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Universal sequence of ground states validating the classification of frustration
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The sequence of 2s + 1 ground states in the frustrated antiferromagnetic rings with odd number n of local
spins s resulting from a single bond defect strength is determined, and occurrence of the Lieb-Mattis energy level
ordering, proven for the bipartite systems only, is confirmed for the rings in question. The sequence is universal,
provides the theoretical basis for the recent classification of spin frustration in molecular magnets, and indicates
that the Lieb-Mattis theorem (LMT) consequences exist for the nonbipartite rings. The states in the sequence
are characterized by the total spin S fulfilling the constraint S � s and are separated by 2s Kahn degenerate
frustration points. The possible LMT consequences in other systems are discussed.

DOI: 10.1103/PhysRevB.92.140411 PACS number(s): 75.10.Jm, 03.65.Aa, 75.10.Hk, 75.50.Xx

Frustration in magnetic systems is a subject of intensive
research which has been reinforced in the framework of molec-
ular magnetism, providing excellent examples of quantum
spin systems described by the Heisenberg model [1–6]. A
class of chromium-based complexes with the nearest-neighbor
antiferromagnetic interactions between magnetic ions with
spin s = 3/2 is particularly interesting and one of the most
studied [7–11]. The approaches, however, have been used in
a fragmented way focused on solving a given problem, e.g.,
frustration effects in the Cr9 rings [8,9] or analysis of the
frustration signatures which leads to qualitative conclusions,
e.g., reduction of the total or local magnetization [1,9]. A more
fundamental approach which clarifies the piecemeal results
and predicts new properties is still missing.

In classical systems frustration is directly related to the bond
configuration. A given system is frustrated if it contains some
loops with an odd number of antiferromagnetic bonds. This
geometric property implies that in such a layout the ground
state (GS) energy is higher than the sum of energies of all the
saturated bonds [12–15].

In quantum spin systems, the GS energy [16–18] is also
higher than the sum of the GS energies for the constituent
geometrically satisfied bonds due to quantum frustration orig-
inating from the entanglement [19–21]. Here we consider the
geometric frustration which exists in systems with competing
interactions and is an analog of the classical frustration. We
analyze its effects in relation to bipartiteness [1,3] defined by
Lieb and Mattis (LM) [22].

Following LM, a finite system of quantum spins {sj }
coupled by bilinear interactions Jjksj · sk is bipartite if it can
be decomposed into two separable parts (or sublattices A and
B) and there exists a number g2 � 0 being simultaneously
the lower bound of the exchange integrals Jjk for spins from
different subsystems and the upper bound of couplings Jjk for
spins in the same sublattice. According to this definition, e.g.,
a lattice system is bipartite with g2 = 0 if all the exchange
couplings connect two sites residing on different subgroups
only and they are antiferromagnetic.
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In the nonuniform chromium-based s = 3/2 rings Cr9

which are frustrated, the S = s GS’s typical for the unfrustrated
rings were predicted [9,23] and observed [8]. To account for
this unexpected result, a new classification of spin frustration
was proposed [8], using the classical concepts. The first type
was attributed to the Kahn frustration [1,24] which occurs
if the GS is a superposition of degenerated states. At least
one of them should be described by a nonzero spin quantum
number. For the Cr9 molecule this condition is fulfilled if all
the couplings are equal. Then there is a pair of degenerate
S = 1/2 GS’s. The second type of frustration is realized in
the domain of bond defects yielding the GS with S = 1/2 < s

[8]. The third type is characterized by the S = 3/2 = s GS
which was viewed as a relic of the GS of the corresponding
nonfrustrated ring.

We bring the theoretical grounds for this classification,
considering a variety of the odd-numbered antiferromagnetic
rings. We predict for them the universal sequence of GS’s
in terms of the total spin S, calculate the coordinates of
their boundaries which coincide with the Kahn degenerate
frustration points, and determine the domains assigned to the
second and third types of frustration. The sequence explains
qualitatively some experimental findings for a number of rings.
We check that the Lieb-Mattis level ordering (LMLO) [25],
proven for the bipartite systems [22], is fulfilled for any bond
defect strength [i.e., E(S ′) < E(S ′ + 1) for S ′ � S, where
E(S ′) and E(S ′ + 1) are the lowest energies belonging to the
levels with the total spins S ′ and S ′ + 1, respectively]. Our
conclusions arise from the Lieb-Mattis theorem (LMT) [22,26]
and algebraic calculations for the bipartite systems with the
size n = 3. Their validity for the nonbipartite systems with
the size n > 3 is confirmed by precise numerical calculations
within the resources available.

The isosceles triangles (Fig. 1) represent the most simple
models of the rings considered here. Assigning the spin s2

to one subsystem and the remaining two spins to the other
one [Fig. 1(a)], we can choose g2 = 0 for J31 = α � 0 to
validate the bipartiteness. When 0 < α � 1 [Fig. 1(b)], the
decomposition into subsystems is the same as in Fig. 1(a),
but now the condition for bipartiteness is satisfied provided
that α � g2 � 1. The system is bipartite also for α > 1,
assigning the spins s1 and s3 linked by the defected bond
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FIG. 1. (Color online) Bipartiteness of a quantum triangle (J12 =
J23 = 1, J31 = α) with possible choices of g2. Spins denoted by gray
and black circles form different subsystems.

to different subsystems and putting constant g2 = 1 [see
Fig. 1(c)]. Therefore, the system represented by the isosceles
triangle can be frustrated and bipartite with g2 > 0. We note
that this compelling statement is also valid for squares with
the competing diagonal interactions [27].

Graph theory implies [28] that the geometrical frustration
is excluded in bipartite systems with g2 = 0 but not in those
with g2 > 0. The statement does not support the suggestion
that frustration is the opposite of bipartiteness propounded on
the unreliable basis g2 = 0 [1].

It is crucial to distinguish implications of the value g2 = 0
and g2 > 0 for a bipartite system. For g2 > 0 the outcome of
LMT [22,26] determines the upper bound S = |SA − SB | for
the total spin S of GS (i.e., the allowed spin value S � S),
whereas for g2 = 0 it implies the value S = S, where SA(B) =∑

j∈A(B) sj .
As a consequence, LMT provides the strong constraint on

the possible GS spin values. For the triangles in Fig. 1 with
arbitrary spin s, the value S = s and the LMT predicts the
unique GS with S = s if α < 0, otherwise the GS spin S � s.
The latter stands for an upper bound for S and proves that the
value S = s attributed to the third type of frustration is fully
allowed in the GS of the frustrated triangle.

The rings in question are described by the isotropic
Heisenberg Hamiltonian

H =
n−1∑
j=1

sj ·sj+1 + αsn ·s1, (1)

where the bond defect α is arbitrary and the size n � 3,
so that the total spin S and the total spin component M

are good quantum numbers. As the model (1) is symmetric
with respect to the reflection ρ in the plane perpendicular to
the defected bond, the eigenstates |S r〉 are classified by the
additional quantum number r = ±1 (ρ|S r〉 = r|S r〉) which
distinguishes the symmetric and the antisymmetric states,
respectively. If α � 0, the model (1) is bipartite with g2 = 0.
In this case LMT predicts unambiguously GS |S = s,r = +1〉,
irrespective of the size n of the ring and the local spin value s.

In the region α > 0, only the spin system (1) with n = 3 is
bipartite. The value of the total spin S in the GS is then subject
to the LMT constraint S � S = s, whereas the value r remains
not determined. However, in this case the quantum numbers
S and r can be found from direct algebraic calculations based
on the sublattice model [29–31]. Their details are presented
in the Supplemental Material [27] together with plots of the
low-lying energy levels as a function of α for s � 3/2. When
α > 0 increases monotonically the regular sequence of GS’s
|S r〉 occurs. It starts from the total spin S = s and r = 1, i.e.,
the state with ferromagnetically ordered dimer σ = s1 + s3.
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FIG. 2. (Color online) The total spin S in GS as a function of α

for n = 3 in the cases s = 2 and s = 5/2. The symmetry of the state
S = 1/2 is changed for α = 1 which is marked by a full triangle.

For larger values of α > 0 the dimer total spin σ decreases,
whereas the total spin is given as S = |s − σ |, so the following
sequence is produced:

S = s,s − 1, . . . ,

{
2,1,0,1,2

3/2,1/2,1/2,3/2

}
, . . . ,s − 1,s, (2)

where the upper (lower) row corresponds to the integer
(half-integer) spin number s, respectively. Since the quantum
number r alternates, the final GS in this sequence is |S = s,r =
(−1)2s〉.

Hence, there are 2s + 1 different GS’s separated by 2s

Kahn frustration points. Interestingly, the spectrum of the
GS total spins covers the full range of the allowed values
arising from LMT, and the LMLO is strictly fulfilled for
all α. The sequences occurring for s = 2 and s = 5/2 are
illustrated in Fig. 2, whereas those for s < 2 are included in
the Supplemental Material [27].

We have performed vast numerically exact diagonalizations
of the model (1) in the domain α > 0 and considered a
number of system sizes 3 < n � 13 as well as the spin values
1/2 � s � 7. From these results we have confirmed both the
universality of the sequence obtained and the tight preservation
of the LMLO. Although for n > 3 and α > 0 the rings are
nonbipartite, nevertheless their sequences of GS’s coincide
with that given by Eq. (2), and the LMLO survives too. We
can state that the rings inherit the features of their prototype
bipartite triangle. The sequences and the LMLO property are
illustrated in Fig. 3 for n = 5, s = 3/2, and α � 2.

Referring to the classification of frustration [8], we can
generalize its applicability to arbitrary rings in question. In
the frustrated region α > 0, there exist domains with the GS
S = s which is characteristic for the nonfrustrated rings. In
these domains of interactions, the rings are subject to the third
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FIG. 3. (Color online) The sequence of the ground states and the
Lieb-Mattis level ordering in the spin s = 3/2 pentagon for α � 2.
The irrelevant energy levels are omitted for clarity.
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FIG. 4. (Color online) The ground state energy diagram in the
presence of field for the spin s = 3/2 pentagon illustrating the LMLO
and the size of the magnetization steps for J/kB = 1 K and g = 1 in
the corresponding Zeeman term. The domains are characterized by
the total z component M of spin and the symmetry index r denoted by
s or a. For a fixed α, the quantum number M increases systematically
by 1.

type of frustration. In the remaining domains, the GS spin
S < s which is a signature of the second type of frustration.

The coordinates of the corresponding level crossings α
(j )
c

(1 � j � 2s) define the boundaries of a given type of GS
and are exemplified in the Supplemental Material [27]. The
value α(1)

c terminates the domain of the third type of frustration
characterized by GS |s,+〉 which starts from α = 0. This type
of frustration occurs also for α > α(2s)

c with GS |s,(−1)2s〉. For
s = 1/2 the third type of frustration is spread over the entire
domain α > 0 irrespective of the ring size n, excluding α(1)

c =
1 which is the single Kahn frustration point. The domain of the
second type of frustration with the GS spin S < s exists for s >

1/2 and α(1)
c < α < α(2s)

c . It is split into 2s − 1 intervals with
different GS’s determined by the sequences (2) and separated
by the Kahn degenerate frustration points.

The LMLO property leads to a diagram showing areas of
the GS’s with a fixed value of M in the presence of a magnetic
field. For a pentagon with n = 5 and s = 3/2 in Eq. (1), the
diagram is shown in Fig. 4. For any α, the value M in the GS
is enhanced only by 1 with increasing field, implying the
in-field magnetization stairs with the magnetization steps or
plateaus changing according to the data of the corresponding
GS diagram.

For half-integer spins the point α(s+1/2)
c = 1 locates the level

crossing of the states |1/2 ±〉, so that the anticipated fourfold
degeneracy is recovered [32]. In particular, for α slightly
higher than 1 in the spin s = 1/2 rings the energy levels of
GS’s |1/2 ±〉 should be close, which explains qualitatively a
very small gap between the two Kramers’ doublets observed
in the heptanuclear vanadium ring [5]. For integer spins,
the coordinates α(s)

c < 1 and α(s+1)
c > 1 encompass the value

α = 1, constitute the limits for the S = 0 GS domain, and
imply the nondegenerate GS for α = 1, as expected [24,32].

For the bipartite systems with g2 = 0, the Marshall sign
rule [25] should be satisfied, and this is true for the rings with
the defect bond α < 0. However, the rule is not systematically
obeyed beyond this region of α. It is violated even for the
triangle in the region α(1)

c < α < α(2s)
c , where the system is

bipartite with g2 > 0.
The condition of bipartiteness Jjk � g2 > 0 is satisfied

when all the spins from different subsystems are coupled
antiferromagnetically. This may occur for small systems, for
systems with a special topology, like the centered rings [4,33]
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FIG. 5. (Color online) A bipartite centered square with fixed
(J = 1) antiferromagnetic interactions between the neighboring
peripheral spins and their couplings with the central spin parametrized
by α. Partitioning of the system for 0 < α � 1 and α > 1 is shown
in panels (a) and (b), respectively.

(see Fig. 5), or for those with the properly tuned long-range
RKKY interactions. The question arises if the sequence of
GS’s and existence of the LMLO are particular properties of
the rings modeled by the Hamiltonian (1) or they can also be
observed in other systems.

The prototype of the odd-numbered cluster of the centered
rings is illustrated in Fig. 5. The interactions between the
neighboring spins on the outer ring are fixed and equal
1, whereas those between the central spin and peripheral
ones equal α. Choosing properly the sublattices (Fig. 5), the
frustrated cluster is bipartite for α � 0, and we deduce from
LMT that the ground state spin S amounts to S = s, S � s,
and S � 3s for α = 0, 0 < α � 1, and α > 1, respectively.

The corresponding centered hexagon is bipartite for α = 0
and α � 1 only, implying the LMT constraints S = s and S �
5s, respectively. Nevertheless for the n = 7 and s = 5/2 iron
ring (Fig. 8 in Ref. [4]) the subsequence of the GS spins values
S = 5/2,3/2,1/2 was found for the domain 0 � α � 1, which
is in perfect agreement with the constraint S � s predicted
here for a bipartite centered square. Moreover, the n = 7 and
S = 5/2 analog of the staircase shown in Fig. 2 was obtained
[4]. Having that in mind, we guess that a universal sequence
of the GS’s as well as the LMLO might also be realized for
the odd-numbered centered rings.

A bipartite square representing the frustrated even-
numbered cluster on the square lattice is shown in Fig. S1 [27].
For this square the numberS = 0 which implies the unique GS
|S = 0〉. This trivial S = 0 sequence was determined also for a
number of nonbipartite clusters with interacting spins s = 1/2
[34]. We anticipate that for any even-numbered cluster the
same GS S = 0 and the LMLO can be established.

The simplest prototypes of the antiferromagnetic systems
with an impurity spin and nonuniform couplings such as Cr8Ni
[35–37] are bipartite. For the triangles illustrated in Figs. 1(b)
and 1(c), where s1 = s3 = 3/2, s2 = 1 (corresponding to the
Ni ion) and the bonds are rescaled by a factor α′ = 1/α, the
sequence of the GS’s in terms of increasing α′ is given by
expression (2), where the left and the right bound are given by
S = 1 and S = 2, respectively. The noteworthy subsequence
S = 1,0 of GS’s was determined in a nonbipartite model of
the Cr8Ni molecule [10,36] for 0 � α′ � 1. In addition, an
insight into the energy spectrum confirms the LMLO. This
partial result may suggest that the constraint for the GS
spin 0 � S � 2 exists for this type of molecular rings. A
similar reasoning can be provided for the frustrated uniform
even-numbered rings with the antiferromagnetic next-nearest-
neighbor couplings (see the prototype ring in Fig. S1 of
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Ref. [27]) or for nanomagnets built from magnetic atoms
adsorbed on a nonmagnetic surface and coupled by RKKY
exchange [38,39].

In conclusion, we have established the universal sequence
of the GS’s for antiferromagnetic rings with the odd number
of the local spins s and a single bond defect α described by
the model (1). The sequence is characterized by the total spin
S � s and contains all the numbers belonging to the interval
allowed. For S ′ � S, the LMLO E(S ′ + 1) > E(S ′) is valid,
where E(S ′) is the lowest energy of the states described by the
quantum number S ′. The sequence validates the classification
of frustration in this type of nanomagnets. Our calculations
have revealed the unexpected features of the model in question:
The rings with enlarged nonbipartite structure inherit the LMT
consequences of their bipartite archetypes.

We have pointed out that the class of frustrated nanomagnets
which inherits the GS energy structure from their bipartite
counterparts can be broader. In these nanomagnets the values
of the total spin S in their GS obey the corresponding constraint
S � S arising from LMT. A knowledge of possible GS’s in
this type of systems may facilitate classification of frustration
and the interpretation of experimental results in terms of the
Heisenberg model.
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