters. The parameter values of E∗, σy, b, and ε̇a are taken
from the targeted experiment. Here, we attempt to predict
the smooth σ − ε curve in Fig. 2(c) of Ref. [19] for which
experimental parameters are σy = 0.3 GPa, E∗/σy = 416.
(The value of b = 0.25 nm.) The experimental strain rate
ε̇a = 1.67 × 10−4 s. The theoretical parameter θv0 constitutes
a time scale which has been set to unity (one second) so
that the plastic strain rate evolution time scale matches the
experimental time scale. Other parameters, β,f,δ, are easily
estimated by using typical asymptotic values of ρm and ρim

that are in the range ∼1013–1014m2 [37]. The results presented
here are for the parameter values given in Table I. The constant
� is of the order of 1/β and hence � ∼ 1012. Equations (15)–
(17) are solved on a grid of N = 100 points for a sample
length L = 0.05m. The initial conditions used for ρm(j,0)
and ρim(j,0) are taken to be uniformly distributed along the
sample with a Gaussian spread of their values around a mean
value 4.5 × 1011m2 and 1012m2, respectively. The variance
for ρm is 1 × 1012m2 and that for ρim is 1 × 1011m2. The
boundary conditions are ρm(1,t ′) = ρm(N,t ′) ∼ 1011m2 and
ρim(1,t ′) = ρim(N,t ′) = 1014m2. The high value for ρim(N,t ′)
represents the fact that the sample is strained at the grips. We
have used “ode15s” MATLAB solver for the numerical solution.
We shall use ε̇p(j,t ′) obtained as a source term in Eqs. (8)–(12)
for the AE studies. However, since the step size needed for
integrating Eqs. (8)–(12) is δt ∼ 0.001, it requires that we
supply the values of ε̇p(t ′) for intermediate times.

The calculated model stress-strain curve is shown in Fig. 2
along with experimental points extracted from Fig. 2(c) of [19].

FIG. 2. (Color online) Stress-strain curve for a continuous yield
(continuous curve) with experimental points (•) extracted from Fig.
2(c) of Ref. [19] for ε̇a = 1.67 × 10−4 s along with the corresponding
AE spectrum.

It is clear that the model σ − ε curve matches the experimental
σ − ε quite well.

B. Acoustic emission spectrum

We have used ε̇p obtained from Eqs. (15)–(17) as a source
term in Eqs. (8)–(12) to obtain the AE spectrum RAE by using
Eq. (7). This is shown in Fig. 2. This may be compared with
the experimental AE spectrum for the continuous yield shown
in Fig. 2(c) of Ref. [19]. It is clear that the overall shape of
the model AE spectrum is quite similar to the experimental
AE spectrum. Note that even though the σ − ε is smooth, the
burstlike character of the predicted AE signals (and also the
experimental AE signals) is reflective of the fundamentally
intermittent nature of plastic deformation.

VI. ACOUSTIC EMISSION ACCOMPANYING
THE DIFFERENT TYPES OF PLC BANDS

We first consider the solution of Eqs. (18)–(20) and Eq. (17),
and discuss the features of different types of PLC bands and
the associated serrations predicted by the AK model before
computing the acoustic energy RAE . To do this, we first
estimate the parameters following the same procedure adopted
for the earlier case (Sec. III A). Experimental parameters such
as ε̇a, E

∗, b, and h are adopted from experiments. As for the
theoretical parameters, the model time scale θv0 is set to unity
as for the previous case. The other parameters, fβ, γ, αm, and
αc, are fixed easily by providing the steady-state values of
ρm, ρim, and ρc [37]. (Note that the steady state exists for
these set of equations.) As for αm, it is estimated by using
αm = DcC

λ2 . The exact values used are shown in Table II.
We solve Eqs. (18)–(20) and (17) by using an adaptive step

size algorithm (ode15s MATLAB solver). The initial values of
the dislocation densities are chosen much the same way as for

TABLE II. Parameter values used for the AK model.

E∗ (GPa) σy (GPa) αm (s−1) αc (s−1) v0 (m s−1)

48 0.2 0.8 0.08 10−7

γ (s−1) f m β (m2 s−1) �

5 × 10−4 1 3 5 × 10−14 1012
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FIG. 3. (Color online) (a) Stress-strain curve for the randomly
nucleated type-C bands and model acoustic energy RAE plot for
ε̇a = 1.125 × 10−5 s. (b) Expanded portion of the AE spectrum shown
between the arrows in (a).

the previous case. At the boundary, we use values that are two
orders higher for ρim(j,t ′) at j = 1 and N than the rest of the
sample. Further, as bands cannot propagate into the grips, we
use ρm(j,t ′) = ρc(j,t ′) = 0 at j = 1 and N .

A. The Portevin-Le Chatelier bands in
the Ananthakrishna model

Earlier studies have demonstrated that the AK model
predicts the three types of bands C, B, and A with increasing
strain rate [33,34,36,37]. At low strain rates, uncorrelated
static type-C bands are seen. The corresponding stress-time
plot displays large-amplitude, nearly regular serrations as in
experiments [28,29,42–46].

As ε̇a is increased, we see hopping type-B bands. The
serrations are irregular and are of smaller magnitude. One
important feature predicted by the model relevant to the
AE studies is the correlation between the band propagation
property and the small-amplitude serrations (SASs). In a recent
study [37], it was demonstrated that band propagation induces
small-amplitude serrations that are bounded on both sides by
large-amplitude stress drops. Figure 4(a) shows two type-B
bands marked AB and CD. The corresponding SASs induced
by these two propagating bands are shown by the two sets of
arrows AB and CD. This stretch of SASs is bounded on both
sides by large-amplitude stress drops. The large stress drop

FIG. 4. (Color online) (a) Two partially propagating type-B
bands for ε̇a = 3 × 10−5 s. (b) The corresponding stress-strain curve
and the model acoustic energy.

FIG. 5. (Color online) (a) Plots of two fully propagating type-
A bands for ε̇a = 5.5 × 10−5 s. (b) The corresponding stress-strain
curve and the associated model acoustic energy RAE .

at A is well correlated with the nucleation of the band AB.
The one at B corresponds to stopping of the band. A similar
observation holds for the band CD as well.

As we increase ε̇a , the extent of propagation increases.
Concomitantly, the duration of small-amplitude serrations
increases. Typical contour plots of two type-A bands marked
ABC and DEF are shown in Fig. 5(a) for ε̇a = 5.5 × 10−5 s.
The corresponding stretches of SASs induced by the propa-
gating bands are marked by three sets of arrows marked ABC
and DEF. While the spatial “width” of the propagating band
is nearly uniform, occasionally one finds perturbations in the
width. Two such points B and E are shown. At these points, we
find relatively large-amplitude stress drops. Another feature is
that the mean stress level of these SASs increases or decreases,
as is clear for serrations A to B and C to D in Fig. 5(a). This
feature is seen in many experimental σ − ε curves at high
strain rates (see Fig. 1(c) for Cu-Al in Ref. [55]). As we shall
see, these features have a direct influence on the nature of the
AE spectrum.

B. Acoustic emission accompanying the three
types of PLC bands

The calculated plastic strain ε̇p(k,t ′) for the entire time
interval has been used as a source term in Eqs. (8)–(12) to
obtain the model acoustic energy spectrum RAE . A plot of
RAE along with the stress-time curve accompanying the type-C
bands is shown in Fig. 3 for ε̇a = 1.125 × 10−5 s. As can be
seen, the bursts of acoustic emission appear at each stress drop
and are well separated for strain rates 3 × 10−6 < ε̇a < 1.5 ×
10−5 s corresponding to the type-C bands. The postburst AE
continuously decreases until a new AE burst appears. However,
on an expanded scale, we find that there is a buildup of the AE
signal from a low level just beyond the stress drop, as shown
in Fig. 3(b). These features are confirmed by experimental AE
spectra for the type-C bands [21,22].

With increasing ε̇a , the AE bursts begin to overlap. In the
region of partially propagating type-B bands, the AE spectrum
consists of overlapping bursts leading to a low-amplitude
continuous background. A typical plot of the AE spectrum
for ε̇a = 3 × 10−5 s is shown in Fig. 4(b). However, a
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few large-amplitude AE signals can be seen overriding the
continuous low-amplitude AE signals. Two observations can
be made from the figure. First, the low-amplitude continuous
AE signals are seen to be well correlated with the small-
amplitude stress serrations induced by propagating bands.
Second, the large-amplitude AE bursts are well correlated with
the large-amplitude stress drops that are identified with the
nucleation of new bands. Thus, large bursts of AE signal are
correlated with the nucleation of new bands. This prediction
is confirmed by recent experimental studies on AE during the
PLC bands [21,22].

At high strain rates of the fully propagating type-A bands,
the nature of the AE spectrum becomes fully continuous.
A typical AE spectrum along with the stress-time curve for
ε̇a = 5.5 × 10−5 s is shown in Fig. 5(b). The figure shows
that the AE spectrum is largely continuous, a feature that is
consistent with the experimental AE spectrum [20–22]. Two
other features are also evident. The AE spectrum exhibits
occasional relatively large-amplitude AE signals overriding
the continuous triangular-shaped AE spectrum. The relatively
large burst of AE can be identified with the large-amplitude
stress drops at points B and E on the stress-strain curve. We
also see a correlation between these large bursts of AE with
nucleation of the bands (A and D on the stress-time curve
and C and F when the band reaches the sample end). This
identification is similar to the type-B band nucleation. The
overall triangular shape of the continuous AE signals (shown
between the vertical dashed lines) is well correlated with
the duration of increasing mean stress level of the SAS. It
would be interesting to verify these correlations between band
propagation induced small-amplitude serrations in the type-A
band regime and the continuous AE spectrum.

The above discussion also shows that our approach predicts
most of the features of the AE spectrum seen in experiments.
It also provides insight into the origin of the low-amplitude
continuous AE spectrum seen in both the type-B and type-A
band regimes, namely, that it is directly correlated to the SASs
induced by propagating bands. However, features associated
with hardening, such as the decreasing activity with strain
hardening, seen in experiments cannot be predicted within the
scope of the AK model since the AK model does not include
the forest hardening term.

VII. ACOUSTIC EMISSION DURING LÜDERS-LIKE
PROPAGATING BAND

Before proceeding further, we briefly summarize the salient
points about Lüders and show that the AK model predicts
Lüders-like bands. Lüders bands traditionally refer to the
propagating bands seen in polycrystalline samples following
a yield drop. The bands propagate from one end to the other
at practically zero hardening rate. The band propagation is
ascribed to the incompatibility stresses between the grains.
However, Lüders-like bands have been reported in many
systems such as single crystals, alloys doped with solutes,
irradiated single crystals, and even whiskers (see Ref. [27] for
a review). According to Neuhäuser [27], the resistance offered
by obstacles to dislocation motion is a common mechanism.
The equivalent role of obstacles is played by solute atoms in
the AK model.

FIG. 6. (Color online) (a) A plot of the Lüders-like propagating
band for ε̇a = 1.67 × 10−6 s. (b) The corresponding stress-strain plot.
The inset shows small-amplitude stress serrations not visible on the
full scale of (b). The model acoustic energy RAE is also shown.

It is known that alloys exhibiting the PLC effect often also
exhibit Lüders regime [21,22,25]. Since the AK model exhibits
most of the features of the PLC effect, including the three band
types, it is conceivable that the AK model also exhibits Lüders-
like bands. Indeed, the AK model has recently been shown to
exhibit Lüders-like bands [37]. Figure 6(a) shows a Lüders-
like band starting immediately after yield drop and traveling
from one end to the other with a near constant velocity. The
parameter values used are αm = 1 s, αc = 0.002 s, γ = 5 ×
10−4 s, E∗/σy = 240,m = 10, and ε̇a = 1.67 × 10−6 s. The
corresponding stress-strain curve is shown in Fig. 6(b). It is
clear that the stress level remains nearly constant at the lower
yield value of ∼200 MPa. While the stress-strain curve looks
smooth on this scale, we do find small-amplitude serrations as
shown in the inset.

Acoustic emission during Lüders-like band propagation

We have calculated the AE spectrum by following the same
procedure as for the previous cases. This is shown in Fig. 6(b).
As can be seen, the AE spectrum exhibits a peak corresponding
to the yield drop. The AE activity rapidly decreases to
a low level in the band propagation regime. Indeed, the
decrease in the peak-level AE activity in the propagating
region is consistent with experiments [21–23]. The peak in
the AE spectrum at the yield is due to rapid multiplication
of dislocations from a low initial density. The decrease in the
AE activity during the band propagation can be identified with
band propagation induced small-amplitude serrations shown in
the inset of Fig. 6(b). Recall that the small-amplitude serrations
induced during type-A band propagation were shown to be
well correlated with low-amplitude continuous AE signals. In
this case, the amplitude of the serrations is even smaller that
the case of the type-A PLC band, typically less than 2 MPa,
which is the primary cause of the low-level AE signals in the
propagating region.
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VIII. DISCUSSION AND CONCLUSIONS

In summary, we have developed a theoretical framework
for describing the nature of the AE spectrum accompanying
any plastic deformation and have illustrated the applicability
to three distinct cases of plastic deformation. The dissipated
AE energy is represented by the Rayleigh-dissipation func-
tion [4,6,7,10,11]. The plastic strain rate computed from the
dislocation density evolution equations goes as a source term in
the wave equation. The several orders of magnitude difference
between the inertial time scale and the plastic deformation time
scale is incorporated as a scale factor in the numerical solution
of the wave equation. The necessity to impose mutually
compatible boundary conditions between the wave equation
and the dislocation density evolution equations forced us to
deal with the discrete form of the wave equation.

The basic framework itself is independent of what kind of
plastic deformation is targeted as long as the plastic strain
rate as a function of space and time can be calculated using
some method. However, the ability to construct the evolution
equations for the dislocation microstructure matching the
experimental features directly influences the resulting AE
spectrum. It is therefore important to ensure that the model
equations correctly predict the observed stress-strain curves
and spatiotemporal features of the plastic deformation. Indeed,
the good match between the model AE spectra and the
experimental AE spectra in the three cases considered can only
be attributed to the correctness in modeling the salient features
of plastic deformation. The fact that the dislocation density
based model closely reproduces the smooth experimental
stress-strain curve and also the shape of the experimental AE
spectrum should be taken as a validation of the correctness of
the model. On the other hand, the burstlike character of the
AE signals reflecting the fundamentally intermittent nature of
plastic deformation is more a validation of the correctness of
the framework itself. In the case of the PLC effect, the fact that
the predicted AE spectra are consistent with the experimental
AE spectra for each of the band types [18,20–22,25] is clearly
due to the fact that the AK model predicts the three band
types and associated serrations. The results show that the AE
spectrum consists of well-separated bursts of AE occurring
at every stress drop for the type-C bands. As ε̇a is increased
towards the region of type-B bands, these bursts of AE tend to
overlap, forming a low-level nearly continuous background.
The AE spectrum corresponding to the type-A band is nearly
continuous. The nature of the AE spectrum during Lüders-like
band propagation predicted by the AK model is also consistent
with experiments [21–23]. More importantly, our method is
able to capture the intermittent burstlike character of the AE
signals in all of the cases considered.

Interestingly, our approach is able to predict some details
seen in the experimental AE spectrum, such as the unam-
biguous identification of a few large-amplitude AE signals
with the nucleation of a new band [21,22]. More importantly,
our study shows that the low-amplitude continuous AE
spectrum seen in both the type-B and type-A band regimes
and also the Lüders band are directly correlated with the
small-amplitude serrations induced by propagating bands.
Simultaneous measurement of band propagation, stress, and
the associated AE spectrum should validate this result.

We now comment on the strengths and limitations of our
approach. As stated above, the approach is general enough
provided the plastic strain rate can be obtained from any model
that captures the spatiotemporal features and stress-strain
curve of the specific plastic deformation. From this point
of view, the plastic strain rate obtained from Hähner [50]
and Kok et al. [51] can be used to obtain the AE spectrum
since these models predict the three PLC bands. The approach
can also be applied to other types of plastic deformations
not considered here. For example, the AE technique has been
used to study a variety of modes of plastic deformation such
as load-rate controlled PLC experiments [57], cyclic loading
experiments [58], and stress relaxation experiments [22]. Our
method is applicable to these cases since the dislocation
evolution equations can be coupled to load-rate controlled and
cyclic loading conditions instead of the constant strain rate
deformation [59]. The method can also be used for the case
of AE studies in nano- and microindentation experiments [60]
since a dislocation dynamical model for nanoindentation has
been developed recently [61].

Lastly, consider the importance of modeling dislocation
evolution equations. In alloys exhibiting the PLC effect,
serrations are seen on stress-strain curves that display strain
hardening. Experiments show that the AE activity decreases
with increasing strain. This feature cannot be predicted by the
present form of the AK model since it includes hardening only
in a marginal way. However, the strain hardening feature is
recovered once the forest hardening term ρmρ

1/2
im is included

in the AK model [62]. Therefore, we expect that the revised
AK model should recover the AE features that depend on strain
hardening. Work in this direction is in progress.

One last example is the case of acoustic emission during
crack propagation [63,64]. During crack propagation in ductile
materials, plastic deformation blunts the crack tip. Clearly, it
should be possible to adopt our framework by using equations
that describe dynamic propagation of a crack. Even in the case
of brittle fracture propagation, it should be possible to adopt
our method since brittle fracture can be viewed as a limiting
case of ductility.

A comment is in order about the algorithm followed in
computing the AE spectrum. The acoustic energy spectrum
was calculated using the plastic strain rate computed from
dislocation-based models along with the machine equa-
tion (17). However, Eq. (17) assumes stress equilibration. This
was done for the sake of convenience of computation. The
framework itself is more general since the elastic strain can be
obtained from the wave equation which can be used to obtain
the unrelaxed stress. Work in this direction is in progress.

While our approach to acoustic emission is phenomenolog-
ical, recently the phase field crystal (PFC) model [65] has been
used to predict the power-law distribution of AE signals. Since
the model has the ability to deal simultaneously with elastic
and defect degrees of freedom, it may have potential for AE
studies. However, the ability of the PFC model to predict the
generic features of specific cases of plastic deformation such
as the stress-strain curve and the associated spatiotemporal
features (such as the three types of PLC bands and Lüders band
or even smooth stress-strain curve) remains to be established
since the characteristic features of the AE spectrum are directly
correlated with these features.
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