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Thermally activated and quantum plasticity of solid 3He at temperatures below 0.5 K
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Plastic flow of solid 3He through a porous membrane frozen in the crystal is observed in the temperature range
from 0.1 to 0.5 K. The flow of helium through the pores of the membrane occurs under the mechanical stress
caused by the electrostatic force. It was found that the temperature dependence of the flow velocity V has two
characteristic regions: at temperatures above T ∼ 0.2 K, V decreases exponentially with lowering temperature,
which corresponds to the thermally activated process, and at temperatures below 0.2 K, V is independent on T ,
which indicates the quantum mechanism of mass transfer. For the high-temperature region the values of thermal
activation volume and energy of activation are estimated. The results are analyzed in the framework of vacancy
and dislocation models of plastic flow.
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Interest in the elastic and plastic properties of solid
helium has strongly increased in recent years in connection
with the anomalous behavior of solid 4He at temperatures
below 0.3 K. In particular, the change in the period of
torsional oscillations [1] and a sharp change in viscoelastic
properties [2,3] were observed. Currently, most of the authors
came to the consensus that the detected anomalies have
nonsuperfluid origin, and the key to understanding these
anomalies is connected with the features of plasticity in helium
crystals at low temperatures [4–6].

Torsion experiments and measurements of the shear modu-
lus were carried out also in solid 3He [6,7]. It has been found
that in hexagonal-close-packed (hcp) phase anomalies ob-
served are the same as in the 4He, and in body-centered-cubic
(bcc) phase they are absent. Such behavior only increased
interest in the plastic properties of the solid 3He.

The first experimental study of the plasticity of solid 3He
was performed in 1979 by examining the movement of a
special brass rod frozen in the crystal [8]. The authors observed
the plastic flow of bcc 3He in the temperature range 0.5–1.0 K
and explained it in the framework of the dislocation model.
In the next series of experiments in 1993–1995 the plastic
properties of solid 3He were investigated by overflowing solid
helium through a porous membrane in the same temperature
range [9,10]. The results were described as vacancy diffusion
flow.

Note that it seems rather actual to know in more detail the
similarities and differences in plastic properties of solid 3He
and solid 4He [11]. These quantum crystals follow different
types of quantum statistics and have different amplitudes
of zero-point vibrations. We can therefore expect that the
dislocations and vacancies in such crystals have different
characteristics, which results in a different nature of the plastic
flow, especially at very low temperatures. An investigation of
the plastic flow of solid 4He under the same conditions was
carried out by the authors earlier [12].

One of the present works is to find out the new features of
the plastic properties of solid 3He. A study of the plasticity
of the crystals was carried out at temperatures below ∼0.5 K,
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where one can expect a clear manifestation of quantum effects.
Another aim is to identify the carriers of mass transfer and
mechanisms of plastic deformation in the solid helium in a
wide range of temperatures and external loads.

The plastic flow of solid 3He occurs as a result of constant
stress due to displacement of the porous membrane frozen into
a crystal. The measurement method was the same as that in
similar experiments with solid 4He [12]. The measuring cell
(Fig. 1) consisted of two chambers I and II with solid helium
separated by a porous membrane which is made of a metallized
polymer film. The membrane had a radius of 10 mm and a
thickness of 10 μm, the orifice diameter was 6–8 μm, and a
porosity of 0.18. Chamber I forms a parallel-plate capacitor
consisting of a fixed electrode and the membrane which served
as a movable electrode. The distance between the electrodes
of the capacitor was ∼25 μm, and the height of chamber II
was 2 mm.

Initially, the electrical potential difference across the elec-
trodes of the measuring capacitor was zero, and the membrane
had a flat shape being parallel to the fixed electrode. When
we applied potential difference U to the electrodes of the
capacitor, the force started to act on the membrane. As a result,
the following compression mechanical stress σ appears in solid
helium:

σ = 2πC2U 2

εS2
. (1)

Here C is the capacitance of the measuring capacitor, S is
the membrane area, U is the potential difference, and ε ≈ 1
is the dielectric constant of solid 3He. Solid helium under
stress flows through the orifices in the membrane, which
connected chamber I and chamber II. This leads to a shift of the
membrane, which is measured by the change in capacitance.
Thus, the recorded time dependence of C allowed one to find
the average velocity of the membrane corresponding to the
velocity of helium:

V (t) = εS

4πC2

dC

dt
. (2)

Velocities were found at different temperatures and stresses.
3He under investigation previously was subjected to distil-

lation from impurities of 4He by rectification in a special
open column; the possible concentration of 4He was less
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FIG. 1. (Color online) The design scheme of the measuring cell.
It is shown not to scale.

than 10−5. The cell temperature was determined using a film
resistance RuO2 thermometer calibrated by a 3He melting
curve thermometer.

Eleven samples of 3He in the bcc phase have been studied,
that were grown by the capillary blocking at several molar
volumes Vm from 22.96 to 24.43 cm3/mole. The blocking
capillary was fulfilled at temperatures above 1.5 K, and the
next cooling down was realized with velocity 25 mK/min
during 40 minutes until full crystallization of the sample was
achieved. Measurements were carried out in such as-grown
crystals from low temperatures up to the premelting area where
the rate of plastic flow increased by orders of magnitude and
the position of the membrane deviated considerably from the
equilibrium position. To return the membrane to its original
position, the crystal was remelted under blocked capillary,
i.e., at the same density as the crystal. The sample pressure
was controlled by the capacitance sensor, and the equilibrium
position of the membrane was determined by the capacitance
of the measuring capacitor. The defect structure of the samples
was not controlled specially.

Figure 2 shows the primary experimental data describing
the change in the capacitance of the measuring capacitor after
application of the electric force to the plates (creep curves).
This was accompanied by a flow of solid helium through the
orifices in the membrane; the capacitor gap was decreased in
the measurement capacitor, and its capacity was increased.
Note that at zero voltage (U = 0 and, consequently, σ = 0)
the capacity of the measuring capacitor C ≈ 100 pF did not
change over time with an accuracy of 10−4 pF, indicating
the absence of macroscopic plastic flow in solid 3He at
σ = 0. The dependencies of Fig. 2 correspond to the creep,
when the capacitance C varies linearly with time. Despite
the scatter of the experimental data, the results obtained can
be approximated by straight lines whose slope dC/dt , in
accordance with Eq. (2), allows us to find the average velocity
V , which characterizes the overflow of helium. Measurements
of the velocity V were performed at constant temperature and
constant applied voltage U . After measuring the steady-state
value of dC/dt the voltage U was changed to the new
constant value, and the velocity measurement was repeated
with the new values of U . Investigations were carried out at
U values corresponding to the mechanical stress σ from 0 to
6 × 104 dyn/cm2.

Figure 3 shows a typical inverse temperature dependence of
the flow velocity of solid helium. It clearly shows the presence
of two areas with different temperature dependence of the

FIG. 2. (Color online) Typical creep curves of solid 3He for
one of the samples with Vm = 24.43 cm3/mole for two different
temperatures. The solid lines are a linear fitting of the primary
experimental data. The applied voltage U = 1000 V.

velocity: at temperatures above ∼0.2 K the helium flow veloc-
ity decreases exponentially with lowering temperature, which
is typical for a thermally activated process. At T < 0.2 K
helium flow velocity is almost independent on temperature,
which can be treated as a manifestation of the quantum
tunneling mechanism of mass transfer. In this temperature area
there is a large scatter of experimental data, and the area itself
was revealed reliably only under sufficiently high stresses σ .
Note that the measured velocity values depend on the defect
structure of the sample. In a more dense crystal transition
from the thermally activated to quantum region occurs at a
lower temperature and shows lower flow rate values. In one of
the studied samples the quantum region was not detected. We
emphasize, that unlike 3He, in solid 4He the plastic flow does
not have a quantum area [12]. However, the character of plastic
flow in 4He changes essentially with decreasing temperature.

FIG. 3. (Color online) Temperature dependence of the flow ve-
locity for two samples with different molar volumes and stresses.
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FIG. 4. (Color online) The stress dependence of the velocity of
plastic flow at a constant temperature. Solid lines are approximations
by expression (3). The dashed lines in all cases represent a linear
stress dependence.

The dependencies of the flow velocity of solid helium on
the stress in the thermal activation area are shown in Fig. 4. We
did not observe the plastic flow at σ = 0, whereas dC/dt �= 0
under increasing σ . Note that, first, at all temperatures the
dependencies V (σ ) have a nonlinear segment. Secondly, one
observes large scatter of dC/dt , while σ attains a certain value,
which may be treated as the threshold stress which depends on
temperature. The dependencies V (σ ) were registered reliably
at stresses higher than those of the threshold value.

The analysis showed that the dependencies V (σ ) of Fig. 4
for fixed temperature may be approximated by the expressions
(see Ref. [13], Chap. 16)

V (σ ) = Ṽ sinh

[
γ

kBT
(σ − σi)

]
, (3)

Ṽ = V0 exp

(
− Ea

kBT

)
, (4)

where V0 is the constant depending on the quality of the crystal;
Ea and γ are activation energy and volume, respectively;
σi is the internal threshold stress; and kB is the Boltzmann
constant. The approximation of the experimental data by
Eqs. (3) and (4), made by the least-square method, is shown by
solid lines in Fig. 4. Note that Eq. (3) gives linear dependence
if γ (σ − σi)/kT � 1. The linear segments are shown in Fig. 4
by dashed lines. In opposite limit γ (σ − σi)/kT > 1 one has
the exponential dependence on σ -σi : V ∼ exp[ γ

kBT
(σ − σi)].

As is seen in Fig. 4, the range of measured experimental values
of V contains both of these dependencies. Thus we obtained
the values of the three empirical parameters: γ , σi , and Ṽ . It
was found that the activation volume γ within the scatter of
data is independent of temperature and is about 30–70 times the
volume per one atom Va (Table I). This table also contains the
values of these empirical parameters obtained for five samples
which were studied at various σ . The rest of the samples were
studied at one value of σ .

As for the parameter Ṽ , the dependence of Ṽ vs T −1 is well
described by linear functions (Fig. 5), which corresponds to

TABLE I. The main characteristics of the studied samples in the
thermally activated region.

Sample Sample Vm Ea γ /Va σi

number type (cm3/mole) (K) (104dyn/cm2)

1 As-grown 22.96 2.85 ± 0.02 48 ± 5 0.60 ± 0.02
2 As-grown 23.71 3.11 ± 0.01 55 ± 20 2.26 ± 1.18
3 As-grown 23.98 3.06 ± 0.01 51 ± 17 1.79 ± 0.31
4 As-grown 24.25 2.36 ± 0.04 39 ± 8 1.09 ± 0.85
5 Remelted 24.43 2.79 ± 0.04 61 ± 15 1.82 ± 1.13

Eq. (4), where the parameter V0 is independent of temperature,
whereas dependent on the defect structure of the samples.
According to Eq. (4), plotting dependencies lnṼ vs 1/T one
can determine the activation energy Ea of plastic flow. The
obtained values of the activation energy are Ea = 2.32–3.07 K
in the studied range of the molar volume Vm (Table I).
These values are in good agreement with the data on the
activation energy of vacancies in solid 3He obtained in x-ray
experiments [14] made under conditions where there is no
directional movement of vacancies. This agreement means
that, whereas the formation of vacancies is the thermally
activated process, their movement in the crystal 3He occurs
due to quantum tunneling.

At the same time there is a contradiction with the usual
vacancy model. On the one hand, the values obtained for the
activation energy of the process are in agreement with the
vacancy mechanism; on the other hand, large values of the ac-
tivation volume γ mean that the process of plastic deformation
causes a change in the lattice in a scale considerably exceeding
the atomic size Va .

In such a situation one can assume that the vacancy diffusion
mechanism of a plastic flow in solid helium is provided by the
vacancy sources which are areas with a high concentration
of external stresses. In this case, usually stress concentration
factor αk is introduced, which shows that the value of the
mechanical stress σ can reach αkσ in a stress concentration

FIG. 5. (Color online) Dependencies of lnṼ vs 1/T and their
approximation by linear functions for two samples with different
molar volumes.
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area [15]. These areas in the used cell are supposed to be areas
near the orifices in the membrane and other inhomogeneous
areas. Thus the value of αkVa has a sense of measured
activation volume. As shown in Refs. [16,17], the value of
αk may vary in a wide range attaining a value of 40, which
gives αkVa ≈ 40Va in good agreement with the value of γ ,
found from the above experimental data. Note also that the
high value of the parameter αk leads to a nonlinear dependence
of the velocity of diffusion flow on the external stress under
attainable load in the experiment. It is just that dependence
V (σ ) given by Eq. (3) is observed experimentally (see
Fig. 4).

An alternative to the proposed vacancy mechanism is dislo-
cation mechanisms associated with the motion of dislocations
through local barriers. Using empirical values of γ , we have
made, according to Refs. [13] and [18], the standard estimation
of the average area per one local barrier, the average density
of the forest dislocations, and the value of the internal stress
caused by them. Estimates have shown that the average area
per one local barrier is (2–14) × 103a2, where a is lattice
parameter. The local barriers may be either the impurity atoms
of 4He in crystals of 3He or forest dislocations. However,
the estimates show that the concentration of 4He in 3He
samples is more than one order less than that sufficient to
form the necessary number of local barriers. As for the forest
dislocations (dislocations crossing the slip plane of the moving
dislocation), estimates have shown that for the interpretation
of experimental data, the density of the forest dislocation
should be ≈1014–1015 m−2. However, such a density of forest
dislocations should create long-range internal stresses in the
crystal which are two orders of magnitude higher than the
maximum stress σ in this experiment. This contradiction
does not allow one to accept the assumption that the forest
dislocations are barriers that control the process of plastic
flow.

The dislocation model of plastic flow can adequately
describe the results obtained in this experiment, if we consider
the dislocation motion in the Peierls potential relief, the theory
of which was developed in Refs. [19–23]. Such approach has
allowed one to identify the mechanisms of dislocation motion
in the Peierls relief in a series of materials [24–28]. In this case
the dislocation motion provides the formation and the further
expansion of kink pairs, and the rate of plastic deformation
ε̇, which, being proportional to the measured macroscopic
flow velocity V (T ,σ ) of 3He, is determined by the probability
of nucleation of kink pairs wT and further their dynamic
expansion.

The probability wT is determined by the energy H (τ ∗)
of nucleation of critical kink pair on a dislocation which
is dependent on the effective shear stress τ ∗ = τ − τi (τ
is the external applied stress; τi is the internal stress). In
the wide range of stresses τ ∗ the expression for wT can be
written [21,22,24,25,28]

wT ∝ exp

(
− H (τ ∗)

kBT

)
= exp

(
− H ∗ − E(τ ∗)

kBT

)
, (5)

where H ∗ is the energy parameter and E(τ ∗) is a complicated
function of τ ∗.

For a comparison between experiment and theory one
applies Eqs. (3) and (4) for the experimentally measured

velocity V , which under condition γ (σ − σi)/kBT > 1 reads
as

V (σ,T ) ≈ V0

2
exp

(
− Ea − γ (σ − σi)

kBT

)
. (6)

A connection between strain rate ε̇ and the probability wT

is known in two limiting cases: low and high linear density of
kinks [21]. In the limit of low density the value ε̇ is determined
by the average time of nucleation of kink pairs and ε̇ ∝ wT ,
whereas H ∗ = 2Wk where Wk is the energy of a single kink
on a dislocation. To adequately describe the experimental data
on the velocity of plastic flow of 3He, one should suppose the
consistency between the exponents of Eqs. (5) and (6), because
ε̇ ∝ wT . Therefore one should put H ∗ = Ea and, hence,
Wk = Ea/2. Assuming that the Peierls relief is sinusoidal,
it can find, according to Refs. [13] and [19], the width of a
single kink lk and evaluate Peierls stress τP . Estimates show
that the value of lk is about six times periods aP of the Peierls
potential. This means that a single kink is extensive and allows
one to apply the continual model of dislocation. The value of
the Peierls stress is estimated as τP = (1–1.8) × 106 dyn/cm2,
which is two orders of magnitude higher than stresses in
our experiment, that is, τ ∗ � τP . Under these conditions,
an estimate of the activation volume gives ≈ (16–30)Va ,
which is consistent with the values obtained for empirical
parameter γ .

If the linear density of kinks is high, the processes of
their annihilation are essential and ε̇ ∝ √

wT . In this case the
value of activation volume is less consistent with the value
of γ obtained in the experiment. Thus, our semiquantitative
analysis shows that the characteristics of the experimentally
observed obtained processes in the plastic flow in 3He can
be treated in the framework of the mechanisms of dislocation
motion in the Peierls relief. It seems that the case ε̇ ∝ wT is
realized. This experimentally determined activation energy Ea

has a clear physical meaning: Ea equals twice the energy of a
single kink.

As noted above, the experimentally observed independence
of the velocity of plastic flow on temperature (Fig. 3) indicates
the quantum mechanism of flow when at sufficiently low
temperature the dislocation overcomes Peierls barriers by
quantum tunneling. An estimate of the temperature T0, below
which the thermally activated regime of dislocation motion
is replaced by the quantum tunneling, according to [20] gives
T0 ≈ 0.01 K under mechanical stresses used in the experiment.
Since the transition temperature to the athermal plasticity
regime depends on the stress in the crystal, more accurate
information can be obtained if we measure the dependence of
the velocity of the plastic flow of helium on the mechanical
stress in the quantum regime.

In conclusion, the quantum macroscopic plastic flow is
observed for below 0.2 K. Earlier experiments on the plastic
flow of solid 3He were performed at temperatures above 0.5 K
and only the classical thermally activated plastic flow was
observed. It has been found that thermally activated flow
regime is realized above ∼0.2 K, and the activation energy of
the process is equal to the activation energy of vacancies. The
activation volume 30–70 times exceeds the atomic volume,
indicating that structural changes in the lattice during plastic

140505-4



RAPID COMMUNICATIONS

THERMALLY ACTIVATED AND QUANTUM PLASTICITY OF . . . PHYSICAL REVIEW B 92, 140505(R) (2015)

deformation occur on a scale considerably exceeding the
atomic size. The results of experiment can be explained within
the vacancy model if the sources of vacancies are areas
with a high concentration of external stresses. The possible
alternative explanation for the experimental data is based on

the model of the motion of dislocations in the Peierls potential
relief.
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